xref: /openbmc/linux/kernel/time/tick-sched.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 0;
60 	ktime_t delta;
61 
62 	/*
63 	 * Do a quick check without holding jiffies_lock:
64 	 */
65 	delta = ktime_sub(now, last_jiffies_update);
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		last_jiffies_update = ktime_add(last_jiffies_update,
77 						tick_period);
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 							   incr * ticks);
87 		}
88 		do_timer(++ticks);
89 
90 		/* Keep the tick_next_period variable up to date */
91 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 	} else {
93 		write_sequnlock(&jiffies_lock);
94 		return;
95 	}
96 	write_sequnlock(&jiffies_lock);
97 	update_wall_time();
98 }
99 
100 /*
101  * Initialize and return retrieve the jiffies update.
102  */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 	ktime_t period;
106 
107 	write_seqlock(&jiffies_lock);
108 	/* Did we start the jiffies update yet ? */
109 	if (last_jiffies_update == 0)
110 		last_jiffies_update = tick_next_period;
111 	period = last_jiffies_update;
112 	write_sequnlock(&jiffies_lock);
113 	return period;
114 }
115 
116 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
117 {
118 	int cpu = smp_processor_id();
119 
120 #ifdef CONFIG_NO_HZ_COMMON
121 	/*
122 	 * Check if the do_timer duty was dropped. We don't care about
123 	 * concurrency: This happens only when the CPU in charge went
124 	 * into a long sleep. If two CPUs happen to assign themselves to
125 	 * this duty, then the jiffies update is still serialized by
126 	 * jiffies_lock.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 	    && !tick_nohz_full_cpu(cpu))
130 		tick_do_timer_cpu = cpu;
131 #endif
132 
133 	/* Check, if the jiffies need an update */
134 	if (tick_do_timer_cpu == cpu)
135 		tick_do_update_jiffies64(now);
136 
137 	if (ts->inidle)
138 		ts->got_idle_tick = 1;
139 }
140 
141 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
142 {
143 #ifdef CONFIG_NO_HZ_COMMON
144 	/*
145 	 * When we are idle and the tick is stopped, we have to touch
146 	 * the watchdog as we might not schedule for a really long
147 	 * time. This happens on complete idle SMP systems while
148 	 * waiting on the login prompt. We also increment the "start of
149 	 * idle" jiffy stamp so the idle accounting adjustment we do
150 	 * when we go busy again does not account too much ticks.
151 	 */
152 	if (ts->tick_stopped) {
153 		touch_softlockup_watchdog_sched();
154 		if (is_idle_task(current))
155 			ts->idle_jiffies++;
156 		/*
157 		 * In case the current tick fired too early past its expected
158 		 * expiration, make sure we don't bypass the next clock reprogramming
159 		 * to the same deadline.
160 		 */
161 		ts->next_tick = 0;
162 	}
163 #endif
164 	update_process_times(user_mode(regs));
165 	profile_tick(CPU_PROFILING);
166 }
167 #endif
168 
169 #ifdef CONFIG_NO_HZ_FULL
170 cpumask_var_t tick_nohz_full_mask;
171 bool tick_nohz_full_running;
172 static atomic_t tick_dep_mask;
173 
174 static bool check_tick_dependency(atomic_t *dep)
175 {
176 	int val = atomic_read(dep);
177 
178 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
179 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
180 		return true;
181 	}
182 
183 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
184 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
185 		return true;
186 	}
187 
188 	if (val & TICK_DEP_MASK_SCHED) {
189 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
190 		return true;
191 	}
192 
193 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
194 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
195 		return true;
196 	}
197 
198 	return false;
199 }
200 
201 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
202 {
203 	lockdep_assert_irqs_disabled();
204 
205 	if (unlikely(!cpu_online(cpu)))
206 		return false;
207 
208 	if (check_tick_dependency(&tick_dep_mask))
209 		return false;
210 
211 	if (check_tick_dependency(&ts->tick_dep_mask))
212 		return false;
213 
214 	if (check_tick_dependency(&current->tick_dep_mask))
215 		return false;
216 
217 	if (check_tick_dependency(&current->signal->tick_dep_mask))
218 		return false;
219 
220 	return true;
221 }
222 
223 static void nohz_full_kick_func(struct irq_work *work)
224 {
225 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
226 }
227 
228 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
229 	.func = nohz_full_kick_func,
230 };
231 
232 /*
233  * Kick this CPU if it's full dynticks in order to force it to
234  * re-evaluate its dependency on the tick and restart it if necessary.
235  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
236  * is NMI safe.
237  */
238 static void tick_nohz_full_kick(void)
239 {
240 	if (!tick_nohz_full_cpu(smp_processor_id()))
241 		return;
242 
243 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
244 }
245 
246 /*
247  * Kick the CPU if it's full dynticks in order to force it to
248  * re-evaluate its dependency on the tick and restart it if necessary.
249  */
250 void tick_nohz_full_kick_cpu(int cpu)
251 {
252 	if (!tick_nohz_full_cpu(cpu))
253 		return;
254 
255 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
256 }
257 
258 /*
259  * Kick all full dynticks CPUs in order to force these to re-evaluate
260  * their dependency on the tick and restart it if necessary.
261  */
262 static void tick_nohz_full_kick_all(void)
263 {
264 	int cpu;
265 
266 	if (!tick_nohz_full_running)
267 		return;
268 
269 	preempt_disable();
270 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
271 		tick_nohz_full_kick_cpu(cpu);
272 	preempt_enable();
273 }
274 
275 static void tick_nohz_dep_set_all(atomic_t *dep,
276 				  enum tick_dep_bits bit)
277 {
278 	int prev;
279 
280 	prev = atomic_fetch_or(BIT(bit), dep);
281 	if (!prev)
282 		tick_nohz_full_kick_all();
283 }
284 
285 /*
286  * Set a global tick dependency. Used by perf events that rely on freq and
287  * by unstable clock.
288  */
289 void tick_nohz_dep_set(enum tick_dep_bits bit)
290 {
291 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
292 }
293 
294 void tick_nohz_dep_clear(enum tick_dep_bits bit)
295 {
296 	atomic_andnot(BIT(bit), &tick_dep_mask);
297 }
298 
299 /*
300  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
301  * manage events throttling.
302  */
303 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
304 {
305 	int prev;
306 	struct tick_sched *ts;
307 
308 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
309 
310 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
311 	if (!prev) {
312 		preempt_disable();
313 		/* Perf needs local kick that is NMI safe */
314 		if (cpu == smp_processor_id()) {
315 			tick_nohz_full_kick();
316 		} else {
317 			/* Remote irq work not NMI-safe */
318 			if (!WARN_ON_ONCE(in_nmi()))
319 				tick_nohz_full_kick_cpu(cpu);
320 		}
321 		preempt_enable();
322 	}
323 }
324 
325 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
326 {
327 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
328 
329 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
330 }
331 
332 /*
333  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
334  * per task timers.
335  */
336 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
337 {
338 	/*
339 	 * We could optimize this with just kicking the target running the task
340 	 * if that noise matters for nohz full users.
341 	 */
342 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
343 }
344 
345 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
346 {
347 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
348 }
349 
350 /*
351  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
352  * per process timers.
353  */
354 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
355 {
356 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
357 }
358 
359 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
360 {
361 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
362 }
363 
364 /*
365  * Re-evaluate the need for the tick as we switch the current task.
366  * It might need the tick due to per task/process properties:
367  * perf events, posix CPU timers, ...
368  */
369 void __tick_nohz_task_switch(void)
370 {
371 	unsigned long flags;
372 	struct tick_sched *ts;
373 
374 	local_irq_save(flags);
375 
376 	if (!tick_nohz_full_cpu(smp_processor_id()))
377 		goto out;
378 
379 	ts = this_cpu_ptr(&tick_cpu_sched);
380 
381 	if (ts->tick_stopped) {
382 		if (atomic_read(&current->tick_dep_mask) ||
383 		    atomic_read(&current->signal->tick_dep_mask))
384 			tick_nohz_full_kick();
385 	}
386 out:
387 	local_irq_restore(flags);
388 }
389 
390 /* Get the boot-time nohz CPU list from the kernel parameters. */
391 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
392 {
393 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
394 	cpumask_copy(tick_nohz_full_mask, cpumask);
395 	tick_nohz_full_running = true;
396 }
397 
398 static int tick_nohz_cpu_down(unsigned int cpu)
399 {
400 	/*
401 	 * The boot CPU handles housekeeping duty (unbound timers,
402 	 * workqueues, timekeeping, ...) on behalf of full dynticks
403 	 * CPUs. It must remain online when nohz full is enabled.
404 	 */
405 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
406 		return -EBUSY;
407 	return 0;
408 }
409 
410 void __init tick_nohz_init(void)
411 {
412 	int cpu, ret;
413 
414 	if (!tick_nohz_full_running)
415 		return;
416 
417 	/*
418 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
419 	 * locking contexts. But then we need irq work to raise its own
420 	 * interrupts to avoid circular dependency on the tick
421 	 */
422 	if (!arch_irq_work_has_interrupt()) {
423 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
424 		cpumask_clear(tick_nohz_full_mask);
425 		tick_nohz_full_running = false;
426 		return;
427 	}
428 
429 	cpu = smp_processor_id();
430 
431 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
432 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
433 			cpu);
434 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
435 	}
436 
437 	for_each_cpu(cpu, tick_nohz_full_mask)
438 		context_tracking_cpu_set(cpu);
439 
440 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
441 					"kernel/nohz:predown", NULL,
442 					tick_nohz_cpu_down);
443 	WARN_ON(ret < 0);
444 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
445 		cpumask_pr_args(tick_nohz_full_mask));
446 }
447 #endif
448 
449 /*
450  * NOHZ - aka dynamic tick functionality
451  */
452 #ifdef CONFIG_NO_HZ_COMMON
453 /*
454  * NO HZ enabled ?
455  */
456 bool tick_nohz_enabled __read_mostly  = true;
457 unsigned long tick_nohz_active  __read_mostly;
458 /*
459  * Enable / Disable tickless mode
460  */
461 static int __init setup_tick_nohz(char *str)
462 {
463 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
464 }
465 
466 __setup("nohz=", setup_tick_nohz);
467 
468 bool tick_nohz_tick_stopped(void)
469 {
470 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
471 
472 	return ts->tick_stopped;
473 }
474 
475 bool tick_nohz_tick_stopped_cpu(int cpu)
476 {
477 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
478 
479 	return ts->tick_stopped;
480 }
481 
482 /**
483  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
484  *
485  * Called from interrupt entry when the CPU was idle
486  *
487  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
488  * must be updated. Otherwise an interrupt handler could use a stale jiffy
489  * value. We do this unconditionally on any CPU, as we don't know whether the
490  * CPU, which has the update task assigned is in a long sleep.
491  */
492 static void tick_nohz_update_jiffies(ktime_t now)
493 {
494 	unsigned long flags;
495 
496 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
497 
498 	local_irq_save(flags);
499 	tick_do_update_jiffies64(now);
500 	local_irq_restore(flags);
501 
502 	touch_softlockup_watchdog_sched();
503 }
504 
505 /*
506  * Updates the per-CPU time idle statistics counters
507  */
508 static void
509 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
510 {
511 	ktime_t delta;
512 
513 	if (ts->idle_active) {
514 		delta = ktime_sub(now, ts->idle_entrytime);
515 		if (nr_iowait_cpu(cpu) > 0)
516 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
517 		else
518 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
519 		ts->idle_entrytime = now;
520 	}
521 
522 	if (last_update_time)
523 		*last_update_time = ktime_to_us(now);
524 
525 }
526 
527 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
528 {
529 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
530 	ts->idle_active = 0;
531 
532 	sched_clock_idle_wakeup_event();
533 }
534 
535 static void tick_nohz_start_idle(struct tick_sched *ts)
536 {
537 	ts->idle_entrytime = ktime_get();
538 	ts->idle_active = 1;
539 	sched_clock_idle_sleep_event();
540 }
541 
542 /**
543  * get_cpu_idle_time_us - get the total idle time of a CPU
544  * @cpu: CPU number to query
545  * @last_update_time: variable to store update time in. Do not update
546  * counters if NULL.
547  *
548  * Return the cumulative idle time (since boot) for a given
549  * CPU, in microseconds.
550  *
551  * This time is measured via accounting rather than sampling,
552  * and is as accurate as ktime_get() is.
553  *
554  * This function returns -1 if NOHZ is not enabled.
555  */
556 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
557 {
558 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
559 	ktime_t now, idle;
560 
561 	if (!tick_nohz_active)
562 		return -1;
563 
564 	now = ktime_get();
565 	if (last_update_time) {
566 		update_ts_time_stats(cpu, ts, now, last_update_time);
567 		idle = ts->idle_sleeptime;
568 	} else {
569 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
570 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
571 
572 			idle = ktime_add(ts->idle_sleeptime, delta);
573 		} else {
574 			idle = ts->idle_sleeptime;
575 		}
576 	}
577 
578 	return ktime_to_us(idle);
579 
580 }
581 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
582 
583 /**
584  * get_cpu_iowait_time_us - get the total iowait time of a CPU
585  * @cpu: CPU number to query
586  * @last_update_time: variable to store update time in. Do not update
587  * counters if NULL.
588  *
589  * Return the cumulative iowait time (since boot) for a given
590  * CPU, in microseconds.
591  *
592  * This time is measured via accounting rather than sampling,
593  * and is as accurate as ktime_get() is.
594  *
595  * This function returns -1 if NOHZ is not enabled.
596  */
597 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
598 {
599 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
600 	ktime_t now, iowait;
601 
602 	if (!tick_nohz_active)
603 		return -1;
604 
605 	now = ktime_get();
606 	if (last_update_time) {
607 		update_ts_time_stats(cpu, ts, now, last_update_time);
608 		iowait = ts->iowait_sleeptime;
609 	} else {
610 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
611 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
612 
613 			iowait = ktime_add(ts->iowait_sleeptime, delta);
614 		} else {
615 			iowait = ts->iowait_sleeptime;
616 		}
617 	}
618 
619 	return ktime_to_us(iowait);
620 }
621 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
622 
623 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
624 {
625 	hrtimer_cancel(&ts->sched_timer);
626 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
627 
628 	/* Forward the time to expire in the future */
629 	hrtimer_forward(&ts->sched_timer, now, tick_period);
630 
631 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
632 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
633 	else
634 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
635 
636 	/*
637 	 * Reset to make sure next tick stop doesn't get fooled by past
638 	 * cached clock deadline.
639 	 */
640 	ts->next_tick = 0;
641 }
642 
643 static inline bool local_timer_softirq_pending(void)
644 {
645 	return local_softirq_pending() & TIMER_SOFTIRQ;
646 }
647 
648 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
649 {
650 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
651 	unsigned long seq, basejiff;
652 
653 	/* Read jiffies and the time when jiffies were updated last */
654 	do {
655 		seq = read_seqbegin(&jiffies_lock);
656 		basemono = last_jiffies_update;
657 		basejiff = jiffies;
658 	} while (read_seqretry(&jiffies_lock, seq));
659 	ts->last_jiffies = basejiff;
660 	ts->timer_expires_base = basemono;
661 
662 	/*
663 	 * Keep the periodic tick, when RCU, architecture or irq_work
664 	 * requests it.
665 	 * Aside of that check whether the local timer softirq is
666 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
667 	 * because there is an already expired timer, so it will request
668 	 * immeditate expiry, which rearms the hardware timer with a
669 	 * minimal delta which brings us back to this place
670 	 * immediately. Lather, rinse and repeat...
671 	 */
672 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
673 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
674 		next_tick = basemono + TICK_NSEC;
675 	} else {
676 		/*
677 		 * Get the next pending timer. If high resolution
678 		 * timers are enabled this only takes the timer wheel
679 		 * timers into account. If high resolution timers are
680 		 * disabled this also looks at the next expiring
681 		 * hrtimer.
682 		 */
683 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
684 		ts->next_timer = next_tmr;
685 		/* Take the next rcu event into account */
686 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
687 	}
688 
689 	/*
690 	 * If the tick is due in the next period, keep it ticking or
691 	 * force prod the timer.
692 	 */
693 	delta = next_tick - basemono;
694 	if (delta <= (u64)TICK_NSEC) {
695 		/*
696 		 * Tell the timer code that the base is not idle, i.e. undo
697 		 * the effect of get_next_timer_interrupt():
698 		 */
699 		timer_clear_idle();
700 		/*
701 		 * We've not stopped the tick yet, and there's a timer in the
702 		 * next period, so no point in stopping it either, bail.
703 		 */
704 		if (!ts->tick_stopped) {
705 			ts->timer_expires = 0;
706 			goto out;
707 		}
708 	}
709 
710 	/*
711 	 * If this CPU is the one which had the do_timer() duty last, we limit
712 	 * the sleep time to the timekeeping max_deferment value.
713 	 * Otherwise we can sleep as long as we want.
714 	 */
715 	delta = timekeeping_max_deferment();
716 	if (cpu != tick_do_timer_cpu &&
717 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
718 		delta = KTIME_MAX;
719 
720 	/* Calculate the next expiry time */
721 	if (delta < (KTIME_MAX - basemono))
722 		expires = basemono + delta;
723 	else
724 		expires = KTIME_MAX;
725 
726 	ts->timer_expires = min_t(u64, expires, next_tick);
727 
728 out:
729 	return ts->timer_expires;
730 }
731 
732 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
733 {
734 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
735 	u64 basemono = ts->timer_expires_base;
736 	u64 expires = ts->timer_expires;
737 	ktime_t tick = expires;
738 
739 	/* Make sure we won't be trying to stop it twice in a row. */
740 	ts->timer_expires_base = 0;
741 
742 	/*
743 	 * If this CPU is the one which updates jiffies, then give up
744 	 * the assignment and let it be taken by the CPU which runs
745 	 * the tick timer next, which might be this CPU as well. If we
746 	 * don't drop this here the jiffies might be stale and
747 	 * do_timer() never invoked. Keep track of the fact that it
748 	 * was the one which had the do_timer() duty last.
749 	 */
750 	if (cpu == tick_do_timer_cpu) {
751 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
752 		ts->do_timer_last = 1;
753 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
754 		ts->do_timer_last = 0;
755 	}
756 
757 	/* Skip reprogram of event if its not changed */
758 	if (ts->tick_stopped && (expires == ts->next_tick)) {
759 		/* Sanity check: make sure clockevent is actually programmed */
760 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
761 			return;
762 
763 		WARN_ON_ONCE(1);
764 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
765 			    basemono, ts->next_tick, dev->next_event,
766 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
767 	}
768 
769 	/*
770 	 * nohz_stop_sched_tick can be called several times before
771 	 * the nohz_restart_sched_tick is called. This happens when
772 	 * interrupts arrive which do not cause a reschedule. In the
773 	 * first call we save the current tick time, so we can restart
774 	 * the scheduler tick in nohz_restart_sched_tick.
775 	 */
776 	if (!ts->tick_stopped) {
777 		calc_load_nohz_start();
778 		cpu_load_update_nohz_start();
779 		quiet_vmstat();
780 
781 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
782 		ts->tick_stopped = 1;
783 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
784 	}
785 
786 	ts->next_tick = tick;
787 
788 	/*
789 	 * If the expiration time == KTIME_MAX, then we simply stop
790 	 * the tick timer.
791 	 */
792 	if (unlikely(expires == KTIME_MAX)) {
793 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
794 			hrtimer_cancel(&ts->sched_timer);
795 		return;
796 	}
797 
798 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
799 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
800 	} else {
801 		hrtimer_set_expires(&ts->sched_timer, tick);
802 		tick_program_event(tick, 1);
803 	}
804 }
805 
806 static void tick_nohz_retain_tick(struct tick_sched *ts)
807 {
808 	ts->timer_expires_base = 0;
809 }
810 
811 #ifdef CONFIG_NO_HZ_FULL
812 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
813 {
814 	if (tick_nohz_next_event(ts, cpu))
815 		tick_nohz_stop_tick(ts, cpu);
816 	else
817 		tick_nohz_retain_tick(ts);
818 }
819 #endif /* CONFIG_NO_HZ_FULL */
820 
821 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
822 {
823 	/* Update jiffies first */
824 	tick_do_update_jiffies64(now);
825 	cpu_load_update_nohz_stop();
826 
827 	/*
828 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
829 	 * the clock forward checks in the enqueue path:
830 	 */
831 	timer_clear_idle();
832 
833 	calc_load_nohz_stop();
834 	touch_softlockup_watchdog_sched();
835 	/*
836 	 * Cancel the scheduled timer and restore the tick
837 	 */
838 	ts->tick_stopped  = 0;
839 	ts->idle_exittime = now;
840 
841 	tick_nohz_restart(ts, now);
842 }
843 
844 static void tick_nohz_full_update_tick(struct tick_sched *ts)
845 {
846 #ifdef CONFIG_NO_HZ_FULL
847 	int cpu = smp_processor_id();
848 
849 	if (!tick_nohz_full_cpu(cpu))
850 		return;
851 
852 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
853 		return;
854 
855 	if (can_stop_full_tick(cpu, ts))
856 		tick_nohz_stop_sched_tick(ts, cpu);
857 	else if (ts->tick_stopped)
858 		tick_nohz_restart_sched_tick(ts, ktime_get());
859 #endif
860 }
861 
862 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
863 {
864 	/*
865 	 * If this CPU is offline and it is the one which updates
866 	 * jiffies, then give up the assignment and let it be taken by
867 	 * the CPU which runs the tick timer next. If we don't drop
868 	 * this here the jiffies might be stale and do_timer() never
869 	 * invoked.
870 	 */
871 	if (unlikely(!cpu_online(cpu))) {
872 		if (cpu == tick_do_timer_cpu)
873 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
874 		/*
875 		 * Make sure the CPU doesn't get fooled by obsolete tick
876 		 * deadline if it comes back online later.
877 		 */
878 		ts->next_tick = 0;
879 		return false;
880 	}
881 
882 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
883 		return false;
884 
885 	if (need_resched())
886 		return false;
887 
888 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
889 		static int ratelimit;
890 
891 		if (ratelimit < 10 &&
892 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
893 			pr_warn("NOHZ: local_softirq_pending %02x\n",
894 				(unsigned int) local_softirq_pending());
895 			ratelimit++;
896 		}
897 		return false;
898 	}
899 
900 	if (tick_nohz_full_enabled()) {
901 		/*
902 		 * Keep the tick alive to guarantee timekeeping progression
903 		 * if there are full dynticks CPUs around
904 		 */
905 		if (tick_do_timer_cpu == cpu)
906 			return false;
907 		/*
908 		 * Boot safety: make sure the timekeeping duty has been
909 		 * assigned before entering dyntick-idle mode,
910 		 */
911 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
912 			return false;
913 	}
914 
915 	return true;
916 }
917 
918 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
919 {
920 	ktime_t expires;
921 	int cpu = smp_processor_id();
922 
923 	/*
924 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
925 	 * tick timer expiration time is known already.
926 	 */
927 	if (ts->timer_expires_base)
928 		expires = ts->timer_expires;
929 	else if (can_stop_idle_tick(cpu, ts))
930 		expires = tick_nohz_next_event(ts, cpu);
931 	else
932 		return;
933 
934 	ts->idle_calls++;
935 
936 	if (expires > 0LL) {
937 		int was_stopped = ts->tick_stopped;
938 
939 		tick_nohz_stop_tick(ts, cpu);
940 
941 		ts->idle_sleeps++;
942 		ts->idle_expires = expires;
943 
944 		if (!was_stopped && ts->tick_stopped) {
945 			ts->idle_jiffies = ts->last_jiffies;
946 			nohz_balance_enter_idle(cpu);
947 		}
948 	} else {
949 		tick_nohz_retain_tick(ts);
950 	}
951 }
952 
953 /**
954  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
955  *
956  * When the next event is more than a tick into the future, stop the idle tick
957  */
958 void tick_nohz_idle_stop_tick(void)
959 {
960 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
961 }
962 
963 void tick_nohz_idle_retain_tick(void)
964 {
965 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
966 	/*
967 	 * Undo the effect of get_next_timer_interrupt() called from
968 	 * tick_nohz_next_event().
969 	 */
970 	timer_clear_idle();
971 }
972 
973 /**
974  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
975  *
976  * Called when we start the idle loop.
977  */
978 void tick_nohz_idle_enter(void)
979 {
980 	struct tick_sched *ts;
981 
982 	lockdep_assert_irqs_enabled();
983 
984 	local_irq_disable();
985 
986 	ts = this_cpu_ptr(&tick_cpu_sched);
987 
988 	WARN_ON_ONCE(ts->timer_expires_base);
989 
990 	ts->inidle = 1;
991 	tick_nohz_start_idle(ts);
992 
993 	local_irq_enable();
994 }
995 
996 /**
997  * tick_nohz_irq_exit - update next tick event from interrupt exit
998  *
999  * When an interrupt fires while we are idle and it doesn't cause
1000  * a reschedule, it may still add, modify or delete a timer, enqueue
1001  * an RCU callback, etc...
1002  * So we need to re-calculate and reprogram the next tick event.
1003  */
1004 void tick_nohz_irq_exit(void)
1005 {
1006 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1007 
1008 	if (ts->inidle)
1009 		tick_nohz_start_idle(ts);
1010 	else
1011 		tick_nohz_full_update_tick(ts);
1012 }
1013 
1014 /**
1015  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1016  */
1017 bool tick_nohz_idle_got_tick(void)
1018 {
1019 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020 
1021 	if (ts->got_idle_tick) {
1022 		ts->got_idle_tick = 0;
1023 		return true;
1024 	}
1025 	return false;
1026 }
1027 
1028 /**
1029  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1030  * @delta_next: duration until the next event if the tick cannot be stopped
1031  *
1032  * Called from power state control code with interrupts disabled
1033  */
1034 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1035 {
1036 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1037 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1038 	int cpu = smp_processor_id();
1039 	/*
1040 	 * The idle entry time is expected to be a sufficient approximation of
1041 	 * the current time at this point.
1042 	 */
1043 	ktime_t now = ts->idle_entrytime;
1044 	ktime_t next_event;
1045 
1046 	WARN_ON_ONCE(!ts->inidle);
1047 
1048 	*delta_next = ktime_sub(dev->next_event, now);
1049 
1050 	if (!can_stop_idle_tick(cpu, ts))
1051 		return *delta_next;
1052 
1053 	next_event = tick_nohz_next_event(ts, cpu);
1054 	if (!next_event)
1055 		return *delta_next;
1056 
1057 	/*
1058 	 * If the next highres timer to expire is earlier than next_event, the
1059 	 * idle governor needs to know that.
1060 	 */
1061 	next_event = min_t(u64, next_event,
1062 			   hrtimer_next_event_without(&ts->sched_timer));
1063 
1064 	return ktime_sub(next_event, now);
1065 }
1066 
1067 /**
1068  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1069  * for a particular CPU.
1070  *
1071  * Called from the schedutil frequency scaling governor in scheduler context.
1072  */
1073 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1074 {
1075 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1076 
1077 	return ts->idle_calls;
1078 }
1079 
1080 /**
1081  * tick_nohz_get_idle_calls - return the current idle calls counter value
1082  *
1083  * Called from the schedutil frequency scaling governor in scheduler context.
1084  */
1085 unsigned long tick_nohz_get_idle_calls(void)
1086 {
1087 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088 
1089 	return ts->idle_calls;
1090 }
1091 
1092 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1093 {
1094 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1095 	unsigned long ticks;
1096 
1097 	if (vtime_accounting_cpu_enabled())
1098 		return;
1099 	/*
1100 	 * We stopped the tick in idle. Update process times would miss the
1101 	 * time we slept as update_process_times does only a 1 tick
1102 	 * accounting. Enforce that this is accounted to idle !
1103 	 */
1104 	ticks = jiffies - ts->idle_jiffies;
1105 	/*
1106 	 * We might be one off. Do not randomly account a huge number of ticks!
1107 	 */
1108 	if (ticks && ticks < LONG_MAX)
1109 		account_idle_ticks(ticks);
1110 #endif
1111 }
1112 
1113 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1114 {
1115 	tick_nohz_restart_sched_tick(ts, now);
1116 	tick_nohz_account_idle_ticks(ts);
1117 }
1118 
1119 void tick_nohz_idle_restart_tick(void)
1120 {
1121 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1122 
1123 	if (ts->tick_stopped)
1124 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1125 }
1126 
1127 /**
1128  * tick_nohz_idle_exit - restart the idle tick from the idle task
1129  *
1130  * Restart the idle tick when the CPU is woken up from idle
1131  * This also exit the RCU extended quiescent state. The CPU
1132  * can use RCU again after this function is called.
1133  */
1134 void tick_nohz_idle_exit(void)
1135 {
1136 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1137 	bool idle_active, tick_stopped;
1138 	ktime_t now;
1139 
1140 	local_irq_disable();
1141 
1142 	WARN_ON_ONCE(!ts->inidle);
1143 	WARN_ON_ONCE(ts->timer_expires_base);
1144 
1145 	ts->inidle = 0;
1146 	idle_active = ts->idle_active;
1147 	tick_stopped = ts->tick_stopped;
1148 
1149 	if (idle_active || tick_stopped)
1150 		now = ktime_get();
1151 
1152 	if (idle_active)
1153 		tick_nohz_stop_idle(ts, now);
1154 
1155 	if (tick_stopped)
1156 		__tick_nohz_idle_restart_tick(ts, now);
1157 
1158 	local_irq_enable();
1159 }
1160 
1161 /*
1162  * The nohz low res interrupt handler
1163  */
1164 static void tick_nohz_handler(struct clock_event_device *dev)
1165 {
1166 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1167 	struct pt_regs *regs = get_irq_regs();
1168 	ktime_t now = ktime_get();
1169 
1170 	dev->next_event = KTIME_MAX;
1171 
1172 	tick_sched_do_timer(ts, now);
1173 	tick_sched_handle(ts, regs);
1174 
1175 	/* No need to reprogram if we are running tickless  */
1176 	if (unlikely(ts->tick_stopped))
1177 		return;
1178 
1179 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1180 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1181 }
1182 
1183 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1184 {
1185 	if (!tick_nohz_enabled)
1186 		return;
1187 	ts->nohz_mode = mode;
1188 	/* One update is enough */
1189 	if (!test_and_set_bit(0, &tick_nohz_active))
1190 		timers_update_nohz();
1191 }
1192 
1193 /**
1194  * tick_nohz_switch_to_nohz - switch to nohz mode
1195  */
1196 static void tick_nohz_switch_to_nohz(void)
1197 {
1198 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1199 	ktime_t next;
1200 
1201 	if (!tick_nohz_enabled)
1202 		return;
1203 
1204 	if (tick_switch_to_oneshot(tick_nohz_handler))
1205 		return;
1206 
1207 	/*
1208 	 * Recycle the hrtimer in ts, so we can share the
1209 	 * hrtimer_forward with the highres code.
1210 	 */
1211 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1212 	/* Get the next period */
1213 	next = tick_init_jiffy_update();
1214 
1215 	hrtimer_set_expires(&ts->sched_timer, next);
1216 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1217 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1218 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1219 }
1220 
1221 static inline void tick_nohz_irq_enter(void)
1222 {
1223 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224 	ktime_t now;
1225 
1226 	if (!ts->idle_active && !ts->tick_stopped)
1227 		return;
1228 	now = ktime_get();
1229 	if (ts->idle_active)
1230 		tick_nohz_stop_idle(ts, now);
1231 	if (ts->tick_stopped)
1232 		tick_nohz_update_jiffies(now);
1233 }
1234 
1235 #else
1236 
1237 static inline void tick_nohz_switch_to_nohz(void) { }
1238 static inline void tick_nohz_irq_enter(void) { }
1239 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1240 
1241 #endif /* CONFIG_NO_HZ_COMMON */
1242 
1243 /*
1244  * Called from irq_enter to notify about the possible interruption of idle()
1245  */
1246 void tick_irq_enter(void)
1247 {
1248 	tick_check_oneshot_broadcast_this_cpu();
1249 	tick_nohz_irq_enter();
1250 }
1251 
1252 /*
1253  * High resolution timer specific code
1254  */
1255 #ifdef CONFIG_HIGH_RES_TIMERS
1256 /*
1257  * We rearm the timer until we get disabled by the idle code.
1258  * Called with interrupts disabled.
1259  */
1260 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1261 {
1262 	struct tick_sched *ts =
1263 		container_of(timer, struct tick_sched, sched_timer);
1264 	struct pt_regs *regs = get_irq_regs();
1265 	ktime_t now = ktime_get();
1266 
1267 	tick_sched_do_timer(ts, now);
1268 
1269 	/*
1270 	 * Do not call, when we are not in irq context and have
1271 	 * no valid regs pointer
1272 	 */
1273 	if (regs)
1274 		tick_sched_handle(ts, regs);
1275 	else
1276 		ts->next_tick = 0;
1277 
1278 	/* No need to reprogram if we are in idle or full dynticks mode */
1279 	if (unlikely(ts->tick_stopped))
1280 		return HRTIMER_NORESTART;
1281 
1282 	hrtimer_forward(timer, now, tick_period);
1283 
1284 	return HRTIMER_RESTART;
1285 }
1286 
1287 static int sched_skew_tick;
1288 
1289 static int __init skew_tick(char *str)
1290 {
1291 	get_option(&str, &sched_skew_tick);
1292 
1293 	return 0;
1294 }
1295 early_param("skew_tick", skew_tick);
1296 
1297 /**
1298  * tick_setup_sched_timer - setup the tick emulation timer
1299  */
1300 void tick_setup_sched_timer(void)
1301 {
1302 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303 	ktime_t now = ktime_get();
1304 
1305 	/*
1306 	 * Emulate tick processing via per-CPU hrtimers:
1307 	 */
1308 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1309 	ts->sched_timer.function = tick_sched_timer;
1310 
1311 	/* Get the next period (per-CPU) */
1312 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1313 
1314 	/* Offset the tick to avert jiffies_lock contention. */
1315 	if (sched_skew_tick) {
1316 		u64 offset = ktime_to_ns(tick_period) >> 1;
1317 		do_div(offset, num_possible_cpus());
1318 		offset *= smp_processor_id();
1319 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1320 	}
1321 
1322 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1323 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1324 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1325 }
1326 #endif /* HIGH_RES_TIMERS */
1327 
1328 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1329 void tick_cancel_sched_timer(int cpu)
1330 {
1331 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1332 
1333 # ifdef CONFIG_HIGH_RES_TIMERS
1334 	if (ts->sched_timer.base)
1335 		hrtimer_cancel(&ts->sched_timer);
1336 # endif
1337 
1338 	memset(ts, 0, sizeof(*ts));
1339 }
1340 #endif
1341 
1342 /**
1343  * Async notification about clocksource changes
1344  */
1345 void tick_clock_notify(void)
1346 {
1347 	int cpu;
1348 
1349 	for_each_possible_cpu(cpu)
1350 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1351 }
1352 
1353 /*
1354  * Async notification about clock event changes
1355  */
1356 void tick_oneshot_notify(void)
1357 {
1358 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1359 
1360 	set_bit(0, &ts->check_clocks);
1361 }
1362 
1363 /**
1364  * Check, if a change happened, which makes oneshot possible.
1365  *
1366  * Called cyclic from the hrtimer softirq (driven by the timer
1367  * softirq) allow_nohz signals, that we can switch into low-res nohz
1368  * mode, because high resolution timers are disabled (either compile
1369  * or runtime). Called with interrupts disabled.
1370  */
1371 int tick_check_oneshot_change(int allow_nohz)
1372 {
1373 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1374 
1375 	if (!test_and_clear_bit(0, &ts->check_clocks))
1376 		return 0;
1377 
1378 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1379 		return 0;
1380 
1381 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1382 		return 0;
1383 
1384 	if (!allow_nohz)
1385 		return 1;
1386 
1387 	tick_nohz_switch_to_nohz();
1388 	return 0;
1389 }
1390