xref: /openbmc/linux/kernel/time/tick-sched.c (revision e6e6cc22)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 /*
46  * The time, when the last jiffy update happened. Protected by jiffies_lock.
47  */
48 static ktime_t last_jiffies_update;
49 
50 /*
51  * Must be called with interrupts disabled !
52  */
53 static void tick_do_update_jiffies64(ktime_t now)
54 {
55 	unsigned long ticks = 0;
56 	ktime_t delta;
57 
58 	/*
59 	 * Do a quick check without holding jiffies_lock:
60 	 */
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 < tick_period.tv64)
63 		return;
64 
65 	/* Reevalute with jiffies_lock held */
66 	write_seqlock(&jiffies_lock);
67 
68 	delta = ktime_sub(now, last_jiffies_update);
69 	if (delta.tv64 >= tick_period.tv64) {
70 
71 		delta = ktime_sub(delta, tick_period);
72 		last_jiffies_update = ktime_add(last_jiffies_update,
73 						tick_period);
74 
75 		/* Slow path for long timeouts */
76 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
77 			s64 incr = ktime_to_ns(tick_period);
78 
79 			ticks = ktime_divns(delta, incr);
80 
81 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
82 							   incr * ticks);
83 		}
84 		do_timer(++ticks);
85 
86 		/* Keep the tick_next_period variable up to date */
87 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 	} else {
89 		write_sequnlock(&jiffies_lock);
90 		return;
91 	}
92 	write_sequnlock(&jiffies_lock);
93 	update_wall_time();
94 }
95 
96 /*
97  * Initialize and return retrieve the jiffies update.
98  */
99 static ktime_t tick_init_jiffy_update(void)
100 {
101 	ktime_t period;
102 
103 	write_seqlock(&jiffies_lock);
104 	/* Did we start the jiffies update yet ? */
105 	if (last_jiffies_update.tv64 == 0)
106 		last_jiffies_update = tick_next_period;
107 	period = last_jiffies_update;
108 	write_sequnlock(&jiffies_lock);
109 	return period;
110 }
111 
112 
113 static void tick_sched_do_timer(ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the cpu in charge went
121 	 * into a long sleep. If two cpus happen to assign themself to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 */
125 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126 	    && !tick_nohz_full_cpu(cpu))
127 		tick_do_timer_cpu = cpu;
128 #endif
129 
130 	/* Check, if the jiffies need an update */
131 	if (tick_do_timer_cpu == cpu)
132 		tick_do_update_jiffies64(now);
133 }
134 
135 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 {
137 #ifdef CONFIG_NO_HZ_COMMON
138 	/*
139 	 * When we are idle and the tick is stopped, we have to touch
140 	 * the watchdog as we might not schedule for a really long
141 	 * time. This happens on complete idle SMP systems while
142 	 * waiting on the login prompt. We also increment the "start of
143 	 * idle" jiffy stamp so the idle accounting adjustment we do
144 	 * when we go busy again does not account too much ticks.
145 	 */
146 	if (ts->tick_stopped) {
147 		touch_softlockup_watchdog_sched();
148 		if (is_idle_task(current))
149 			ts->idle_jiffies++;
150 	}
151 #endif
152 	update_process_times(user_mode(regs));
153 	profile_tick(CPU_PROFILING);
154 }
155 #endif
156 
157 #ifdef CONFIG_NO_HZ_FULL
158 cpumask_var_t tick_nohz_full_mask;
159 cpumask_var_t housekeeping_mask;
160 bool tick_nohz_full_running;
161 static unsigned long tick_dep_mask;
162 
163 static void trace_tick_dependency(unsigned long dep)
164 {
165 	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
166 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
167 		return;
168 	}
169 
170 	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
171 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
172 		return;
173 	}
174 
175 	if (dep & TICK_DEP_MASK_SCHED) {
176 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
177 		return;
178 	}
179 
180 	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
181 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
182 }
183 
184 static bool can_stop_full_tick(struct tick_sched *ts)
185 {
186 	WARN_ON_ONCE(!irqs_disabled());
187 
188 	if (tick_dep_mask) {
189 		trace_tick_dependency(tick_dep_mask);
190 		return false;
191 	}
192 
193 	if (ts->tick_dep_mask) {
194 		trace_tick_dependency(ts->tick_dep_mask);
195 		return false;
196 	}
197 
198 	if (current->tick_dep_mask) {
199 		trace_tick_dependency(current->tick_dep_mask);
200 		return false;
201 	}
202 
203 	if (current->signal->tick_dep_mask) {
204 		trace_tick_dependency(current->signal->tick_dep_mask);
205 		return false;
206 	}
207 
208 	if (!sched_can_stop_tick()) {
209 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
210 		return false;
211 	}
212 
213 	if (!posix_cpu_timers_can_stop_tick(current)) {
214 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
215 		return false;
216 	}
217 
218 	if (!perf_event_can_stop_tick()) {
219 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
220 		return false;
221 	}
222 
223 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
224 	/*
225 	 * sched_clock_tick() needs us?
226 	 *
227 	 * TODO: kick full dynticks CPUs when
228 	 * sched_clock_stable is set.
229 	 */
230 	if (!sched_clock_stable()) {
231 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
232 		/*
233 		 * Don't allow the user to think they can get
234 		 * full NO_HZ with this machine.
235 		 */
236 		WARN_ONCE(tick_nohz_full_running,
237 			  "NO_HZ FULL will not work with unstable sched clock");
238 		return false;
239 	}
240 #endif
241 
242 	return true;
243 }
244 
245 static void nohz_full_kick_func(struct irq_work *work)
246 {
247 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
248 }
249 
250 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
251 	.func = nohz_full_kick_func,
252 };
253 
254 /*
255  * Kick this CPU if it's full dynticks in order to force it to
256  * re-evaluate its dependency on the tick and restart it if necessary.
257  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
258  * is NMI safe.
259  */
260 void tick_nohz_full_kick(void)
261 {
262 	if (!tick_nohz_full_cpu(smp_processor_id()))
263 		return;
264 
265 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
266 }
267 
268 /*
269  * Kick the CPU if it's full dynticks in order to force it to
270  * re-evaluate its dependency on the tick and restart it if necessary.
271  */
272 void tick_nohz_full_kick_cpu(int cpu)
273 {
274 	if (!tick_nohz_full_cpu(cpu))
275 		return;
276 
277 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
278 }
279 
280 /*
281  * Kick all full dynticks CPUs in order to force these to re-evaluate
282  * their dependency on the tick and restart it if necessary.
283  */
284 void tick_nohz_full_kick_all(void)
285 {
286 	int cpu;
287 
288 	if (!tick_nohz_full_running)
289 		return;
290 
291 	preempt_disable();
292 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
293 		tick_nohz_full_kick_cpu(cpu);
294 	preempt_enable();
295 }
296 
297 static void tick_nohz_dep_set_all(unsigned long *dep,
298 				  enum tick_dep_bits bit)
299 {
300 	unsigned long prev;
301 
302 	prev = fetch_or(dep, BIT_MASK(bit));
303 	if (!prev)
304 		tick_nohz_full_kick_all();
305 }
306 
307 /*
308  * Set a global tick dependency. Used by perf events that rely on freq and
309  * by unstable clock.
310  */
311 void tick_nohz_dep_set(enum tick_dep_bits bit)
312 {
313 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
314 }
315 
316 void tick_nohz_dep_clear(enum tick_dep_bits bit)
317 {
318 	clear_bit(bit, &tick_dep_mask);
319 }
320 
321 /*
322  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
323  * manage events throttling.
324  */
325 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
326 {
327 	unsigned long prev;
328 	struct tick_sched *ts;
329 
330 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331 
332 	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
333 	if (!prev) {
334 		preempt_disable();
335 		/* Perf needs local kick that is NMI safe */
336 		if (cpu == smp_processor_id()) {
337 			tick_nohz_full_kick();
338 		} else {
339 			/* Remote irq work not NMI-safe */
340 			if (!WARN_ON_ONCE(in_nmi()))
341 				tick_nohz_full_kick_cpu(cpu);
342 		}
343 		preempt_enable();
344 	}
345 }
346 
347 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
348 {
349 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
350 
351 	clear_bit(bit, &ts->tick_dep_mask);
352 }
353 
354 /*
355  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
356  * per task timers.
357  */
358 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
359 {
360 	/*
361 	 * We could optimize this with just kicking the target running the task
362 	 * if that noise matters for nohz full users.
363 	 */
364 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
365 }
366 
367 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
368 {
369 	clear_bit(bit, &tsk->tick_dep_mask);
370 }
371 
372 /*
373  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
374  * per process timers.
375  */
376 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
377 {
378 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
379 }
380 
381 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
382 {
383 	clear_bit(bit, &sig->tick_dep_mask);
384 }
385 
386 /*
387  * Re-evaluate the need for the tick as we switch the current task.
388  * It might need the tick due to per task/process properties:
389  * perf events, posix cpu timers, ...
390  */
391 void __tick_nohz_task_switch(void)
392 {
393 	unsigned long flags;
394 	struct tick_sched *ts;
395 
396 	local_irq_save(flags);
397 
398 	if (!tick_nohz_full_cpu(smp_processor_id()))
399 		goto out;
400 
401 	ts = this_cpu_ptr(&tick_cpu_sched);
402 
403 	if (ts->tick_stopped) {
404 		if (current->tick_dep_mask || current->signal->tick_dep_mask)
405 			tick_nohz_full_kick();
406 	}
407 out:
408 	local_irq_restore(flags);
409 }
410 
411 /* Parse the boot-time nohz CPU list from the kernel parameters. */
412 static int __init tick_nohz_full_setup(char *str)
413 {
414 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
415 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
416 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
417 		free_bootmem_cpumask_var(tick_nohz_full_mask);
418 		return 1;
419 	}
420 	tick_nohz_full_running = true;
421 
422 	return 1;
423 }
424 __setup("nohz_full=", tick_nohz_full_setup);
425 
426 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
427 				       unsigned long action,
428 				       void *hcpu)
429 {
430 	unsigned int cpu = (unsigned long)hcpu;
431 
432 	switch (action & ~CPU_TASKS_FROZEN) {
433 	case CPU_DOWN_PREPARE:
434 		/*
435 		 * The boot CPU handles housekeeping duty (unbound timers,
436 		 * workqueues, timekeeping, ...) on behalf of full dynticks
437 		 * CPUs. It must remain online when nohz full is enabled.
438 		 */
439 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
440 			return NOTIFY_BAD;
441 		break;
442 	}
443 	return NOTIFY_OK;
444 }
445 
446 static int tick_nohz_init_all(void)
447 {
448 	int err = -1;
449 
450 #ifdef CONFIG_NO_HZ_FULL_ALL
451 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
452 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
453 		return err;
454 	}
455 	err = 0;
456 	cpumask_setall(tick_nohz_full_mask);
457 	tick_nohz_full_running = true;
458 #endif
459 	return err;
460 }
461 
462 void __init tick_nohz_init(void)
463 {
464 	int cpu;
465 
466 	if (!tick_nohz_full_running) {
467 		if (tick_nohz_init_all() < 0)
468 			return;
469 	}
470 
471 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
472 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
473 		cpumask_clear(tick_nohz_full_mask);
474 		tick_nohz_full_running = false;
475 		return;
476 	}
477 
478 	/*
479 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
480 	 * locking contexts. But then we need irq work to raise its own
481 	 * interrupts to avoid circular dependency on the tick
482 	 */
483 	if (!arch_irq_work_has_interrupt()) {
484 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
485 			   "support irq work self-IPIs\n");
486 		cpumask_clear(tick_nohz_full_mask);
487 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
488 		tick_nohz_full_running = false;
489 		return;
490 	}
491 
492 	cpu = smp_processor_id();
493 
494 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
495 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
496 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
497 	}
498 
499 	cpumask_andnot(housekeeping_mask,
500 		       cpu_possible_mask, tick_nohz_full_mask);
501 
502 	for_each_cpu(cpu, tick_nohz_full_mask)
503 		context_tracking_cpu_set(cpu);
504 
505 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
506 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
507 		cpumask_pr_args(tick_nohz_full_mask));
508 
509 	/*
510 	 * We need at least one CPU to handle housekeeping work such
511 	 * as timekeeping, unbound timers, workqueues, ...
512 	 */
513 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
514 }
515 #endif
516 
517 /*
518  * NOHZ - aka dynamic tick functionality
519  */
520 #ifdef CONFIG_NO_HZ_COMMON
521 /*
522  * NO HZ enabled ?
523  */
524 int tick_nohz_enabled __read_mostly = 1;
525 unsigned long tick_nohz_active  __read_mostly;
526 /*
527  * Enable / Disable tickless mode
528  */
529 static int __init setup_tick_nohz(char *str)
530 {
531 	if (!strcmp(str, "off"))
532 		tick_nohz_enabled = 0;
533 	else if (!strcmp(str, "on"))
534 		tick_nohz_enabled = 1;
535 	else
536 		return 0;
537 	return 1;
538 }
539 
540 __setup("nohz=", setup_tick_nohz);
541 
542 int tick_nohz_tick_stopped(void)
543 {
544 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
545 }
546 
547 /**
548  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
549  *
550  * Called from interrupt entry when the CPU was idle
551  *
552  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
553  * must be updated. Otherwise an interrupt handler could use a stale jiffy
554  * value. We do this unconditionally on any cpu, as we don't know whether the
555  * cpu, which has the update task assigned is in a long sleep.
556  */
557 static void tick_nohz_update_jiffies(ktime_t now)
558 {
559 	unsigned long flags;
560 
561 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
562 
563 	local_irq_save(flags);
564 	tick_do_update_jiffies64(now);
565 	local_irq_restore(flags);
566 
567 	touch_softlockup_watchdog_sched();
568 }
569 
570 /*
571  * Updates the per cpu time idle statistics counters
572  */
573 static void
574 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
575 {
576 	ktime_t delta;
577 
578 	if (ts->idle_active) {
579 		delta = ktime_sub(now, ts->idle_entrytime);
580 		if (nr_iowait_cpu(cpu) > 0)
581 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
582 		else
583 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
584 		ts->idle_entrytime = now;
585 	}
586 
587 	if (last_update_time)
588 		*last_update_time = ktime_to_us(now);
589 
590 }
591 
592 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
593 {
594 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
595 	ts->idle_active = 0;
596 
597 	sched_clock_idle_wakeup_event(0);
598 }
599 
600 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
601 {
602 	ktime_t now = ktime_get();
603 
604 	ts->idle_entrytime = now;
605 	ts->idle_active = 1;
606 	sched_clock_idle_sleep_event();
607 	return now;
608 }
609 
610 /**
611  * get_cpu_idle_time_us - get the total idle time of a cpu
612  * @cpu: CPU number to query
613  * @last_update_time: variable to store update time in. Do not update
614  * counters if NULL.
615  *
616  * Return the cummulative idle time (since boot) for a given
617  * CPU, in microseconds.
618  *
619  * This time is measured via accounting rather than sampling,
620  * and is as accurate as ktime_get() is.
621  *
622  * This function returns -1 if NOHZ is not enabled.
623  */
624 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
625 {
626 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627 	ktime_t now, idle;
628 
629 	if (!tick_nohz_active)
630 		return -1;
631 
632 	now = ktime_get();
633 	if (last_update_time) {
634 		update_ts_time_stats(cpu, ts, now, last_update_time);
635 		idle = ts->idle_sleeptime;
636 	} else {
637 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
638 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
639 
640 			idle = ktime_add(ts->idle_sleeptime, delta);
641 		} else {
642 			idle = ts->idle_sleeptime;
643 		}
644 	}
645 
646 	return ktime_to_us(idle);
647 
648 }
649 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
650 
651 /**
652  * get_cpu_iowait_time_us - get the total iowait time of a cpu
653  * @cpu: CPU number to query
654  * @last_update_time: variable to store update time in. Do not update
655  * counters if NULL.
656  *
657  * Return the cummulative iowait time (since boot) for a given
658  * CPU, in microseconds.
659  *
660  * This time is measured via accounting rather than sampling,
661  * and is as accurate as ktime_get() is.
662  *
663  * This function returns -1 if NOHZ is not enabled.
664  */
665 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
666 {
667 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
668 	ktime_t now, iowait;
669 
670 	if (!tick_nohz_active)
671 		return -1;
672 
673 	now = ktime_get();
674 	if (last_update_time) {
675 		update_ts_time_stats(cpu, ts, now, last_update_time);
676 		iowait = ts->iowait_sleeptime;
677 	} else {
678 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
679 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
680 
681 			iowait = ktime_add(ts->iowait_sleeptime, delta);
682 		} else {
683 			iowait = ts->iowait_sleeptime;
684 		}
685 	}
686 
687 	return ktime_to_us(iowait);
688 }
689 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
690 
691 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
692 {
693 	hrtimer_cancel(&ts->sched_timer);
694 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
695 
696 	/* Forward the time to expire in the future */
697 	hrtimer_forward(&ts->sched_timer, now, tick_period);
698 
699 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
700 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
701 	else
702 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
703 }
704 
705 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
706 					 ktime_t now, int cpu)
707 {
708 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
709 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
710 	unsigned long seq, basejiff;
711 	ktime_t	tick;
712 
713 	/* Read jiffies and the time when jiffies were updated last */
714 	do {
715 		seq = read_seqbegin(&jiffies_lock);
716 		basemono = last_jiffies_update.tv64;
717 		basejiff = jiffies;
718 	} while (read_seqretry(&jiffies_lock, seq));
719 	ts->last_jiffies = basejiff;
720 
721 	if (rcu_needs_cpu(basemono, &next_rcu) ||
722 	    arch_needs_cpu() || irq_work_needs_cpu()) {
723 		next_tick = basemono + TICK_NSEC;
724 	} else {
725 		/*
726 		 * Get the next pending timer. If high resolution
727 		 * timers are enabled this only takes the timer wheel
728 		 * timers into account. If high resolution timers are
729 		 * disabled this also looks at the next expiring
730 		 * hrtimer.
731 		 */
732 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
733 		ts->next_timer = next_tmr;
734 		/* Take the next rcu event into account */
735 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
736 	}
737 
738 	/*
739 	 * If the tick is due in the next period, keep it ticking or
740 	 * force prod the timer.
741 	 */
742 	delta = next_tick - basemono;
743 	if (delta <= (u64)TICK_NSEC) {
744 		tick.tv64 = 0;
745 		/*
746 		 * We've not stopped the tick yet, and there's a timer in the
747 		 * next period, so no point in stopping it either, bail.
748 		 */
749 		if (!ts->tick_stopped)
750 			goto out;
751 
752 		/*
753 		 * If, OTOH, we did stop it, but there's a pending (expired)
754 		 * timer reprogram the timer hardware to fire now.
755 		 *
756 		 * We will not restart the tick proper, just prod the timer
757 		 * hardware into firing an interrupt to process the pending
758 		 * timers. Just like tick_irq_exit() will not restart the tick
759 		 * for 'normal' interrupts.
760 		 *
761 		 * Only once we exit the idle loop will we re-enable the tick,
762 		 * see tick_nohz_idle_exit().
763 		 */
764 		if (delta == 0) {
765 			tick_nohz_restart(ts, now);
766 			goto out;
767 		}
768 	}
769 
770 	/*
771 	 * If this cpu is the one which updates jiffies, then give up
772 	 * the assignment and let it be taken by the cpu which runs
773 	 * the tick timer next, which might be this cpu as well. If we
774 	 * don't drop this here the jiffies might be stale and
775 	 * do_timer() never invoked. Keep track of the fact that it
776 	 * was the one which had the do_timer() duty last. If this cpu
777 	 * is the one which had the do_timer() duty last, we limit the
778 	 * sleep time to the timekeeping max_deferement value.
779 	 * Otherwise we can sleep as long as we want.
780 	 */
781 	delta = timekeeping_max_deferment();
782 	if (cpu == tick_do_timer_cpu) {
783 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
784 		ts->do_timer_last = 1;
785 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
786 		delta = KTIME_MAX;
787 		ts->do_timer_last = 0;
788 	} else if (!ts->do_timer_last) {
789 		delta = KTIME_MAX;
790 	}
791 
792 #ifdef CONFIG_NO_HZ_FULL
793 	/* Limit the tick delta to the maximum scheduler deferment */
794 	if (!ts->inidle)
795 		delta = min(delta, scheduler_tick_max_deferment());
796 #endif
797 
798 	/* Calculate the next expiry time */
799 	if (delta < (KTIME_MAX - basemono))
800 		expires = basemono + delta;
801 	else
802 		expires = KTIME_MAX;
803 
804 	expires = min_t(u64, expires, next_tick);
805 	tick.tv64 = expires;
806 
807 	/* Skip reprogram of event if its not changed */
808 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
809 		goto out;
810 
811 	/*
812 	 * nohz_stop_sched_tick can be called several times before
813 	 * the nohz_restart_sched_tick is called. This happens when
814 	 * interrupts arrive which do not cause a reschedule. In the
815 	 * first call we save the current tick time, so we can restart
816 	 * the scheduler tick in nohz_restart_sched_tick.
817 	 */
818 	if (!ts->tick_stopped) {
819 		nohz_balance_enter_idle(cpu);
820 		calc_load_enter_idle();
821 
822 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
823 		ts->tick_stopped = 1;
824 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
825 	}
826 
827 	/*
828 	 * If the expiration time == KTIME_MAX, then we simply stop
829 	 * the tick timer.
830 	 */
831 	if (unlikely(expires == KTIME_MAX)) {
832 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
833 			hrtimer_cancel(&ts->sched_timer);
834 		goto out;
835 	}
836 
837 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
838 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
839 	else
840 		tick_program_event(tick, 1);
841 out:
842 	/* Update the estimated sleep length */
843 	ts->sleep_length = ktime_sub(dev->next_event, now);
844 	return tick;
845 }
846 
847 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
848 {
849 	/* Update jiffies first */
850 	tick_do_update_jiffies64(now);
851 	update_cpu_load_nohz(active);
852 
853 	calc_load_exit_idle();
854 	touch_softlockup_watchdog_sched();
855 	/*
856 	 * Cancel the scheduled timer and restore the tick
857 	 */
858 	ts->tick_stopped  = 0;
859 	ts->idle_exittime = now;
860 
861 	tick_nohz_restart(ts, now);
862 }
863 
864 static void tick_nohz_full_update_tick(struct tick_sched *ts)
865 {
866 #ifdef CONFIG_NO_HZ_FULL
867 	int cpu = smp_processor_id();
868 
869 	if (!tick_nohz_full_cpu(cpu))
870 		return;
871 
872 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
873 		return;
874 
875 	if (can_stop_full_tick(ts))
876 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
877 	else if (ts->tick_stopped)
878 		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
879 #endif
880 }
881 
882 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
883 {
884 	/*
885 	 * If this cpu is offline and it is the one which updates
886 	 * jiffies, then give up the assignment and let it be taken by
887 	 * the cpu which runs the tick timer next. If we don't drop
888 	 * this here the jiffies might be stale and do_timer() never
889 	 * invoked.
890 	 */
891 	if (unlikely(!cpu_online(cpu))) {
892 		if (cpu == tick_do_timer_cpu)
893 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
894 		return false;
895 	}
896 
897 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
898 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
899 		return false;
900 	}
901 
902 	if (need_resched())
903 		return false;
904 
905 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
906 		static int ratelimit;
907 
908 		if (ratelimit < 10 &&
909 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
910 			pr_warn("NOHZ: local_softirq_pending %02x\n",
911 				(unsigned int) local_softirq_pending());
912 			ratelimit++;
913 		}
914 		return false;
915 	}
916 
917 	if (tick_nohz_full_enabled()) {
918 		/*
919 		 * Keep the tick alive to guarantee timekeeping progression
920 		 * if there are full dynticks CPUs around
921 		 */
922 		if (tick_do_timer_cpu == cpu)
923 			return false;
924 		/*
925 		 * Boot safety: make sure the timekeeping duty has been
926 		 * assigned before entering dyntick-idle mode,
927 		 */
928 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
929 			return false;
930 	}
931 
932 	return true;
933 }
934 
935 static void __tick_nohz_idle_enter(struct tick_sched *ts)
936 {
937 	ktime_t now, expires;
938 	int cpu = smp_processor_id();
939 
940 	now = tick_nohz_start_idle(ts);
941 
942 	if (can_stop_idle_tick(cpu, ts)) {
943 		int was_stopped = ts->tick_stopped;
944 
945 		ts->idle_calls++;
946 
947 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
948 		if (expires.tv64 > 0LL) {
949 			ts->idle_sleeps++;
950 			ts->idle_expires = expires;
951 		}
952 
953 		if (!was_stopped && ts->tick_stopped)
954 			ts->idle_jiffies = ts->last_jiffies;
955 	}
956 }
957 
958 /**
959  * tick_nohz_idle_enter - stop the idle tick from the idle task
960  *
961  * When the next event is more than a tick into the future, stop the idle tick
962  * Called when we start the idle loop.
963  *
964  * The arch is responsible of calling:
965  *
966  * - rcu_idle_enter() after its last use of RCU before the CPU is put
967  *  to sleep.
968  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
969  */
970 void tick_nohz_idle_enter(void)
971 {
972 	struct tick_sched *ts;
973 
974 	WARN_ON_ONCE(irqs_disabled());
975 
976 	/*
977  	 * Update the idle state in the scheduler domain hierarchy
978  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
979  	 * State will be updated to busy during the first busy tick after
980  	 * exiting idle.
981  	 */
982 	set_cpu_sd_state_idle();
983 
984 	local_irq_disable();
985 
986 	ts = this_cpu_ptr(&tick_cpu_sched);
987 	ts->inidle = 1;
988 	__tick_nohz_idle_enter(ts);
989 
990 	local_irq_enable();
991 }
992 
993 /**
994  * tick_nohz_irq_exit - update next tick event from interrupt exit
995  *
996  * When an interrupt fires while we are idle and it doesn't cause
997  * a reschedule, it may still add, modify or delete a timer, enqueue
998  * an RCU callback, etc...
999  * So we need to re-calculate and reprogram the next tick event.
1000  */
1001 void tick_nohz_irq_exit(void)
1002 {
1003 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004 
1005 	if (ts->inidle)
1006 		__tick_nohz_idle_enter(ts);
1007 	else
1008 		tick_nohz_full_update_tick(ts);
1009 }
1010 
1011 /**
1012  * tick_nohz_get_sleep_length - return the length of the current sleep
1013  *
1014  * Called from power state control code with interrupts disabled
1015  */
1016 ktime_t tick_nohz_get_sleep_length(void)
1017 {
1018 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1019 
1020 	return ts->sleep_length;
1021 }
1022 
1023 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1024 {
1025 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1026 	unsigned long ticks;
1027 
1028 	if (vtime_accounting_cpu_enabled())
1029 		return;
1030 	/*
1031 	 * We stopped the tick in idle. Update process times would miss the
1032 	 * time we slept as update_process_times does only a 1 tick
1033 	 * accounting. Enforce that this is accounted to idle !
1034 	 */
1035 	ticks = jiffies - ts->idle_jiffies;
1036 	/*
1037 	 * We might be one off. Do not randomly account a huge number of ticks!
1038 	 */
1039 	if (ticks && ticks < LONG_MAX)
1040 		account_idle_ticks(ticks);
1041 #endif
1042 }
1043 
1044 /**
1045  * tick_nohz_idle_exit - restart the idle tick from the idle task
1046  *
1047  * Restart the idle tick when the CPU is woken up from idle
1048  * This also exit the RCU extended quiescent state. The CPU
1049  * can use RCU again after this function is called.
1050  */
1051 void tick_nohz_idle_exit(void)
1052 {
1053 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1054 	ktime_t now;
1055 
1056 	local_irq_disable();
1057 
1058 	WARN_ON_ONCE(!ts->inidle);
1059 
1060 	ts->inidle = 0;
1061 
1062 	if (ts->idle_active || ts->tick_stopped)
1063 		now = ktime_get();
1064 
1065 	if (ts->idle_active)
1066 		tick_nohz_stop_idle(ts, now);
1067 
1068 	if (ts->tick_stopped) {
1069 		tick_nohz_restart_sched_tick(ts, now, 0);
1070 		tick_nohz_account_idle_ticks(ts);
1071 	}
1072 
1073 	local_irq_enable();
1074 }
1075 
1076 /*
1077  * The nohz low res interrupt handler
1078  */
1079 static void tick_nohz_handler(struct clock_event_device *dev)
1080 {
1081 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1082 	struct pt_regs *regs = get_irq_regs();
1083 	ktime_t now = ktime_get();
1084 
1085 	dev->next_event.tv64 = KTIME_MAX;
1086 
1087 	tick_sched_do_timer(now);
1088 	tick_sched_handle(ts, regs);
1089 
1090 	/* No need to reprogram if we are running tickless  */
1091 	if (unlikely(ts->tick_stopped))
1092 		return;
1093 
1094 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1095 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1096 }
1097 
1098 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1099 {
1100 	if (!tick_nohz_enabled)
1101 		return;
1102 	ts->nohz_mode = mode;
1103 	/* One update is enough */
1104 	if (!test_and_set_bit(0, &tick_nohz_active))
1105 		timers_update_migration(true);
1106 }
1107 
1108 /**
1109  * tick_nohz_switch_to_nohz - switch to nohz mode
1110  */
1111 static void tick_nohz_switch_to_nohz(void)
1112 {
1113 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1114 	ktime_t next;
1115 
1116 	if (!tick_nohz_enabled)
1117 		return;
1118 
1119 	if (tick_switch_to_oneshot(tick_nohz_handler))
1120 		return;
1121 
1122 	/*
1123 	 * Recycle the hrtimer in ts, so we can share the
1124 	 * hrtimer_forward with the highres code.
1125 	 */
1126 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1127 	/* Get the next period */
1128 	next = tick_init_jiffy_update();
1129 
1130 	hrtimer_set_expires(&ts->sched_timer, next);
1131 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1132 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1133 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1134 }
1135 
1136 /*
1137  * When NOHZ is enabled and the tick is stopped, we need to kick the
1138  * tick timer from irq_enter() so that the jiffies update is kept
1139  * alive during long running softirqs. That's ugly as hell, but
1140  * correctness is key even if we need to fix the offending softirq in
1141  * the first place.
1142  *
1143  * Note, this is different to tick_nohz_restart. We just kick the
1144  * timer and do not touch the other magic bits which need to be done
1145  * when idle is left.
1146  */
1147 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1148 {
1149 #if 0
1150 	/* Switch back to 2.6.27 behaviour */
1151 	ktime_t delta;
1152 
1153 	/*
1154 	 * Do not touch the tick device, when the next expiry is either
1155 	 * already reached or less/equal than the tick period.
1156 	 */
1157 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1158 	if (delta.tv64 <= tick_period.tv64)
1159 		return;
1160 
1161 	tick_nohz_restart(ts, now);
1162 #endif
1163 }
1164 
1165 static inline void tick_nohz_irq_enter(void)
1166 {
1167 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168 	ktime_t now;
1169 
1170 	if (!ts->idle_active && !ts->tick_stopped)
1171 		return;
1172 	now = ktime_get();
1173 	if (ts->idle_active)
1174 		tick_nohz_stop_idle(ts, now);
1175 	if (ts->tick_stopped) {
1176 		tick_nohz_update_jiffies(now);
1177 		tick_nohz_kick_tick(ts, now);
1178 	}
1179 }
1180 
1181 #else
1182 
1183 static inline void tick_nohz_switch_to_nohz(void) { }
1184 static inline void tick_nohz_irq_enter(void) { }
1185 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1186 
1187 #endif /* CONFIG_NO_HZ_COMMON */
1188 
1189 /*
1190  * Called from irq_enter to notify about the possible interruption of idle()
1191  */
1192 void tick_irq_enter(void)
1193 {
1194 	tick_check_oneshot_broadcast_this_cpu();
1195 	tick_nohz_irq_enter();
1196 }
1197 
1198 /*
1199  * High resolution timer specific code
1200  */
1201 #ifdef CONFIG_HIGH_RES_TIMERS
1202 /*
1203  * We rearm the timer until we get disabled by the idle code.
1204  * Called with interrupts disabled.
1205  */
1206 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1207 {
1208 	struct tick_sched *ts =
1209 		container_of(timer, struct tick_sched, sched_timer);
1210 	struct pt_regs *regs = get_irq_regs();
1211 	ktime_t now = ktime_get();
1212 
1213 	tick_sched_do_timer(now);
1214 
1215 	/*
1216 	 * Do not call, when we are not in irq context and have
1217 	 * no valid regs pointer
1218 	 */
1219 	if (regs)
1220 		tick_sched_handle(ts, regs);
1221 
1222 	/* No need to reprogram if we are in idle or full dynticks mode */
1223 	if (unlikely(ts->tick_stopped))
1224 		return HRTIMER_NORESTART;
1225 
1226 	hrtimer_forward(timer, now, tick_period);
1227 
1228 	return HRTIMER_RESTART;
1229 }
1230 
1231 static int sched_skew_tick;
1232 
1233 static int __init skew_tick(char *str)
1234 {
1235 	get_option(&str, &sched_skew_tick);
1236 
1237 	return 0;
1238 }
1239 early_param("skew_tick", skew_tick);
1240 
1241 /**
1242  * tick_setup_sched_timer - setup the tick emulation timer
1243  */
1244 void tick_setup_sched_timer(void)
1245 {
1246 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1247 	ktime_t now = ktime_get();
1248 
1249 	/*
1250 	 * Emulate tick processing via per-CPU hrtimers:
1251 	 */
1252 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1253 	ts->sched_timer.function = tick_sched_timer;
1254 
1255 	/* Get the next period (per cpu) */
1256 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1257 
1258 	/* Offset the tick to avert jiffies_lock contention. */
1259 	if (sched_skew_tick) {
1260 		u64 offset = ktime_to_ns(tick_period) >> 1;
1261 		do_div(offset, num_possible_cpus());
1262 		offset *= smp_processor_id();
1263 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1264 	}
1265 
1266 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1267 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1268 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1269 }
1270 #endif /* HIGH_RES_TIMERS */
1271 
1272 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1273 void tick_cancel_sched_timer(int cpu)
1274 {
1275 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1276 
1277 # ifdef CONFIG_HIGH_RES_TIMERS
1278 	if (ts->sched_timer.base)
1279 		hrtimer_cancel(&ts->sched_timer);
1280 # endif
1281 
1282 	memset(ts, 0, sizeof(*ts));
1283 }
1284 #endif
1285 
1286 /**
1287  * Async notification about clocksource changes
1288  */
1289 void tick_clock_notify(void)
1290 {
1291 	int cpu;
1292 
1293 	for_each_possible_cpu(cpu)
1294 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1295 }
1296 
1297 /*
1298  * Async notification about clock event changes
1299  */
1300 void tick_oneshot_notify(void)
1301 {
1302 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303 
1304 	set_bit(0, &ts->check_clocks);
1305 }
1306 
1307 /**
1308  * Check, if a change happened, which makes oneshot possible.
1309  *
1310  * Called cyclic from the hrtimer softirq (driven by the timer
1311  * softirq) allow_nohz signals, that we can switch into low-res nohz
1312  * mode, because high resolution timers are disabled (either compile
1313  * or runtime). Called with interrupts disabled.
1314  */
1315 int tick_check_oneshot_change(int allow_nohz)
1316 {
1317 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1318 
1319 	if (!test_and_clear_bit(0, &ts->check_clocks))
1320 		return 0;
1321 
1322 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1323 		return 0;
1324 
1325 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1326 		return 0;
1327 
1328 	if (!allow_nohz)
1329 		return 1;
1330 
1331 	tick_nohz_switch_to_nohz();
1332 	return 0;
1333 }
1334