1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 static void tick_nohz_update_jiffies(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 ktime_t now; 143 144 if (!ts->tick_stopped) 145 return; 146 147 cpumask_clear_cpu(cpu, nohz_cpu_mask); 148 now = ktime_get(); 149 ts->idle_waketime = now; 150 151 local_irq_save(flags); 152 tick_do_update_jiffies64(now); 153 local_irq_restore(flags); 154 155 touch_softlockup_watchdog(); 156 } 157 158 static void tick_nohz_stop_idle(int cpu) 159 { 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 161 162 if (ts->idle_active) { 163 ktime_t now, delta; 164 now = ktime_get(); 165 delta = ktime_sub(now, ts->idle_entrytime); 166 ts->idle_lastupdate = now; 167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 168 ts->idle_active = 0; 169 170 sched_clock_idle_wakeup_event(0); 171 } 172 } 173 174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 175 { 176 ktime_t now, delta; 177 178 now = ktime_get(); 179 if (ts->idle_active) { 180 delta = ktime_sub(now, ts->idle_entrytime); 181 ts->idle_lastupdate = now; 182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 183 } 184 ts->idle_entrytime = now; 185 ts->idle_active = 1; 186 sched_clock_idle_sleep_event(); 187 return now; 188 } 189 190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 191 { 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 193 194 if (!tick_nohz_enabled) 195 return -1; 196 197 if (ts->idle_active) 198 *last_update_time = ktime_to_us(ts->idle_lastupdate); 199 else 200 *last_update_time = ktime_to_us(ktime_get()); 201 202 return ktime_to_us(ts->idle_sleeptime); 203 } 204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 205 206 /** 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 208 * 209 * When the next event is more than a tick into the future, stop the idle tick 210 * Called either from the idle loop or from irq_exit() when an idle period was 211 * just interrupted by an interrupt which did not cause a reschedule. 212 */ 213 void tick_nohz_stop_sched_tick(int inidle) 214 { 215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 216 struct tick_sched *ts; 217 ktime_t last_update, expires, now; 218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 219 int cpu; 220 221 local_irq_save(flags); 222 223 cpu = smp_processor_id(); 224 ts = &per_cpu(tick_cpu_sched, cpu); 225 226 /* 227 * Call to tick_nohz_start_idle stops the last_update_time from being 228 * updated. Thus, it must not be called in the event we are called from 229 * irq_exit() with the prior state different than idle. 230 */ 231 if (!inidle && !ts->inidle) 232 goto end; 233 234 now = tick_nohz_start_idle(ts); 235 236 /* 237 * If this cpu is offline and it is the one which updates 238 * jiffies, then give up the assignment and let it be taken by 239 * the cpu which runs the tick timer next. If we don't drop 240 * this here the jiffies might be stale and do_timer() never 241 * invoked. 242 */ 243 if (unlikely(!cpu_online(cpu))) { 244 if (cpu == tick_do_timer_cpu) 245 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 246 } 247 248 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 249 goto end; 250 251 ts->inidle = 1; 252 253 if (need_resched()) 254 goto end; 255 256 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 257 static int ratelimit; 258 259 if (ratelimit < 10) { 260 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 261 local_softirq_pending()); 262 ratelimit++; 263 } 264 goto end; 265 } 266 267 ts->idle_calls++; 268 /* Read jiffies and the time when jiffies were updated last */ 269 do { 270 seq = read_seqbegin(&xtime_lock); 271 last_update = last_jiffies_update; 272 last_jiffies = jiffies; 273 } while (read_seqretry(&xtime_lock, seq)); 274 275 /* Get the next timer wheel timer */ 276 next_jiffies = get_next_timer_interrupt(last_jiffies); 277 delta_jiffies = next_jiffies - last_jiffies; 278 279 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu)) 280 delta_jiffies = 1; 281 /* 282 * Do not stop the tick, if we are only one off 283 * or if the cpu is required for rcu 284 */ 285 if (!ts->tick_stopped && delta_jiffies == 1) 286 goto out; 287 288 /* Schedule the tick, if we are at least one jiffie off */ 289 if ((long)delta_jiffies >= 1) { 290 291 /* 292 * calculate the expiry time for the next timer wheel 293 * timer 294 */ 295 expires = ktime_add_ns(last_update, tick_period.tv64 * 296 delta_jiffies); 297 298 /* 299 * If this cpu is the one which updates jiffies, then 300 * give up the assignment and let it be taken by the 301 * cpu which runs the tick timer next, which might be 302 * this cpu as well. If we don't drop this here the 303 * jiffies might be stale and do_timer() never 304 * invoked. 305 */ 306 if (cpu == tick_do_timer_cpu) 307 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 308 309 if (delta_jiffies > 1) 310 cpumask_set_cpu(cpu, nohz_cpu_mask); 311 312 /* Skip reprogram of event if its not changed */ 313 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 314 goto out; 315 316 /* 317 * nohz_stop_sched_tick can be called several times before 318 * the nohz_restart_sched_tick is called. This happens when 319 * interrupts arrive which do not cause a reschedule. In the 320 * first call we save the current tick time, so we can restart 321 * the scheduler tick in nohz_restart_sched_tick. 322 */ 323 if (!ts->tick_stopped) { 324 if (select_nohz_load_balancer(1)) { 325 /* 326 * sched tick not stopped! 327 */ 328 cpumask_clear_cpu(cpu, nohz_cpu_mask); 329 goto out; 330 } 331 332 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 333 ts->tick_stopped = 1; 334 ts->idle_jiffies = last_jiffies; 335 rcu_enter_nohz(); 336 } 337 338 ts->idle_sleeps++; 339 340 /* 341 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 342 * there is no timer pending or at least extremly far 343 * into the future (12 days for HZ=1000). In this case 344 * we simply stop the tick timer: 345 */ 346 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 347 ts->idle_expires.tv64 = KTIME_MAX; 348 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 349 hrtimer_cancel(&ts->sched_timer); 350 goto out; 351 } 352 353 /* Mark expiries */ 354 ts->idle_expires = expires; 355 356 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 357 hrtimer_start(&ts->sched_timer, expires, 358 HRTIMER_MODE_ABS_PINNED); 359 /* Check, if the timer was already in the past */ 360 if (hrtimer_active(&ts->sched_timer)) 361 goto out; 362 } else if (!tick_program_event(expires, 0)) 363 goto out; 364 /* 365 * We are past the event already. So we crossed a 366 * jiffie boundary. Update jiffies and raise the 367 * softirq. 368 */ 369 tick_do_update_jiffies64(ktime_get()); 370 cpumask_clear_cpu(cpu, nohz_cpu_mask); 371 } 372 raise_softirq_irqoff(TIMER_SOFTIRQ); 373 out: 374 ts->next_jiffies = next_jiffies; 375 ts->last_jiffies = last_jiffies; 376 ts->sleep_length = ktime_sub(dev->next_event, now); 377 end: 378 local_irq_restore(flags); 379 } 380 381 /** 382 * tick_nohz_get_sleep_length - return the length of the current sleep 383 * 384 * Called from power state control code with interrupts disabled 385 */ 386 ktime_t tick_nohz_get_sleep_length(void) 387 { 388 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 389 390 return ts->sleep_length; 391 } 392 393 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 394 { 395 hrtimer_cancel(&ts->sched_timer); 396 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 397 398 while (1) { 399 /* Forward the time to expire in the future */ 400 hrtimer_forward(&ts->sched_timer, now, tick_period); 401 402 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 403 hrtimer_start_expires(&ts->sched_timer, 404 HRTIMER_MODE_ABS_PINNED); 405 /* Check, if the timer was already in the past */ 406 if (hrtimer_active(&ts->sched_timer)) 407 break; 408 } else { 409 if (!tick_program_event( 410 hrtimer_get_expires(&ts->sched_timer), 0)) 411 break; 412 } 413 /* Update jiffies and reread time */ 414 tick_do_update_jiffies64(now); 415 now = ktime_get(); 416 } 417 } 418 419 /** 420 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 421 * 422 * Restart the idle tick when the CPU is woken up from idle 423 */ 424 void tick_nohz_restart_sched_tick(void) 425 { 426 int cpu = smp_processor_id(); 427 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 428 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 429 unsigned long ticks; 430 #endif 431 ktime_t now; 432 433 local_irq_disable(); 434 tick_nohz_stop_idle(cpu); 435 436 if (!ts->inidle || !ts->tick_stopped) { 437 ts->inidle = 0; 438 local_irq_enable(); 439 return; 440 } 441 442 ts->inidle = 0; 443 444 rcu_exit_nohz(); 445 446 /* Update jiffies first */ 447 select_nohz_load_balancer(0); 448 now = ktime_get(); 449 tick_do_update_jiffies64(now); 450 cpumask_clear_cpu(cpu, nohz_cpu_mask); 451 452 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 453 /* 454 * We stopped the tick in idle. Update process times would miss the 455 * time we slept as update_process_times does only a 1 tick 456 * accounting. Enforce that this is accounted to idle ! 457 */ 458 ticks = jiffies - ts->idle_jiffies; 459 /* 460 * We might be one off. Do not randomly account a huge number of ticks! 461 */ 462 if (ticks && ticks < LONG_MAX) 463 account_idle_ticks(ticks); 464 #endif 465 466 touch_softlockup_watchdog(); 467 /* 468 * Cancel the scheduled timer and restore the tick 469 */ 470 ts->tick_stopped = 0; 471 ts->idle_exittime = now; 472 473 tick_nohz_restart(ts, now); 474 475 local_irq_enable(); 476 } 477 478 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 479 { 480 hrtimer_forward(&ts->sched_timer, now, tick_period); 481 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 482 } 483 484 /* 485 * The nohz low res interrupt handler 486 */ 487 static void tick_nohz_handler(struct clock_event_device *dev) 488 { 489 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 490 struct pt_regs *regs = get_irq_regs(); 491 int cpu = smp_processor_id(); 492 ktime_t now = ktime_get(); 493 494 dev->next_event.tv64 = KTIME_MAX; 495 496 /* 497 * Check if the do_timer duty was dropped. We don't care about 498 * concurrency: This happens only when the cpu in charge went 499 * into a long sleep. If two cpus happen to assign themself to 500 * this duty, then the jiffies update is still serialized by 501 * xtime_lock. 502 */ 503 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 504 tick_do_timer_cpu = cpu; 505 506 /* Check, if the jiffies need an update */ 507 if (tick_do_timer_cpu == cpu) 508 tick_do_update_jiffies64(now); 509 510 /* 511 * When we are idle and the tick is stopped, we have to touch 512 * the watchdog as we might not schedule for a really long 513 * time. This happens on complete idle SMP systems while 514 * waiting on the login prompt. We also increment the "start 515 * of idle" jiffy stamp so the idle accounting adjustment we 516 * do when we go busy again does not account too much ticks. 517 */ 518 if (ts->tick_stopped) { 519 touch_softlockup_watchdog(); 520 ts->idle_jiffies++; 521 } 522 523 update_process_times(user_mode(regs)); 524 profile_tick(CPU_PROFILING); 525 526 while (tick_nohz_reprogram(ts, now)) { 527 now = ktime_get(); 528 tick_do_update_jiffies64(now); 529 } 530 } 531 532 /** 533 * tick_nohz_switch_to_nohz - switch to nohz mode 534 */ 535 static void tick_nohz_switch_to_nohz(void) 536 { 537 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 538 ktime_t next; 539 540 if (!tick_nohz_enabled) 541 return; 542 543 local_irq_disable(); 544 if (tick_switch_to_oneshot(tick_nohz_handler)) { 545 local_irq_enable(); 546 return; 547 } 548 549 ts->nohz_mode = NOHZ_MODE_LOWRES; 550 551 /* 552 * Recycle the hrtimer in ts, so we can share the 553 * hrtimer_forward with the highres code. 554 */ 555 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 556 /* Get the next period */ 557 next = tick_init_jiffy_update(); 558 559 for (;;) { 560 hrtimer_set_expires(&ts->sched_timer, next); 561 if (!tick_program_event(next, 0)) 562 break; 563 next = ktime_add(next, tick_period); 564 } 565 local_irq_enable(); 566 567 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 568 smp_processor_id()); 569 } 570 571 /* 572 * When NOHZ is enabled and the tick is stopped, we need to kick the 573 * tick timer from irq_enter() so that the jiffies update is kept 574 * alive during long running softirqs. That's ugly as hell, but 575 * correctness is key even if we need to fix the offending softirq in 576 * the first place. 577 * 578 * Note, this is different to tick_nohz_restart. We just kick the 579 * timer and do not touch the other magic bits which need to be done 580 * when idle is left. 581 */ 582 static void tick_nohz_kick_tick(int cpu) 583 { 584 #if 0 585 /* Switch back to 2.6.27 behaviour */ 586 587 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 588 ktime_t delta, now; 589 590 if (!ts->tick_stopped) 591 return; 592 593 /* 594 * Do not touch the tick device, when the next expiry is either 595 * already reached or less/equal than the tick period. 596 */ 597 now = ktime_get(); 598 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 599 if (delta.tv64 <= tick_period.tv64) 600 return; 601 602 tick_nohz_restart(ts, now); 603 #endif 604 } 605 606 #else 607 608 static inline void tick_nohz_switch_to_nohz(void) { } 609 610 #endif /* NO_HZ */ 611 612 /* 613 * Called from irq_enter to notify about the possible interruption of idle() 614 */ 615 void tick_check_idle(int cpu) 616 { 617 tick_check_oneshot_broadcast(cpu); 618 #ifdef CONFIG_NO_HZ 619 tick_nohz_stop_idle(cpu); 620 tick_nohz_update_jiffies(); 621 tick_nohz_kick_tick(cpu); 622 #endif 623 } 624 625 /* 626 * High resolution timer specific code 627 */ 628 #ifdef CONFIG_HIGH_RES_TIMERS 629 /* 630 * We rearm the timer until we get disabled by the idle code. 631 * Called with interrupts disabled and timer->base->cpu_base->lock held. 632 */ 633 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 634 { 635 struct tick_sched *ts = 636 container_of(timer, struct tick_sched, sched_timer); 637 struct pt_regs *regs = get_irq_regs(); 638 ktime_t now = ktime_get(); 639 int cpu = smp_processor_id(); 640 641 #ifdef CONFIG_NO_HZ 642 /* 643 * Check if the do_timer duty was dropped. We don't care about 644 * concurrency: This happens only when the cpu in charge went 645 * into a long sleep. If two cpus happen to assign themself to 646 * this duty, then the jiffies update is still serialized by 647 * xtime_lock. 648 */ 649 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 650 tick_do_timer_cpu = cpu; 651 #endif 652 653 /* Check, if the jiffies need an update */ 654 if (tick_do_timer_cpu == cpu) 655 tick_do_update_jiffies64(now); 656 657 /* 658 * Do not call, when we are not in irq context and have 659 * no valid regs pointer 660 */ 661 if (regs) { 662 /* 663 * When we are idle and the tick is stopped, we have to touch 664 * the watchdog as we might not schedule for a really long 665 * time. This happens on complete idle SMP systems while 666 * waiting on the login prompt. We also increment the "start of 667 * idle" jiffy stamp so the idle accounting adjustment we do 668 * when we go busy again does not account too much ticks. 669 */ 670 if (ts->tick_stopped) { 671 touch_softlockup_watchdog(); 672 ts->idle_jiffies++; 673 } 674 update_process_times(user_mode(regs)); 675 profile_tick(CPU_PROFILING); 676 } 677 678 hrtimer_forward(timer, now, tick_period); 679 680 return HRTIMER_RESTART; 681 } 682 683 /** 684 * tick_setup_sched_timer - setup the tick emulation timer 685 */ 686 void tick_setup_sched_timer(void) 687 { 688 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 689 ktime_t now = ktime_get(); 690 u64 offset; 691 692 /* 693 * Emulate tick processing via per-CPU hrtimers: 694 */ 695 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 696 ts->sched_timer.function = tick_sched_timer; 697 698 /* Get the next period (per cpu) */ 699 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 700 offset = ktime_to_ns(tick_period) >> 1; 701 do_div(offset, num_possible_cpus()); 702 offset *= smp_processor_id(); 703 hrtimer_add_expires_ns(&ts->sched_timer, offset); 704 705 for (;;) { 706 hrtimer_forward(&ts->sched_timer, now, tick_period); 707 hrtimer_start_expires(&ts->sched_timer, 708 HRTIMER_MODE_ABS_PINNED); 709 /* Check, if the timer was already in the past */ 710 if (hrtimer_active(&ts->sched_timer)) 711 break; 712 now = ktime_get(); 713 } 714 715 #ifdef CONFIG_NO_HZ 716 if (tick_nohz_enabled) 717 ts->nohz_mode = NOHZ_MODE_HIGHRES; 718 #endif 719 } 720 #endif /* HIGH_RES_TIMERS */ 721 722 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 723 void tick_cancel_sched_timer(int cpu) 724 { 725 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 726 727 # ifdef CONFIG_HIGH_RES_TIMERS 728 if (ts->sched_timer.base) 729 hrtimer_cancel(&ts->sched_timer); 730 # endif 731 732 ts->nohz_mode = NOHZ_MODE_INACTIVE; 733 } 734 #endif 735 736 /** 737 * Async notification about clocksource changes 738 */ 739 void tick_clock_notify(void) 740 { 741 int cpu; 742 743 for_each_possible_cpu(cpu) 744 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 745 } 746 747 /* 748 * Async notification about clock event changes 749 */ 750 void tick_oneshot_notify(void) 751 { 752 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 753 754 set_bit(0, &ts->check_clocks); 755 } 756 757 /** 758 * Check, if a change happened, which makes oneshot possible. 759 * 760 * Called cyclic from the hrtimer softirq (driven by the timer 761 * softirq) allow_nohz signals, that we can switch into low-res nohz 762 * mode, because high resolution timers are disabled (either compile 763 * or runtime). 764 */ 765 int tick_check_oneshot_change(int allow_nohz) 766 { 767 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 768 769 if (!test_and_clear_bit(0, &ts->check_clocks)) 770 return 0; 771 772 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 773 return 0; 774 775 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 776 return 0; 777 778 if (!allow_nohz) 779 return 1; 780 781 tick_nohz_switch_to_nohz(); 782 return 0; 783 } 784