xref: /openbmc/linux/kernel/time/tick-sched.c (revision e8e0929d)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 	ktime_t now;
143 
144 	if (!ts->tick_stopped)
145 		return;
146 
147 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
148 	now = ktime_get();
149 	ts->idle_waketime = now;
150 
151 	local_irq_save(flags);
152 	tick_do_update_jiffies64(now);
153 	local_irq_restore(flags);
154 
155 	touch_softlockup_watchdog();
156 }
157 
158 static void tick_nohz_stop_idle(int cpu)
159 {
160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161 
162 	if (ts->idle_active) {
163 		ktime_t now, delta;
164 		now = ktime_get();
165 		delta = ktime_sub(now, ts->idle_entrytime);
166 		ts->idle_lastupdate = now;
167 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
168 		ts->idle_active = 0;
169 
170 		sched_clock_idle_wakeup_event(0);
171 	}
172 }
173 
174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
175 {
176 	ktime_t now, delta;
177 
178 	now = ktime_get();
179 	if (ts->idle_active) {
180 		delta = ktime_sub(now, ts->idle_entrytime);
181 		ts->idle_lastupdate = now;
182 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
183 	}
184 	ts->idle_entrytime = now;
185 	ts->idle_active = 1;
186 	sched_clock_idle_sleep_event();
187 	return now;
188 }
189 
190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
191 {
192 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
193 
194 	if (!tick_nohz_enabled)
195 		return -1;
196 
197 	if (ts->idle_active)
198 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
199 	else
200 		*last_update_time = ktime_to_us(ktime_get());
201 
202 	return ktime_to_us(ts->idle_sleeptime);
203 }
204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
205 
206 /**
207  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
208  *
209  * When the next event is more than a tick into the future, stop the idle tick
210  * Called either from the idle loop or from irq_exit() when an idle period was
211  * just interrupted by an interrupt which did not cause a reschedule.
212  */
213 void tick_nohz_stop_sched_tick(int inidle)
214 {
215 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
216 	struct tick_sched *ts;
217 	ktime_t last_update, expires, now;
218 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
219 	int cpu;
220 
221 	local_irq_save(flags);
222 
223 	cpu = smp_processor_id();
224 	ts = &per_cpu(tick_cpu_sched, cpu);
225 
226 	/*
227 	 * Call to tick_nohz_start_idle stops the last_update_time from being
228 	 * updated. Thus, it must not be called in the event we are called from
229 	 * irq_exit() with the prior state different than idle.
230 	 */
231 	if (!inidle && !ts->inidle)
232 		goto end;
233 
234 	now = tick_nohz_start_idle(ts);
235 
236 	/*
237 	 * If this cpu is offline and it is the one which updates
238 	 * jiffies, then give up the assignment and let it be taken by
239 	 * the cpu which runs the tick timer next. If we don't drop
240 	 * this here the jiffies might be stale and do_timer() never
241 	 * invoked.
242 	 */
243 	if (unlikely(!cpu_online(cpu))) {
244 		if (cpu == tick_do_timer_cpu)
245 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
246 	}
247 
248 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
249 		goto end;
250 
251 	ts->inidle = 1;
252 
253 	if (need_resched())
254 		goto end;
255 
256 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
257 		static int ratelimit;
258 
259 		if (ratelimit < 10) {
260 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
261 			       local_softirq_pending());
262 			ratelimit++;
263 		}
264 		goto end;
265 	}
266 
267 	ts->idle_calls++;
268 	/* Read jiffies and the time when jiffies were updated last */
269 	do {
270 		seq = read_seqbegin(&xtime_lock);
271 		last_update = last_jiffies_update;
272 		last_jiffies = jiffies;
273 	} while (read_seqretry(&xtime_lock, seq));
274 
275 	/* Get the next timer wheel timer */
276 	next_jiffies = get_next_timer_interrupt(last_jiffies);
277 	delta_jiffies = next_jiffies - last_jiffies;
278 
279 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
280 		delta_jiffies = 1;
281 	/*
282 	 * Do not stop the tick, if we are only one off
283 	 * or if the cpu is required for rcu
284 	 */
285 	if (!ts->tick_stopped && delta_jiffies == 1)
286 		goto out;
287 
288 	/* Schedule the tick, if we are at least one jiffie off */
289 	if ((long)delta_jiffies >= 1) {
290 
291 		/*
292 		* calculate the expiry time for the next timer wheel
293 		* timer
294 		*/
295 		expires = ktime_add_ns(last_update, tick_period.tv64 *
296 				   delta_jiffies);
297 
298 		/*
299 		 * If this cpu is the one which updates jiffies, then
300 		 * give up the assignment and let it be taken by the
301 		 * cpu which runs the tick timer next, which might be
302 		 * this cpu as well. If we don't drop this here the
303 		 * jiffies might be stale and do_timer() never
304 		 * invoked.
305 		 */
306 		if (cpu == tick_do_timer_cpu)
307 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
308 
309 		if (delta_jiffies > 1)
310 			cpumask_set_cpu(cpu, nohz_cpu_mask);
311 
312 		/* Skip reprogram of event if its not changed */
313 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
314 			goto out;
315 
316 		/*
317 		 * nohz_stop_sched_tick can be called several times before
318 		 * the nohz_restart_sched_tick is called. This happens when
319 		 * interrupts arrive which do not cause a reschedule. In the
320 		 * first call we save the current tick time, so we can restart
321 		 * the scheduler tick in nohz_restart_sched_tick.
322 		 */
323 		if (!ts->tick_stopped) {
324 			if (select_nohz_load_balancer(1)) {
325 				/*
326 				 * sched tick not stopped!
327 				 */
328 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
329 				goto out;
330 			}
331 
332 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
333 			ts->tick_stopped = 1;
334 			ts->idle_jiffies = last_jiffies;
335 			rcu_enter_nohz();
336 		}
337 
338 		ts->idle_sleeps++;
339 
340 		/*
341 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
342 		 * there is no timer pending or at least extremly far
343 		 * into the future (12 days for HZ=1000). In this case
344 		 * we simply stop the tick timer:
345 		 */
346 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
347 			ts->idle_expires.tv64 = KTIME_MAX;
348 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
349 				hrtimer_cancel(&ts->sched_timer);
350 			goto out;
351 		}
352 
353 		/* Mark expiries */
354 		ts->idle_expires = expires;
355 
356 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
357 			hrtimer_start(&ts->sched_timer, expires,
358 				      HRTIMER_MODE_ABS_PINNED);
359 			/* Check, if the timer was already in the past */
360 			if (hrtimer_active(&ts->sched_timer))
361 				goto out;
362 		} else if (!tick_program_event(expires, 0))
363 				goto out;
364 		/*
365 		 * We are past the event already. So we crossed a
366 		 * jiffie boundary. Update jiffies and raise the
367 		 * softirq.
368 		 */
369 		tick_do_update_jiffies64(ktime_get());
370 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
371 	}
372 	raise_softirq_irqoff(TIMER_SOFTIRQ);
373 out:
374 	ts->next_jiffies = next_jiffies;
375 	ts->last_jiffies = last_jiffies;
376 	ts->sleep_length = ktime_sub(dev->next_event, now);
377 end:
378 	local_irq_restore(flags);
379 }
380 
381 /**
382  * tick_nohz_get_sleep_length - return the length of the current sleep
383  *
384  * Called from power state control code with interrupts disabled
385  */
386 ktime_t tick_nohz_get_sleep_length(void)
387 {
388 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
389 
390 	return ts->sleep_length;
391 }
392 
393 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
394 {
395 	hrtimer_cancel(&ts->sched_timer);
396 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
397 
398 	while (1) {
399 		/* Forward the time to expire in the future */
400 		hrtimer_forward(&ts->sched_timer, now, tick_period);
401 
402 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
403 			hrtimer_start_expires(&ts->sched_timer,
404 					      HRTIMER_MODE_ABS_PINNED);
405 			/* Check, if the timer was already in the past */
406 			if (hrtimer_active(&ts->sched_timer))
407 				break;
408 		} else {
409 			if (!tick_program_event(
410 				hrtimer_get_expires(&ts->sched_timer), 0))
411 				break;
412 		}
413 		/* Update jiffies and reread time */
414 		tick_do_update_jiffies64(now);
415 		now = ktime_get();
416 	}
417 }
418 
419 /**
420  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
421  *
422  * Restart the idle tick when the CPU is woken up from idle
423  */
424 void tick_nohz_restart_sched_tick(void)
425 {
426 	int cpu = smp_processor_id();
427 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
428 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
429 	unsigned long ticks;
430 #endif
431 	ktime_t now;
432 
433 	local_irq_disable();
434 	tick_nohz_stop_idle(cpu);
435 
436 	if (!ts->inidle || !ts->tick_stopped) {
437 		ts->inidle = 0;
438 		local_irq_enable();
439 		return;
440 	}
441 
442 	ts->inidle = 0;
443 
444 	rcu_exit_nohz();
445 
446 	/* Update jiffies first */
447 	select_nohz_load_balancer(0);
448 	now = ktime_get();
449 	tick_do_update_jiffies64(now);
450 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
451 
452 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
453 	/*
454 	 * We stopped the tick in idle. Update process times would miss the
455 	 * time we slept as update_process_times does only a 1 tick
456 	 * accounting. Enforce that this is accounted to idle !
457 	 */
458 	ticks = jiffies - ts->idle_jiffies;
459 	/*
460 	 * We might be one off. Do not randomly account a huge number of ticks!
461 	 */
462 	if (ticks && ticks < LONG_MAX)
463 		account_idle_ticks(ticks);
464 #endif
465 
466 	touch_softlockup_watchdog();
467 	/*
468 	 * Cancel the scheduled timer and restore the tick
469 	 */
470 	ts->tick_stopped  = 0;
471 	ts->idle_exittime = now;
472 
473 	tick_nohz_restart(ts, now);
474 
475 	local_irq_enable();
476 }
477 
478 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
479 {
480 	hrtimer_forward(&ts->sched_timer, now, tick_period);
481 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
482 }
483 
484 /*
485  * The nohz low res interrupt handler
486  */
487 static void tick_nohz_handler(struct clock_event_device *dev)
488 {
489 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
490 	struct pt_regs *regs = get_irq_regs();
491 	int cpu = smp_processor_id();
492 	ktime_t now = ktime_get();
493 
494 	dev->next_event.tv64 = KTIME_MAX;
495 
496 	/*
497 	 * Check if the do_timer duty was dropped. We don't care about
498 	 * concurrency: This happens only when the cpu in charge went
499 	 * into a long sleep. If two cpus happen to assign themself to
500 	 * this duty, then the jiffies update is still serialized by
501 	 * xtime_lock.
502 	 */
503 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
504 		tick_do_timer_cpu = cpu;
505 
506 	/* Check, if the jiffies need an update */
507 	if (tick_do_timer_cpu == cpu)
508 		tick_do_update_jiffies64(now);
509 
510 	/*
511 	 * When we are idle and the tick is stopped, we have to touch
512 	 * the watchdog as we might not schedule for a really long
513 	 * time. This happens on complete idle SMP systems while
514 	 * waiting on the login prompt. We also increment the "start
515 	 * of idle" jiffy stamp so the idle accounting adjustment we
516 	 * do when we go busy again does not account too much ticks.
517 	 */
518 	if (ts->tick_stopped) {
519 		touch_softlockup_watchdog();
520 		ts->idle_jiffies++;
521 	}
522 
523 	update_process_times(user_mode(regs));
524 	profile_tick(CPU_PROFILING);
525 
526 	while (tick_nohz_reprogram(ts, now)) {
527 		now = ktime_get();
528 		tick_do_update_jiffies64(now);
529 	}
530 }
531 
532 /**
533  * tick_nohz_switch_to_nohz - switch to nohz mode
534  */
535 static void tick_nohz_switch_to_nohz(void)
536 {
537 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
538 	ktime_t next;
539 
540 	if (!tick_nohz_enabled)
541 		return;
542 
543 	local_irq_disable();
544 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
545 		local_irq_enable();
546 		return;
547 	}
548 
549 	ts->nohz_mode = NOHZ_MODE_LOWRES;
550 
551 	/*
552 	 * Recycle the hrtimer in ts, so we can share the
553 	 * hrtimer_forward with the highres code.
554 	 */
555 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
556 	/* Get the next period */
557 	next = tick_init_jiffy_update();
558 
559 	for (;;) {
560 		hrtimer_set_expires(&ts->sched_timer, next);
561 		if (!tick_program_event(next, 0))
562 			break;
563 		next = ktime_add(next, tick_period);
564 	}
565 	local_irq_enable();
566 
567 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
568 	       smp_processor_id());
569 }
570 
571 /*
572  * When NOHZ is enabled and the tick is stopped, we need to kick the
573  * tick timer from irq_enter() so that the jiffies update is kept
574  * alive during long running softirqs. That's ugly as hell, but
575  * correctness is key even if we need to fix the offending softirq in
576  * the first place.
577  *
578  * Note, this is different to tick_nohz_restart. We just kick the
579  * timer and do not touch the other magic bits which need to be done
580  * when idle is left.
581  */
582 static void tick_nohz_kick_tick(int cpu)
583 {
584 #if 0
585 	/* Switch back to 2.6.27 behaviour */
586 
587 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
588 	ktime_t delta, now;
589 
590 	if (!ts->tick_stopped)
591 		return;
592 
593 	/*
594 	 * Do not touch the tick device, when the next expiry is either
595 	 * already reached or less/equal than the tick period.
596 	 */
597 	now = ktime_get();
598 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
599 	if (delta.tv64 <= tick_period.tv64)
600 		return;
601 
602 	tick_nohz_restart(ts, now);
603 #endif
604 }
605 
606 #else
607 
608 static inline void tick_nohz_switch_to_nohz(void) { }
609 
610 #endif /* NO_HZ */
611 
612 /*
613  * Called from irq_enter to notify about the possible interruption of idle()
614  */
615 void tick_check_idle(int cpu)
616 {
617 	tick_check_oneshot_broadcast(cpu);
618 #ifdef CONFIG_NO_HZ
619 	tick_nohz_stop_idle(cpu);
620 	tick_nohz_update_jiffies();
621 	tick_nohz_kick_tick(cpu);
622 #endif
623 }
624 
625 /*
626  * High resolution timer specific code
627  */
628 #ifdef CONFIG_HIGH_RES_TIMERS
629 /*
630  * We rearm the timer until we get disabled by the idle code.
631  * Called with interrupts disabled and timer->base->cpu_base->lock held.
632  */
633 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
634 {
635 	struct tick_sched *ts =
636 		container_of(timer, struct tick_sched, sched_timer);
637 	struct pt_regs *regs = get_irq_regs();
638 	ktime_t now = ktime_get();
639 	int cpu = smp_processor_id();
640 
641 #ifdef CONFIG_NO_HZ
642 	/*
643 	 * Check if the do_timer duty was dropped. We don't care about
644 	 * concurrency: This happens only when the cpu in charge went
645 	 * into a long sleep. If two cpus happen to assign themself to
646 	 * this duty, then the jiffies update is still serialized by
647 	 * xtime_lock.
648 	 */
649 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
650 		tick_do_timer_cpu = cpu;
651 #endif
652 
653 	/* Check, if the jiffies need an update */
654 	if (tick_do_timer_cpu == cpu)
655 		tick_do_update_jiffies64(now);
656 
657 	/*
658 	 * Do not call, when we are not in irq context and have
659 	 * no valid regs pointer
660 	 */
661 	if (regs) {
662 		/*
663 		 * When we are idle and the tick is stopped, we have to touch
664 		 * the watchdog as we might not schedule for a really long
665 		 * time. This happens on complete idle SMP systems while
666 		 * waiting on the login prompt. We also increment the "start of
667 		 * idle" jiffy stamp so the idle accounting adjustment we do
668 		 * when we go busy again does not account too much ticks.
669 		 */
670 		if (ts->tick_stopped) {
671 			touch_softlockup_watchdog();
672 			ts->idle_jiffies++;
673 		}
674 		update_process_times(user_mode(regs));
675 		profile_tick(CPU_PROFILING);
676 	}
677 
678 	hrtimer_forward(timer, now, tick_period);
679 
680 	return HRTIMER_RESTART;
681 }
682 
683 /**
684  * tick_setup_sched_timer - setup the tick emulation timer
685  */
686 void tick_setup_sched_timer(void)
687 {
688 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
689 	ktime_t now = ktime_get();
690 	u64 offset;
691 
692 	/*
693 	 * Emulate tick processing via per-CPU hrtimers:
694 	 */
695 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
696 	ts->sched_timer.function = tick_sched_timer;
697 
698 	/* Get the next period (per cpu) */
699 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
700 	offset = ktime_to_ns(tick_period) >> 1;
701 	do_div(offset, num_possible_cpus());
702 	offset *= smp_processor_id();
703 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
704 
705 	for (;;) {
706 		hrtimer_forward(&ts->sched_timer, now, tick_period);
707 		hrtimer_start_expires(&ts->sched_timer,
708 				      HRTIMER_MODE_ABS_PINNED);
709 		/* Check, if the timer was already in the past */
710 		if (hrtimer_active(&ts->sched_timer))
711 			break;
712 		now = ktime_get();
713 	}
714 
715 #ifdef CONFIG_NO_HZ
716 	if (tick_nohz_enabled)
717 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
718 #endif
719 }
720 #endif /* HIGH_RES_TIMERS */
721 
722 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
723 void tick_cancel_sched_timer(int cpu)
724 {
725 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
726 
727 # ifdef CONFIG_HIGH_RES_TIMERS
728 	if (ts->sched_timer.base)
729 		hrtimer_cancel(&ts->sched_timer);
730 # endif
731 
732 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
733 }
734 #endif
735 
736 /**
737  * Async notification about clocksource changes
738  */
739 void tick_clock_notify(void)
740 {
741 	int cpu;
742 
743 	for_each_possible_cpu(cpu)
744 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
745 }
746 
747 /*
748  * Async notification about clock event changes
749  */
750 void tick_oneshot_notify(void)
751 {
752 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
753 
754 	set_bit(0, &ts->check_clocks);
755 }
756 
757 /**
758  * Check, if a change happened, which makes oneshot possible.
759  *
760  * Called cyclic from the hrtimer softirq (driven by the timer
761  * softirq) allow_nohz signals, that we can switch into low-res nohz
762  * mode, because high resolution timers are disabled (either compile
763  * or runtime).
764  */
765 int tick_check_oneshot_change(int allow_nohz)
766 {
767 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
768 
769 	if (!test_and_clear_bit(0, &ts->check_clocks))
770 		return 0;
771 
772 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
773 		return 0;
774 
775 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
776 		return 0;
777 
778 	if (!allow_nohz)
779 		return 1;
780 
781 	tick_nohz_switch_to_nohz();
782 	return 0;
783 }
784