xref: /openbmc/linux/kernel/time/tick-sched.c (revision ead70b75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 #define MAX_STALLED_JIFFIES 5
173 
174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176 	int cpu = smp_processor_id();
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 	/*
180 	 * Check if the do_timer duty was dropped. We don't care about
181 	 * concurrency: This happens only when the CPU in charge went
182 	 * into a long sleep. If two CPUs happen to assign themselves to
183 	 * this duty, then the jiffies update is still serialized by
184 	 * jiffies_lock.
185 	 *
186 	 * If nohz_full is enabled, this should not happen because the
187 	 * tick_do_timer_cpu never relinquishes.
188 	 */
189 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191 		WARN_ON_ONCE(tick_nohz_full_running);
192 #endif
193 		tick_do_timer_cpu = cpu;
194 	}
195 #endif
196 
197 	/* Check, if the jiffies need an update */
198 	if (tick_do_timer_cpu == cpu)
199 		tick_do_update_jiffies64(now);
200 
201 	/*
202 	 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 	 * or VMEXIT'ed for several msecs), force an update.
204 	 */
205 	if (ts->last_tick_jiffies != jiffies) {
206 		ts->stalled_jiffies = 0;
207 		ts->last_tick_jiffies = READ_ONCE(jiffies);
208 	} else {
209 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 			tick_do_update_jiffies64(now);
211 			ts->stalled_jiffies = 0;
212 			ts->last_tick_jiffies = READ_ONCE(jiffies);
213 		}
214 	}
215 
216 	if (ts->inidle)
217 		ts->got_idle_tick = 1;
218 }
219 
220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223 	/*
224 	 * When we are idle and the tick is stopped, we have to touch
225 	 * the watchdog as we might not schedule for a really long
226 	 * time. This happens on complete idle SMP systems while
227 	 * waiting on the login prompt. We also increment the "start of
228 	 * idle" jiffy stamp so the idle accounting adjustment we do
229 	 * when we go busy again does not account too much ticks.
230 	 */
231 	if (ts->tick_stopped) {
232 		touch_softlockup_watchdog_sched();
233 		if (is_idle_task(current))
234 			ts->idle_jiffies++;
235 		/*
236 		 * In case the current tick fired too early past its expected
237 		 * expiration, make sure we don't bypass the next clock reprogramming
238 		 * to the same deadline.
239 		 */
240 		ts->next_tick = 0;
241 	}
242 #endif
243 	update_process_times(user_mode(regs));
244 	profile_tick(CPU_PROFILING);
245 }
246 #endif
247 
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254 
255 static bool check_tick_dependency(atomic_t *dep)
256 {
257 	int val = atomic_read(dep);
258 
259 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
260 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261 		return true;
262 	}
263 
264 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
265 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266 		return true;
267 	}
268 
269 	if (val & TICK_DEP_MASK_SCHED) {
270 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271 		return true;
272 	}
273 
274 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276 		return true;
277 	}
278 
279 	if (val & TICK_DEP_MASK_RCU) {
280 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 		return true;
282 	}
283 
284 	return false;
285 }
286 
287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289 	lockdep_assert_irqs_disabled();
290 
291 	if (unlikely(!cpu_online(cpu)))
292 		return false;
293 
294 	if (check_tick_dependency(&tick_dep_mask))
295 		return false;
296 
297 	if (check_tick_dependency(&ts->tick_dep_mask))
298 		return false;
299 
300 	if (check_tick_dependency(&current->tick_dep_mask))
301 		return false;
302 
303 	if (check_tick_dependency(&current->signal->tick_dep_mask))
304 		return false;
305 
306 	return true;
307 }
308 
309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313 
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316 
317 /*
318  * Kick this CPU if it's full dynticks in order to force it to
319  * re-evaluate its dependency on the tick and restart it if necessary.
320  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321  * is NMI safe.
322  */
323 static void tick_nohz_full_kick(void)
324 {
325 	if (!tick_nohz_full_cpu(smp_processor_id()))
326 		return;
327 
328 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330 
331 /*
332  * Kick the CPU if it's full dynticks in order to force it to
333  * re-evaluate its dependency on the tick and restart it if necessary.
334  */
335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337 	if (!tick_nohz_full_cpu(cpu))
338 		return;
339 
340 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342 
343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345 	int cpu;
346 
347 	/*
348 	 * If the task is not running, run_posix_cpu_timers()
349 	 * has nothing to elapse, IPI can then be spared.
350 	 *
351 	 * activate_task()                      STORE p->tick_dep_mask
352 	 *   STORE p->on_rq
353 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
354 	 *   LOCK rq->lock                      LOAD p->on_rq
355 	 *   smp_mb__after_spin_lock()
356 	 *   tick_nohz_task_switch()
357 	 *     LOAD p->tick_dep_mask
358 	 */
359 	if (!sched_task_on_rq(tsk))
360 		return;
361 
362 	/*
363 	 * If the task concurrently migrates to another CPU,
364 	 * we guarantee it sees the new tick dependency upon
365 	 * schedule.
366 	 *
367 	 * set_task_cpu(p, cpu);
368 	 *   STORE p->cpu = @cpu
369 	 * __schedule() (switch to task 'p')
370 	 *   LOCK rq->lock
371 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
372 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
373 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
374 	 */
375 	cpu = task_cpu(tsk);
376 
377 	preempt_disable();
378 	if (cpu_online(cpu))
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
383 /*
384  * Kick all full dynticks CPUs in order to force these to re-evaluate
385  * their dependency on the tick and restart it if necessary.
386  */
387 static void tick_nohz_full_kick_all(void)
388 {
389 	int cpu;
390 
391 	if (!tick_nohz_full_running)
392 		return;
393 
394 	preempt_disable();
395 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 		tick_nohz_full_kick_cpu(cpu);
397 	preempt_enable();
398 }
399 
400 static void tick_nohz_dep_set_all(atomic_t *dep,
401 				  enum tick_dep_bits bit)
402 {
403 	int prev;
404 
405 	prev = atomic_fetch_or(BIT(bit), dep);
406 	if (!prev)
407 		tick_nohz_full_kick_all();
408 }
409 
410 /*
411  * Set a global tick dependency. Used by perf events that rely on freq and
412  * by unstable clock.
413  */
414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418 
419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421 	atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423 
424 /*
425  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426  * manage events throttling.
427  */
428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430 	int prev;
431 	struct tick_sched *ts;
432 
433 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434 
435 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436 	if (!prev) {
437 		preempt_disable();
438 		/* Perf needs local kick that is NMI safe */
439 		if (cpu == smp_processor_id()) {
440 			tick_nohz_full_kick();
441 		} else {
442 			/* Remote irq work not NMI-safe */
443 			if (!WARN_ON_ONCE(in_nmi()))
444 				tick_nohz_full_kick_cpu(cpu);
445 		}
446 		preempt_enable();
447 	}
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450 
451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454 
455 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458 
459 /*
460  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461  * in order to elapse per task timers.
462  */
463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 		tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469 
470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475 
476 /*
477  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478  * per process timers.
479  */
480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 			      enum tick_dep_bits bit)
482 {
483 	int prev;
484 	struct signal_struct *sig = tsk->signal;
485 
486 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 	if (!prev) {
488 		struct task_struct *t;
489 
490 		lockdep_assert_held(&tsk->sighand->siglock);
491 		__for_each_thread(sig, t)
492 			tick_nohz_kick_task(t);
493 	}
494 }
495 
496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500 
501 /*
502  * Re-evaluate the need for the tick as we switch the current task.
503  * It might need the tick due to per task/process properties:
504  * perf events, posix CPU timers, ...
505  */
506 void __tick_nohz_task_switch(void)
507 {
508 	struct tick_sched *ts;
509 
510 	if (!tick_nohz_full_cpu(smp_processor_id()))
511 		return;
512 
513 	ts = this_cpu_ptr(&tick_cpu_sched);
514 
515 	if (ts->tick_stopped) {
516 		if (atomic_read(&current->tick_dep_mask) ||
517 		    atomic_read(&current->signal->tick_dep_mask))
518 			tick_nohz_full_kick();
519 	}
520 }
521 
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526 	cpumask_copy(tick_nohz_full_mask, cpumask);
527 	tick_nohz_full_running = true;
528 }
529 
530 static int tick_nohz_cpu_down(unsigned int cpu)
531 {
532 	/*
533 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
534 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
535 	 * CPUs. It must remain online when nohz full is enabled.
536 	 */
537 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
538 		return -EBUSY;
539 	return 0;
540 }
541 
542 void __init tick_nohz_init(void)
543 {
544 	int cpu, ret;
545 
546 	if (!tick_nohz_full_running)
547 		return;
548 
549 	/*
550 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
551 	 * locking contexts. But then we need irq work to raise its own
552 	 * interrupts to avoid circular dependency on the tick
553 	 */
554 	if (!arch_irq_work_has_interrupt()) {
555 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
556 		cpumask_clear(tick_nohz_full_mask);
557 		tick_nohz_full_running = false;
558 		return;
559 	}
560 
561 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
562 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
563 		cpu = smp_processor_id();
564 
565 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
566 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
567 				"for timekeeping\n", cpu);
568 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
569 		}
570 	}
571 
572 	for_each_cpu(cpu, tick_nohz_full_mask)
573 		ct_cpu_track_user(cpu);
574 
575 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
576 					"kernel/nohz:predown", NULL,
577 					tick_nohz_cpu_down);
578 	WARN_ON(ret < 0);
579 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
580 		cpumask_pr_args(tick_nohz_full_mask));
581 }
582 #endif
583 
584 /*
585  * NOHZ - aka dynamic tick functionality
586  */
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * NO HZ enabled ?
590  */
591 bool tick_nohz_enabled __read_mostly  = true;
592 unsigned long tick_nohz_active  __read_mostly;
593 /*
594  * Enable / Disable tickless mode
595  */
596 static int __init setup_tick_nohz(char *str)
597 {
598 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
599 }
600 
601 __setup("nohz=", setup_tick_nohz);
602 
603 bool tick_nohz_tick_stopped(void)
604 {
605 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
606 
607 	return ts->tick_stopped;
608 }
609 
610 bool tick_nohz_tick_stopped_cpu(int cpu)
611 {
612 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
613 
614 	return ts->tick_stopped;
615 }
616 
617 /**
618  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
619  *
620  * Called from interrupt entry when the CPU was idle
621  *
622  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
623  * must be updated. Otherwise an interrupt handler could use a stale jiffy
624  * value. We do this unconditionally on any CPU, as we don't know whether the
625  * CPU, which has the update task assigned is in a long sleep.
626  */
627 static void tick_nohz_update_jiffies(ktime_t now)
628 {
629 	unsigned long flags;
630 
631 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
632 
633 	local_irq_save(flags);
634 	tick_do_update_jiffies64(now);
635 	local_irq_restore(flags);
636 
637 	touch_softlockup_watchdog_sched();
638 }
639 
640 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
641 {
642 	ktime_t delta;
643 
644 	if (WARN_ON_ONCE(!ts->idle_active))
645 		return;
646 
647 	delta = ktime_sub(now, ts->idle_entrytime);
648 
649 	write_seqcount_begin(&ts->idle_sleeptime_seq);
650 	if (nr_iowait_cpu(smp_processor_id()) > 0)
651 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
652 	else
653 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
654 
655 	ts->idle_entrytime = now;
656 	ts->idle_active = 0;
657 	write_seqcount_end(&ts->idle_sleeptime_seq);
658 
659 	sched_clock_idle_wakeup_event();
660 }
661 
662 static void tick_nohz_start_idle(struct tick_sched *ts)
663 {
664 	write_seqcount_begin(&ts->idle_sleeptime_seq);
665 	ts->idle_entrytime = ktime_get();
666 	ts->idle_active = 1;
667 	write_seqcount_end(&ts->idle_sleeptime_seq);
668 
669 	sched_clock_idle_sleep_event();
670 }
671 
672 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
673 				 bool compute_delta, u64 *last_update_time)
674 {
675 	ktime_t now, idle;
676 	unsigned int seq;
677 
678 	if (!tick_nohz_active)
679 		return -1;
680 
681 	now = ktime_get();
682 	if (last_update_time)
683 		*last_update_time = ktime_to_us(now);
684 
685 	do {
686 		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
687 
688 		if (ts->idle_active && compute_delta) {
689 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
690 
691 			idle = ktime_add(*sleeptime, delta);
692 		} else {
693 			idle = *sleeptime;
694 		}
695 	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
696 
697 	return ktime_to_us(idle);
698 
699 }
700 
701 /**
702  * get_cpu_idle_time_us - get the total idle time of a CPU
703  * @cpu: CPU number to query
704  * @last_update_time: variable to store update time in. Do not update
705  * counters if NULL.
706  *
707  * Return the cumulative idle time (since boot) for a given
708  * CPU, in microseconds. Note this is partially broken due to
709  * the counter of iowait tasks that can be remotely updated without
710  * any synchronization. Therefore it is possible to observe backward
711  * values within two consecutive reads.
712  *
713  * This time is measured via accounting rather than sampling,
714  * and is as accurate as ktime_get() is.
715  *
716  * This function returns -1 if NOHZ is not enabled.
717  */
718 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
719 {
720 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
721 
722 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
723 				     !nr_iowait_cpu(cpu), last_update_time);
724 }
725 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
726 
727 /**
728  * get_cpu_iowait_time_us - get the total iowait time of a CPU
729  * @cpu: CPU number to query
730  * @last_update_time: variable to store update time in. Do not update
731  * counters if NULL.
732  *
733  * Return the cumulative iowait time (since boot) for a given
734  * CPU, in microseconds. Note this is partially broken due to
735  * the counter of iowait tasks that can be remotely updated without
736  * any synchronization. Therefore it is possible to observe backward
737  * values within two consecutive reads.
738  *
739  * This time is measured via accounting rather than sampling,
740  * and is as accurate as ktime_get() is.
741  *
742  * This function returns -1 if NOHZ is not enabled.
743  */
744 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
745 {
746 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
747 
748 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
749 				     nr_iowait_cpu(cpu), last_update_time);
750 }
751 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
752 
753 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
754 {
755 	hrtimer_cancel(&ts->sched_timer);
756 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
757 
758 	/* Forward the time to expire in the future */
759 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
760 
761 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
762 		hrtimer_start_expires(&ts->sched_timer,
763 				      HRTIMER_MODE_ABS_PINNED_HARD);
764 	} else {
765 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
766 	}
767 
768 	/*
769 	 * Reset to make sure next tick stop doesn't get fooled by past
770 	 * cached clock deadline.
771 	 */
772 	ts->next_tick = 0;
773 }
774 
775 static inline bool local_timer_softirq_pending(void)
776 {
777 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
778 }
779 
780 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
781 {
782 	u64 basemono, next_tick, delta, expires;
783 	unsigned long basejiff;
784 	unsigned int seq;
785 
786 	/* Read jiffies and the time when jiffies were updated last */
787 	do {
788 		seq = read_seqcount_begin(&jiffies_seq);
789 		basemono = last_jiffies_update;
790 		basejiff = jiffies;
791 	} while (read_seqcount_retry(&jiffies_seq, seq));
792 	ts->last_jiffies = basejiff;
793 	ts->timer_expires_base = basemono;
794 
795 	/*
796 	 * Keep the periodic tick, when RCU, architecture or irq_work
797 	 * requests it.
798 	 * Aside of that check whether the local timer softirq is
799 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
800 	 * because there is an already expired timer, so it will request
801 	 * immediate expiry, which rearms the hardware timer with a
802 	 * minimal delta which brings us back to this place
803 	 * immediately. Lather, rinse and repeat...
804 	 */
805 	if (rcu_needs_cpu() || arch_needs_cpu() ||
806 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
807 		next_tick = basemono + TICK_NSEC;
808 	} else {
809 		/*
810 		 * Get the next pending timer. If high resolution
811 		 * timers are enabled this only takes the timer wheel
812 		 * timers into account. If high resolution timers are
813 		 * disabled this also looks at the next expiring
814 		 * hrtimer.
815 		 */
816 		next_tick = get_next_timer_interrupt(basejiff, basemono);
817 		ts->next_timer = next_tick;
818 	}
819 
820 	/*
821 	 * If the tick is due in the next period, keep it ticking or
822 	 * force prod the timer.
823 	 */
824 	delta = next_tick - basemono;
825 	if (delta <= (u64)TICK_NSEC) {
826 		/*
827 		 * Tell the timer code that the base is not idle, i.e. undo
828 		 * the effect of get_next_timer_interrupt():
829 		 */
830 		timer_clear_idle();
831 		/*
832 		 * We've not stopped the tick yet, and there's a timer in the
833 		 * next period, so no point in stopping it either, bail.
834 		 */
835 		if (!ts->tick_stopped) {
836 			ts->timer_expires = 0;
837 			goto out;
838 		}
839 	}
840 
841 	/*
842 	 * If this CPU is the one which had the do_timer() duty last, we limit
843 	 * the sleep time to the timekeeping max_deferment value.
844 	 * Otherwise we can sleep as long as we want.
845 	 */
846 	delta = timekeeping_max_deferment();
847 	if (cpu != tick_do_timer_cpu &&
848 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
849 		delta = KTIME_MAX;
850 
851 	/* Calculate the next expiry time */
852 	if (delta < (KTIME_MAX - basemono))
853 		expires = basemono + delta;
854 	else
855 		expires = KTIME_MAX;
856 
857 	ts->timer_expires = min_t(u64, expires, next_tick);
858 
859 out:
860 	return ts->timer_expires;
861 }
862 
863 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
864 {
865 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
866 	u64 basemono = ts->timer_expires_base;
867 	u64 expires = ts->timer_expires;
868 	ktime_t tick = expires;
869 
870 	/* Make sure we won't be trying to stop it twice in a row. */
871 	ts->timer_expires_base = 0;
872 
873 	/*
874 	 * If this CPU is the one which updates jiffies, then give up
875 	 * the assignment and let it be taken by the CPU which runs
876 	 * the tick timer next, which might be this CPU as well. If we
877 	 * don't drop this here the jiffies might be stale and
878 	 * do_timer() never invoked. Keep track of the fact that it
879 	 * was the one which had the do_timer() duty last.
880 	 */
881 	if (cpu == tick_do_timer_cpu) {
882 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
883 		ts->do_timer_last = 1;
884 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
885 		ts->do_timer_last = 0;
886 	}
887 
888 	/* Skip reprogram of event if its not changed */
889 	if (ts->tick_stopped && (expires == ts->next_tick)) {
890 		/* Sanity check: make sure clockevent is actually programmed */
891 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
892 			return;
893 
894 		WARN_ON_ONCE(1);
895 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
896 			    basemono, ts->next_tick, dev->next_event,
897 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
898 	}
899 
900 	/*
901 	 * nohz_stop_sched_tick can be called several times before
902 	 * the nohz_restart_sched_tick is called. This happens when
903 	 * interrupts arrive which do not cause a reschedule. In the
904 	 * first call we save the current tick time, so we can restart
905 	 * the scheduler tick in nohz_restart_sched_tick.
906 	 */
907 	if (!ts->tick_stopped) {
908 		calc_load_nohz_start();
909 		quiet_vmstat();
910 
911 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
912 		ts->tick_stopped = 1;
913 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
914 	}
915 
916 	ts->next_tick = tick;
917 
918 	/*
919 	 * If the expiration time == KTIME_MAX, then we simply stop
920 	 * the tick timer.
921 	 */
922 	if (unlikely(expires == KTIME_MAX)) {
923 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
924 			hrtimer_cancel(&ts->sched_timer);
925 		else
926 			tick_program_event(KTIME_MAX, 1);
927 		return;
928 	}
929 
930 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
931 		hrtimer_start(&ts->sched_timer, tick,
932 			      HRTIMER_MODE_ABS_PINNED_HARD);
933 	} else {
934 		hrtimer_set_expires(&ts->sched_timer, tick);
935 		tick_program_event(tick, 1);
936 	}
937 }
938 
939 static void tick_nohz_retain_tick(struct tick_sched *ts)
940 {
941 	ts->timer_expires_base = 0;
942 }
943 
944 #ifdef CONFIG_NO_HZ_FULL
945 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
946 {
947 	if (tick_nohz_next_event(ts, cpu))
948 		tick_nohz_stop_tick(ts, cpu);
949 	else
950 		tick_nohz_retain_tick(ts);
951 }
952 #endif /* CONFIG_NO_HZ_FULL */
953 
954 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
955 {
956 	/* Update jiffies first */
957 	tick_do_update_jiffies64(now);
958 
959 	/*
960 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
961 	 * the clock forward checks in the enqueue path:
962 	 */
963 	timer_clear_idle();
964 
965 	calc_load_nohz_stop();
966 	touch_softlockup_watchdog_sched();
967 	/*
968 	 * Cancel the scheduled timer and restore the tick
969 	 */
970 	ts->tick_stopped  = 0;
971 	tick_nohz_restart(ts, now);
972 }
973 
974 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
975 					 ktime_t now)
976 {
977 #ifdef CONFIG_NO_HZ_FULL
978 	int cpu = smp_processor_id();
979 
980 	if (can_stop_full_tick(cpu, ts))
981 		tick_nohz_stop_sched_tick(ts, cpu);
982 	else if (ts->tick_stopped)
983 		tick_nohz_restart_sched_tick(ts, now);
984 #endif
985 }
986 
987 static void tick_nohz_full_update_tick(struct tick_sched *ts)
988 {
989 	if (!tick_nohz_full_cpu(smp_processor_id()))
990 		return;
991 
992 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
993 		return;
994 
995 	__tick_nohz_full_update_tick(ts, ktime_get());
996 }
997 
998 /*
999  * A pending softirq outside an IRQ (or softirq disabled section) context
1000  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1001  * reach here due to the need_resched() early check in can_stop_idle_tick().
1002  *
1003  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1004  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1005  * triggering the below since wakep_softirqd() is ignored.
1006  *
1007  */
1008 static bool report_idle_softirq(void)
1009 {
1010 	static int ratelimit;
1011 	unsigned int pending = local_softirq_pending();
1012 
1013 	if (likely(!pending))
1014 		return false;
1015 
1016 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1017 	if (!cpu_active(smp_processor_id())) {
1018 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1019 		if (!pending)
1020 			return false;
1021 	}
1022 
1023 	if (ratelimit < 10)
1024 		return false;
1025 
1026 	/* On RT, softirqs handling may be waiting on some lock */
1027 	if (!local_bh_blocked())
1028 		return false;
1029 
1030 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1031 		pending);
1032 	ratelimit++;
1033 
1034 	return true;
1035 }
1036 
1037 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1038 {
1039 	/*
1040 	 * If this CPU is offline and it is the one which updates
1041 	 * jiffies, then give up the assignment and let it be taken by
1042 	 * the CPU which runs the tick timer next. If we don't drop
1043 	 * this here the jiffies might be stale and do_timer() never
1044 	 * invoked.
1045 	 */
1046 	if (unlikely(!cpu_online(cpu))) {
1047 		if (cpu == tick_do_timer_cpu)
1048 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1049 		/*
1050 		 * Make sure the CPU doesn't get fooled by obsolete tick
1051 		 * deadline if it comes back online later.
1052 		 */
1053 		ts->next_tick = 0;
1054 		return false;
1055 	}
1056 
1057 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1058 		return false;
1059 
1060 	if (need_resched())
1061 		return false;
1062 
1063 	if (unlikely(report_idle_softirq()))
1064 		return false;
1065 
1066 	if (tick_nohz_full_enabled()) {
1067 		/*
1068 		 * Keep the tick alive to guarantee timekeeping progression
1069 		 * if there are full dynticks CPUs around
1070 		 */
1071 		if (tick_do_timer_cpu == cpu)
1072 			return false;
1073 
1074 		/* Should not happen for nohz-full */
1075 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1076 			return false;
1077 	}
1078 
1079 	return true;
1080 }
1081 
1082 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1083 {
1084 	ktime_t expires;
1085 	int cpu = smp_processor_id();
1086 
1087 	/*
1088 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1089 	 * tick timer expiration time is known already.
1090 	 */
1091 	if (ts->timer_expires_base)
1092 		expires = ts->timer_expires;
1093 	else if (can_stop_idle_tick(cpu, ts))
1094 		expires = tick_nohz_next_event(ts, cpu);
1095 	else
1096 		return;
1097 
1098 	ts->idle_calls++;
1099 
1100 	if (expires > 0LL) {
1101 		int was_stopped = ts->tick_stopped;
1102 
1103 		tick_nohz_stop_tick(ts, cpu);
1104 
1105 		ts->idle_sleeps++;
1106 		ts->idle_expires = expires;
1107 
1108 		if (!was_stopped && ts->tick_stopped) {
1109 			ts->idle_jiffies = ts->last_jiffies;
1110 			nohz_balance_enter_idle(cpu);
1111 		}
1112 	} else {
1113 		tick_nohz_retain_tick(ts);
1114 	}
1115 }
1116 
1117 /**
1118  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1119  *
1120  * When the next event is more than a tick into the future, stop the idle tick
1121  */
1122 void tick_nohz_idle_stop_tick(void)
1123 {
1124 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1125 }
1126 
1127 void tick_nohz_idle_retain_tick(void)
1128 {
1129 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1130 	/*
1131 	 * Undo the effect of get_next_timer_interrupt() called from
1132 	 * tick_nohz_next_event().
1133 	 */
1134 	timer_clear_idle();
1135 }
1136 
1137 /**
1138  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1139  *
1140  * Called when we start the idle loop.
1141  */
1142 void tick_nohz_idle_enter(void)
1143 {
1144 	struct tick_sched *ts;
1145 
1146 	lockdep_assert_irqs_enabled();
1147 
1148 	local_irq_disable();
1149 
1150 	ts = this_cpu_ptr(&tick_cpu_sched);
1151 
1152 	WARN_ON_ONCE(ts->timer_expires_base);
1153 
1154 	ts->inidle = 1;
1155 	tick_nohz_start_idle(ts);
1156 
1157 	local_irq_enable();
1158 }
1159 
1160 /**
1161  * tick_nohz_irq_exit - update next tick event from interrupt exit
1162  *
1163  * When an interrupt fires while we are idle and it doesn't cause
1164  * a reschedule, it may still add, modify or delete a timer, enqueue
1165  * an RCU callback, etc...
1166  * So we need to re-calculate and reprogram the next tick event.
1167  */
1168 void tick_nohz_irq_exit(void)
1169 {
1170 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1171 
1172 	if (ts->inidle)
1173 		tick_nohz_start_idle(ts);
1174 	else
1175 		tick_nohz_full_update_tick(ts);
1176 }
1177 
1178 /**
1179  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1180  */
1181 bool tick_nohz_idle_got_tick(void)
1182 {
1183 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1184 
1185 	if (ts->got_idle_tick) {
1186 		ts->got_idle_tick = 0;
1187 		return true;
1188 	}
1189 	return false;
1190 }
1191 
1192 /**
1193  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1194  * or the tick, whatever that expires first. Note that, if the tick has been
1195  * stopped, it returns the next hrtimer.
1196  *
1197  * Called from power state control code with interrupts disabled
1198  */
1199 ktime_t tick_nohz_get_next_hrtimer(void)
1200 {
1201 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1202 }
1203 
1204 /**
1205  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1206  * @delta_next: duration until the next event if the tick cannot be stopped
1207  *
1208  * Called from power state control code with interrupts disabled.
1209  *
1210  * The return value of this function and/or the value returned by it through the
1211  * @delta_next pointer can be negative which must be taken into account by its
1212  * callers.
1213  */
1214 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1215 {
1216 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1217 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1218 	int cpu = smp_processor_id();
1219 	/*
1220 	 * The idle entry time is expected to be a sufficient approximation of
1221 	 * the current time at this point.
1222 	 */
1223 	ktime_t now = ts->idle_entrytime;
1224 	ktime_t next_event;
1225 
1226 	WARN_ON_ONCE(!ts->inidle);
1227 
1228 	*delta_next = ktime_sub(dev->next_event, now);
1229 
1230 	if (!can_stop_idle_tick(cpu, ts))
1231 		return *delta_next;
1232 
1233 	next_event = tick_nohz_next_event(ts, cpu);
1234 	if (!next_event)
1235 		return *delta_next;
1236 
1237 	/*
1238 	 * If the next highres timer to expire is earlier than next_event, the
1239 	 * idle governor needs to know that.
1240 	 */
1241 	next_event = min_t(u64, next_event,
1242 			   hrtimer_next_event_without(&ts->sched_timer));
1243 
1244 	return ktime_sub(next_event, now);
1245 }
1246 
1247 /**
1248  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1249  * for a particular CPU.
1250  *
1251  * Called from the schedutil frequency scaling governor in scheduler context.
1252  */
1253 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1254 {
1255 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1256 
1257 	return ts->idle_calls;
1258 }
1259 
1260 /**
1261  * tick_nohz_get_idle_calls - return the current idle calls counter value
1262  *
1263  * Called from the schedutil frequency scaling governor in scheduler context.
1264  */
1265 unsigned long tick_nohz_get_idle_calls(void)
1266 {
1267 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1268 
1269 	return ts->idle_calls;
1270 }
1271 
1272 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1273 					ktime_t now)
1274 {
1275 	unsigned long ticks;
1276 
1277 	ts->idle_exittime = now;
1278 
1279 	if (vtime_accounting_enabled_this_cpu())
1280 		return;
1281 	/*
1282 	 * We stopped the tick in idle. Update process times would miss the
1283 	 * time we slept as update_process_times does only a 1 tick
1284 	 * accounting. Enforce that this is accounted to idle !
1285 	 */
1286 	ticks = jiffies - ts->idle_jiffies;
1287 	/*
1288 	 * We might be one off. Do not randomly account a huge number of ticks!
1289 	 */
1290 	if (ticks && ticks < LONG_MAX)
1291 		account_idle_ticks(ticks);
1292 }
1293 
1294 void tick_nohz_idle_restart_tick(void)
1295 {
1296 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1297 
1298 	if (ts->tick_stopped) {
1299 		ktime_t now = ktime_get();
1300 		tick_nohz_restart_sched_tick(ts, now);
1301 		tick_nohz_account_idle_time(ts, now);
1302 	}
1303 }
1304 
1305 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1306 {
1307 	if (tick_nohz_full_cpu(smp_processor_id()))
1308 		__tick_nohz_full_update_tick(ts, now);
1309 	else
1310 		tick_nohz_restart_sched_tick(ts, now);
1311 
1312 	tick_nohz_account_idle_time(ts, now);
1313 }
1314 
1315 /**
1316  * tick_nohz_idle_exit - restart the idle tick from the idle task
1317  *
1318  * Restart the idle tick when the CPU is woken up from idle
1319  * This also exit the RCU extended quiescent state. The CPU
1320  * can use RCU again after this function is called.
1321  */
1322 void tick_nohz_idle_exit(void)
1323 {
1324 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1325 	bool idle_active, tick_stopped;
1326 	ktime_t now;
1327 
1328 	local_irq_disable();
1329 
1330 	WARN_ON_ONCE(!ts->inidle);
1331 	WARN_ON_ONCE(ts->timer_expires_base);
1332 
1333 	ts->inidle = 0;
1334 	idle_active = ts->idle_active;
1335 	tick_stopped = ts->tick_stopped;
1336 
1337 	if (idle_active || tick_stopped)
1338 		now = ktime_get();
1339 
1340 	if (idle_active)
1341 		tick_nohz_stop_idle(ts, now);
1342 
1343 	if (tick_stopped)
1344 		tick_nohz_idle_update_tick(ts, now);
1345 
1346 	local_irq_enable();
1347 }
1348 
1349 /*
1350  * The nohz low res interrupt handler
1351  */
1352 static void tick_nohz_handler(struct clock_event_device *dev)
1353 {
1354 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1355 	struct pt_regs *regs = get_irq_regs();
1356 	ktime_t now = ktime_get();
1357 
1358 	dev->next_event = KTIME_MAX;
1359 
1360 	tick_sched_do_timer(ts, now);
1361 	tick_sched_handle(ts, regs);
1362 
1363 	if (unlikely(ts->tick_stopped)) {
1364 		/*
1365 		 * The clockevent device is not reprogrammed, so change the
1366 		 * clock event device to ONESHOT_STOPPED to avoid spurious
1367 		 * interrupts on devices which might not be truly one shot.
1368 		 */
1369 		tick_program_event(KTIME_MAX, 1);
1370 		return;
1371 	}
1372 
1373 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1374 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1375 }
1376 
1377 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1378 {
1379 	if (!tick_nohz_enabled)
1380 		return;
1381 	ts->nohz_mode = mode;
1382 	/* One update is enough */
1383 	if (!test_and_set_bit(0, &tick_nohz_active))
1384 		timers_update_nohz();
1385 }
1386 
1387 /**
1388  * tick_nohz_switch_to_nohz - switch to nohz mode
1389  */
1390 static void tick_nohz_switch_to_nohz(void)
1391 {
1392 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1393 	ktime_t next;
1394 
1395 	if (!tick_nohz_enabled)
1396 		return;
1397 
1398 	if (tick_switch_to_oneshot(tick_nohz_handler))
1399 		return;
1400 
1401 	/*
1402 	 * Recycle the hrtimer in ts, so we can share the
1403 	 * hrtimer_forward with the highres code.
1404 	 */
1405 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1406 	/* Get the next period */
1407 	next = tick_init_jiffy_update();
1408 
1409 	hrtimer_set_expires(&ts->sched_timer, next);
1410 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1411 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1412 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1413 }
1414 
1415 static inline void tick_nohz_irq_enter(void)
1416 {
1417 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1418 	ktime_t now;
1419 
1420 	if (!ts->idle_active && !ts->tick_stopped)
1421 		return;
1422 	now = ktime_get();
1423 	if (ts->idle_active)
1424 		tick_nohz_stop_idle(ts, now);
1425 	/*
1426 	 * If all CPUs are idle. We may need to update a stale jiffies value.
1427 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1428 	 * alive but it might be busy looping with interrupts disabled in some
1429 	 * rare case (typically stop machine). So we must make sure we have a
1430 	 * last resort.
1431 	 */
1432 	if (ts->tick_stopped)
1433 		tick_nohz_update_jiffies(now);
1434 }
1435 
1436 #else
1437 
1438 static inline void tick_nohz_switch_to_nohz(void) { }
1439 static inline void tick_nohz_irq_enter(void) { }
1440 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1441 
1442 #endif /* CONFIG_NO_HZ_COMMON */
1443 
1444 /*
1445  * Called from irq_enter to notify about the possible interruption of idle()
1446  */
1447 void tick_irq_enter(void)
1448 {
1449 	tick_check_oneshot_broadcast_this_cpu();
1450 	tick_nohz_irq_enter();
1451 }
1452 
1453 /*
1454  * High resolution timer specific code
1455  */
1456 #ifdef CONFIG_HIGH_RES_TIMERS
1457 /*
1458  * We rearm the timer until we get disabled by the idle code.
1459  * Called with interrupts disabled.
1460  */
1461 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1462 {
1463 	struct tick_sched *ts =
1464 		container_of(timer, struct tick_sched, sched_timer);
1465 	struct pt_regs *regs = get_irq_regs();
1466 	ktime_t now = ktime_get();
1467 
1468 	tick_sched_do_timer(ts, now);
1469 
1470 	/*
1471 	 * Do not call, when we are not in irq context and have
1472 	 * no valid regs pointer
1473 	 */
1474 	if (regs)
1475 		tick_sched_handle(ts, regs);
1476 	else
1477 		ts->next_tick = 0;
1478 
1479 	/* No need to reprogram if we are in idle or full dynticks mode */
1480 	if (unlikely(ts->tick_stopped))
1481 		return HRTIMER_NORESTART;
1482 
1483 	hrtimer_forward(timer, now, TICK_NSEC);
1484 
1485 	return HRTIMER_RESTART;
1486 }
1487 
1488 static int sched_skew_tick;
1489 
1490 static int __init skew_tick(char *str)
1491 {
1492 	get_option(&str, &sched_skew_tick);
1493 
1494 	return 0;
1495 }
1496 early_param("skew_tick", skew_tick);
1497 
1498 /**
1499  * tick_setup_sched_timer - setup the tick emulation timer
1500  */
1501 void tick_setup_sched_timer(void)
1502 {
1503 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1504 	ktime_t now = ktime_get();
1505 
1506 	/*
1507 	 * Emulate tick processing via per-CPU hrtimers:
1508 	 */
1509 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1510 	ts->sched_timer.function = tick_sched_timer;
1511 
1512 	/* Get the next period (per-CPU) */
1513 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1514 
1515 	/* Offset the tick to avert jiffies_lock contention. */
1516 	if (sched_skew_tick) {
1517 		u64 offset = TICK_NSEC >> 1;
1518 		do_div(offset, num_possible_cpus());
1519 		offset *= smp_processor_id();
1520 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1521 	}
1522 
1523 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1524 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1525 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1526 }
1527 #endif /* HIGH_RES_TIMERS */
1528 
1529 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1530 void tick_cancel_sched_timer(int cpu)
1531 {
1532 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1533 
1534 # ifdef CONFIG_HIGH_RES_TIMERS
1535 	if (ts->sched_timer.base)
1536 		hrtimer_cancel(&ts->sched_timer);
1537 # endif
1538 
1539 	memset(ts, 0, sizeof(*ts));
1540 }
1541 #endif
1542 
1543 /*
1544  * Async notification about clocksource changes
1545  */
1546 void tick_clock_notify(void)
1547 {
1548 	int cpu;
1549 
1550 	for_each_possible_cpu(cpu)
1551 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1552 }
1553 
1554 /*
1555  * Async notification about clock event changes
1556  */
1557 void tick_oneshot_notify(void)
1558 {
1559 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1560 
1561 	set_bit(0, &ts->check_clocks);
1562 }
1563 
1564 /*
1565  * Check, if a change happened, which makes oneshot possible.
1566  *
1567  * Called cyclic from the hrtimer softirq (driven by the timer
1568  * softirq) allow_nohz signals, that we can switch into low-res nohz
1569  * mode, because high resolution timers are disabled (either compile
1570  * or runtime). Called with interrupts disabled.
1571  */
1572 int tick_check_oneshot_change(int allow_nohz)
1573 {
1574 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1575 
1576 	if (!test_and_clear_bit(0, &ts->check_clocks))
1577 		return 0;
1578 
1579 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1580 		return 0;
1581 
1582 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1583 		return 0;
1584 
1585 	if (!allow_nohz)
1586 		return 1;
1587 
1588 	tick_nohz_switch_to_nohz();
1589 	return 0;
1590 }
1591