xref: /openbmc/linux/kernel/time/tick-sched.c (revision e5d4d175)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 * The READ_ONCE() pairs with two updates done later in this function.
62 	 */
63 	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 	if (delta < tick_period)
65 		return;
66 
67 	/* Reevaluate with jiffies_lock held */
68 	raw_spin_lock(&jiffies_lock);
69 	write_seqcount_begin(&jiffies_seq);
70 
71 	delta = ktime_sub(now, last_jiffies_update);
72 	if (delta >= tick_period) {
73 
74 		delta = ktime_sub(delta, tick_period);
75 		/* Pairs with the lockless read in this function. */
76 		WRITE_ONCE(last_jiffies_update,
77 			   ktime_add(last_jiffies_update, tick_period));
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			/* Pairs with the lockless read in this function. */
86 			WRITE_ONCE(last_jiffies_update,
87 				   ktime_add_ns(last_jiffies_update,
88 						incr * ticks));
89 		}
90 		do_timer(++ticks);
91 
92 		/* Keep the tick_next_period variable up to date */
93 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
94 	} else {
95 		write_seqcount_end(&jiffies_seq);
96 		raw_spin_unlock(&jiffies_lock);
97 		return;
98 	}
99 	write_seqcount_end(&jiffies_seq);
100 	raw_spin_unlock(&jiffies_lock);
101 	update_wall_time();
102 }
103 
104 /*
105  * Initialize and return retrieve the jiffies update.
106  */
107 static ktime_t tick_init_jiffy_update(void)
108 {
109 	ktime_t period;
110 
111 	raw_spin_lock(&jiffies_lock);
112 	write_seqcount_begin(&jiffies_seq);
113 	/* Did we start the jiffies update yet ? */
114 	if (last_jiffies_update == 0)
115 		last_jiffies_update = tick_next_period;
116 	period = last_jiffies_update;
117 	write_seqcount_end(&jiffies_seq);
118 	raw_spin_unlock(&jiffies_lock);
119 	return period;
120 }
121 
122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
123 {
124 	int cpu = smp_processor_id();
125 
126 #ifdef CONFIG_NO_HZ_COMMON
127 	/*
128 	 * Check if the do_timer duty was dropped. We don't care about
129 	 * concurrency: This happens only when the CPU in charge went
130 	 * into a long sleep. If two CPUs happen to assign themselves to
131 	 * this duty, then the jiffies update is still serialized by
132 	 * jiffies_lock.
133 	 *
134 	 * If nohz_full is enabled, this should not happen because the
135 	 * tick_do_timer_cpu never relinquishes.
136 	 */
137 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
138 #ifdef CONFIG_NO_HZ_FULL
139 		WARN_ON(tick_nohz_full_running);
140 #endif
141 		tick_do_timer_cpu = cpu;
142 	}
143 #endif
144 
145 	/* Check, if the jiffies need an update */
146 	if (tick_do_timer_cpu == cpu)
147 		tick_do_update_jiffies64(now);
148 
149 	if (ts->inidle)
150 		ts->got_idle_tick = 1;
151 }
152 
153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
154 {
155 #ifdef CONFIG_NO_HZ_COMMON
156 	/*
157 	 * When we are idle and the tick is stopped, we have to touch
158 	 * the watchdog as we might not schedule for a really long
159 	 * time. This happens on complete idle SMP systems while
160 	 * waiting on the login prompt. We also increment the "start of
161 	 * idle" jiffy stamp so the idle accounting adjustment we do
162 	 * when we go busy again does not account too much ticks.
163 	 */
164 	if (ts->tick_stopped) {
165 		touch_softlockup_watchdog_sched();
166 		if (is_idle_task(current))
167 			ts->idle_jiffies++;
168 		/*
169 		 * In case the current tick fired too early past its expected
170 		 * expiration, make sure we don't bypass the next clock reprogramming
171 		 * to the same deadline.
172 		 */
173 		ts->next_tick = 0;
174 	}
175 #endif
176 	update_process_times(user_mode(regs));
177 	profile_tick(CPU_PROFILING);
178 }
179 #endif
180 
181 #ifdef CONFIG_NO_HZ_FULL
182 cpumask_var_t tick_nohz_full_mask;
183 bool tick_nohz_full_running;
184 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
185 static atomic_t tick_dep_mask;
186 
187 static bool check_tick_dependency(atomic_t *dep)
188 {
189 	int val = atomic_read(dep);
190 
191 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
192 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
193 		return true;
194 	}
195 
196 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
197 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
198 		return true;
199 	}
200 
201 	if (val & TICK_DEP_MASK_SCHED) {
202 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
203 		return true;
204 	}
205 
206 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
207 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
208 		return true;
209 	}
210 
211 	if (val & TICK_DEP_MASK_RCU) {
212 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
213 		return true;
214 	}
215 
216 	return false;
217 }
218 
219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
220 {
221 	lockdep_assert_irqs_disabled();
222 
223 	if (unlikely(!cpu_online(cpu)))
224 		return false;
225 
226 	if (check_tick_dependency(&tick_dep_mask))
227 		return false;
228 
229 	if (check_tick_dependency(&ts->tick_dep_mask))
230 		return false;
231 
232 	if (check_tick_dependency(&current->tick_dep_mask))
233 		return false;
234 
235 	if (check_tick_dependency(&current->signal->tick_dep_mask))
236 		return false;
237 
238 	return true;
239 }
240 
241 static void nohz_full_kick_func(struct irq_work *work)
242 {
243 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
244 }
245 
246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
247 	.func = nohz_full_kick_func,
248 };
249 
250 /*
251  * Kick this CPU if it's full dynticks in order to force it to
252  * re-evaluate its dependency on the tick and restart it if necessary.
253  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
254  * is NMI safe.
255  */
256 static void tick_nohz_full_kick(void)
257 {
258 	if (!tick_nohz_full_cpu(smp_processor_id()))
259 		return;
260 
261 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
262 }
263 
264 /*
265  * Kick the CPU if it's full dynticks in order to force it to
266  * re-evaluate its dependency on the tick and restart it if necessary.
267  */
268 void tick_nohz_full_kick_cpu(int cpu)
269 {
270 	if (!tick_nohz_full_cpu(cpu))
271 		return;
272 
273 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
274 }
275 
276 /*
277  * Kick all full dynticks CPUs in order to force these to re-evaluate
278  * their dependency on the tick and restart it if necessary.
279  */
280 static void tick_nohz_full_kick_all(void)
281 {
282 	int cpu;
283 
284 	if (!tick_nohz_full_running)
285 		return;
286 
287 	preempt_disable();
288 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
289 		tick_nohz_full_kick_cpu(cpu);
290 	preempt_enable();
291 }
292 
293 static void tick_nohz_dep_set_all(atomic_t *dep,
294 				  enum tick_dep_bits bit)
295 {
296 	int prev;
297 
298 	prev = atomic_fetch_or(BIT(bit), dep);
299 	if (!prev)
300 		tick_nohz_full_kick_all();
301 }
302 
303 /*
304  * Set a global tick dependency. Used by perf events that rely on freq and
305  * by unstable clock.
306  */
307 void tick_nohz_dep_set(enum tick_dep_bits bit)
308 {
309 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
310 }
311 
312 void tick_nohz_dep_clear(enum tick_dep_bits bit)
313 {
314 	atomic_andnot(BIT(bit), &tick_dep_mask);
315 }
316 
317 /*
318  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
319  * manage events throttling.
320  */
321 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
322 {
323 	int prev;
324 	struct tick_sched *ts;
325 
326 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
327 
328 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
329 	if (!prev) {
330 		preempt_disable();
331 		/* Perf needs local kick that is NMI safe */
332 		if (cpu == smp_processor_id()) {
333 			tick_nohz_full_kick();
334 		} else {
335 			/* Remote irq work not NMI-safe */
336 			if (!WARN_ON_ONCE(in_nmi()))
337 				tick_nohz_full_kick_cpu(cpu);
338 		}
339 		preempt_enable();
340 	}
341 }
342 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
343 
344 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
345 {
346 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
347 
348 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
349 }
350 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
351 
352 /*
353  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
354  * per task timers.
355  */
356 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
357 {
358 	/*
359 	 * We could optimize this with just kicking the target running the task
360 	 * if that noise matters for nohz full users.
361 	 */
362 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
363 }
364 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
365 
366 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
367 {
368 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
369 }
370 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
371 
372 /*
373  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
374  * per process timers.
375  */
376 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
377 {
378 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
379 }
380 
381 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
382 {
383 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
384 }
385 
386 /*
387  * Re-evaluate the need for the tick as we switch the current task.
388  * It might need the tick due to per task/process properties:
389  * perf events, posix CPU timers, ...
390  */
391 void __tick_nohz_task_switch(void)
392 {
393 	unsigned long flags;
394 	struct tick_sched *ts;
395 
396 	local_irq_save(flags);
397 
398 	if (!tick_nohz_full_cpu(smp_processor_id()))
399 		goto out;
400 
401 	ts = this_cpu_ptr(&tick_cpu_sched);
402 
403 	if (ts->tick_stopped) {
404 		if (atomic_read(&current->tick_dep_mask) ||
405 		    atomic_read(&current->signal->tick_dep_mask))
406 			tick_nohz_full_kick();
407 	}
408 out:
409 	local_irq_restore(flags);
410 }
411 
412 /* Get the boot-time nohz CPU list from the kernel parameters. */
413 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
414 {
415 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
416 	cpumask_copy(tick_nohz_full_mask, cpumask);
417 	tick_nohz_full_running = true;
418 }
419 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
420 
421 static int tick_nohz_cpu_down(unsigned int cpu)
422 {
423 	/*
424 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
425 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
426 	 * CPUs. It must remain online when nohz full is enabled.
427 	 */
428 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
429 		return -EBUSY;
430 	return 0;
431 }
432 
433 void __init tick_nohz_init(void)
434 {
435 	int cpu, ret;
436 
437 	if (!tick_nohz_full_running)
438 		return;
439 
440 	/*
441 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
442 	 * locking contexts. But then we need irq work to raise its own
443 	 * interrupts to avoid circular dependency on the tick
444 	 */
445 	if (!arch_irq_work_has_interrupt()) {
446 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
447 		cpumask_clear(tick_nohz_full_mask);
448 		tick_nohz_full_running = false;
449 		return;
450 	}
451 
452 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
453 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
454 		cpu = smp_processor_id();
455 
456 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
457 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
458 				"for timekeeping\n", cpu);
459 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
460 		}
461 	}
462 
463 	for_each_cpu(cpu, tick_nohz_full_mask)
464 		context_tracking_cpu_set(cpu);
465 
466 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
467 					"kernel/nohz:predown", NULL,
468 					tick_nohz_cpu_down);
469 	WARN_ON(ret < 0);
470 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 		cpumask_pr_args(tick_nohz_full_mask));
472 }
473 #endif
474 
475 /*
476  * NOHZ - aka dynamic tick functionality
477  */
478 #ifdef CONFIG_NO_HZ_COMMON
479 /*
480  * NO HZ enabled ?
481  */
482 bool tick_nohz_enabled __read_mostly  = true;
483 unsigned long tick_nohz_active  __read_mostly;
484 /*
485  * Enable / Disable tickless mode
486  */
487 static int __init setup_tick_nohz(char *str)
488 {
489 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
490 }
491 
492 __setup("nohz=", setup_tick_nohz);
493 
494 bool tick_nohz_tick_stopped(void)
495 {
496 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
497 
498 	return ts->tick_stopped;
499 }
500 
501 bool tick_nohz_tick_stopped_cpu(int cpu)
502 {
503 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
504 
505 	return ts->tick_stopped;
506 }
507 
508 /**
509  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
510  *
511  * Called from interrupt entry when the CPU was idle
512  *
513  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
514  * must be updated. Otherwise an interrupt handler could use a stale jiffy
515  * value. We do this unconditionally on any CPU, as we don't know whether the
516  * CPU, which has the update task assigned is in a long sleep.
517  */
518 static void tick_nohz_update_jiffies(ktime_t now)
519 {
520 	unsigned long flags;
521 
522 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
523 
524 	local_irq_save(flags);
525 	tick_do_update_jiffies64(now);
526 	local_irq_restore(flags);
527 
528 	touch_softlockup_watchdog_sched();
529 }
530 
531 /*
532  * Updates the per-CPU time idle statistics counters
533  */
534 static void
535 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
536 {
537 	ktime_t delta;
538 
539 	if (ts->idle_active) {
540 		delta = ktime_sub(now, ts->idle_entrytime);
541 		if (nr_iowait_cpu(cpu) > 0)
542 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
543 		else
544 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
545 		ts->idle_entrytime = now;
546 	}
547 
548 	if (last_update_time)
549 		*last_update_time = ktime_to_us(now);
550 
551 }
552 
553 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
554 {
555 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
556 	ts->idle_active = 0;
557 
558 	sched_clock_idle_wakeup_event();
559 }
560 
561 static void tick_nohz_start_idle(struct tick_sched *ts)
562 {
563 	ts->idle_entrytime = ktime_get();
564 	ts->idle_active = 1;
565 	sched_clock_idle_sleep_event();
566 }
567 
568 /**
569  * get_cpu_idle_time_us - get the total idle time of a CPU
570  * @cpu: CPU number to query
571  * @last_update_time: variable to store update time in. Do not update
572  * counters if NULL.
573  *
574  * Return the cumulative idle time (since boot) for a given
575  * CPU, in microseconds.
576  *
577  * This time is measured via accounting rather than sampling,
578  * and is as accurate as ktime_get() is.
579  *
580  * This function returns -1 if NOHZ is not enabled.
581  */
582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
583 {
584 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585 	ktime_t now, idle;
586 
587 	if (!tick_nohz_active)
588 		return -1;
589 
590 	now = ktime_get();
591 	if (last_update_time) {
592 		update_ts_time_stats(cpu, ts, now, last_update_time);
593 		idle = ts->idle_sleeptime;
594 	} else {
595 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
597 
598 			idle = ktime_add(ts->idle_sleeptime, delta);
599 		} else {
600 			idle = ts->idle_sleeptime;
601 		}
602 	}
603 
604 	return ktime_to_us(idle);
605 
606 }
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608 
609 /**
610  * get_cpu_iowait_time_us - get the total iowait time of a CPU
611  * @cpu: CPU number to query
612  * @last_update_time: variable to store update time in. Do not update
613  * counters if NULL.
614  *
615  * Return the cumulative iowait time (since boot) for a given
616  * CPU, in microseconds.
617  *
618  * This time is measured via accounting rather than sampling,
619  * and is as accurate as ktime_get() is.
620  *
621  * This function returns -1 if NOHZ is not enabled.
622  */
623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
624 {
625 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626 	ktime_t now, iowait;
627 
628 	if (!tick_nohz_active)
629 		return -1;
630 
631 	now = ktime_get();
632 	if (last_update_time) {
633 		update_ts_time_stats(cpu, ts, now, last_update_time);
634 		iowait = ts->iowait_sleeptime;
635 	} else {
636 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638 
639 			iowait = ktime_add(ts->iowait_sleeptime, delta);
640 		} else {
641 			iowait = ts->iowait_sleeptime;
642 		}
643 	}
644 
645 	return ktime_to_us(iowait);
646 }
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
648 
649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
650 {
651 	hrtimer_cancel(&ts->sched_timer);
652 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
653 
654 	/* Forward the time to expire in the future */
655 	hrtimer_forward(&ts->sched_timer, now, tick_period);
656 
657 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
658 		hrtimer_start_expires(&ts->sched_timer,
659 				      HRTIMER_MODE_ABS_PINNED_HARD);
660 	} else {
661 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
662 	}
663 
664 	/*
665 	 * Reset to make sure next tick stop doesn't get fooled by past
666 	 * cached clock deadline.
667 	 */
668 	ts->next_tick = 0;
669 }
670 
671 static inline bool local_timer_softirq_pending(void)
672 {
673 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
674 }
675 
676 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
677 {
678 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
679 	unsigned long basejiff;
680 	unsigned int seq;
681 
682 	/* Read jiffies and the time when jiffies were updated last */
683 	do {
684 		seq = read_seqcount_begin(&jiffies_seq);
685 		basemono = last_jiffies_update;
686 		basejiff = jiffies;
687 	} while (read_seqcount_retry(&jiffies_seq, seq));
688 	ts->last_jiffies = basejiff;
689 	ts->timer_expires_base = basemono;
690 
691 	/*
692 	 * Keep the periodic tick, when RCU, architecture or irq_work
693 	 * requests it.
694 	 * Aside of that check whether the local timer softirq is
695 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
696 	 * because there is an already expired timer, so it will request
697 	 * immeditate expiry, which rearms the hardware timer with a
698 	 * minimal delta which brings us back to this place
699 	 * immediately. Lather, rinse and repeat...
700 	 */
701 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
702 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
703 		next_tick = basemono + TICK_NSEC;
704 	} else {
705 		/*
706 		 * Get the next pending timer. If high resolution
707 		 * timers are enabled this only takes the timer wheel
708 		 * timers into account. If high resolution timers are
709 		 * disabled this also looks at the next expiring
710 		 * hrtimer.
711 		 */
712 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
713 		ts->next_timer = next_tmr;
714 		/* Take the next rcu event into account */
715 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
716 	}
717 
718 	/*
719 	 * If the tick is due in the next period, keep it ticking or
720 	 * force prod the timer.
721 	 */
722 	delta = next_tick - basemono;
723 	if (delta <= (u64)TICK_NSEC) {
724 		/*
725 		 * Tell the timer code that the base is not idle, i.e. undo
726 		 * the effect of get_next_timer_interrupt():
727 		 */
728 		timer_clear_idle();
729 		/*
730 		 * We've not stopped the tick yet, and there's a timer in the
731 		 * next period, so no point in stopping it either, bail.
732 		 */
733 		if (!ts->tick_stopped) {
734 			ts->timer_expires = 0;
735 			goto out;
736 		}
737 	}
738 
739 	/*
740 	 * If this CPU is the one which had the do_timer() duty last, we limit
741 	 * the sleep time to the timekeeping max_deferment value.
742 	 * Otherwise we can sleep as long as we want.
743 	 */
744 	delta = timekeeping_max_deferment();
745 	if (cpu != tick_do_timer_cpu &&
746 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
747 		delta = KTIME_MAX;
748 
749 	/* Calculate the next expiry time */
750 	if (delta < (KTIME_MAX - basemono))
751 		expires = basemono + delta;
752 	else
753 		expires = KTIME_MAX;
754 
755 	ts->timer_expires = min_t(u64, expires, next_tick);
756 
757 out:
758 	return ts->timer_expires;
759 }
760 
761 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
762 {
763 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
764 	u64 basemono = ts->timer_expires_base;
765 	u64 expires = ts->timer_expires;
766 	ktime_t tick = expires;
767 
768 	/* Make sure we won't be trying to stop it twice in a row. */
769 	ts->timer_expires_base = 0;
770 
771 	/*
772 	 * If this CPU is the one which updates jiffies, then give up
773 	 * the assignment and let it be taken by the CPU which runs
774 	 * the tick timer next, which might be this CPU as well. If we
775 	 * don't drop this here the jiffies might be stale and
776 	 * do_timer() never invoked. Keep track of the fact that it
777 	 * was the one which had the do_timer() duty last.
778 	 */
779 	if (cpu == tick_do_timer_cpu) {
780 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
781 		ts->do_timer_last = 1;
782 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
783 		ts->do_timer_last = 0;
784 	}
785 
786 	/* Skip reprogram of event if its not changed */
787 	if (ts->tick_stopped && (expires == ts->next_tick)) {
788 		/* Sanity check: make sure clockevent is actually programmed */
789 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
790 			return;
791 
792 		WARN_ON_ONCE(1);
793 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
794 			    basemono, ts->next_tick, dev->next_event,
795 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
796 	}
797 
798 	/*
799 	 * nohz_stop_sched_tick can be called several times before
800 	 * the nohz_restart_sched_tick is called. This happens when
801 	 * interrupts arrive which do not cause a reschedule. In the
802 	 * first call we save the current tick time, so we can restart
803 	 * the scheduler tick in nohz_restart_sched_tick.
804 	 */
805 	if (!ts->tick_stopped) {
806 		calc_load_nohz_start();
807 		quiet_vmstat();
808 
809 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
810 		ts->tick_stopped = 1;
811 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
812 	}
813 
814 	ts->next_tick = tick;
815 
816 	/*
817 	 * If the expiration time == KTIME_MAX, then we simply stop
818 	 * the tick timer.
819 	 */
820 	if (unlikely(expires == KTIME_MAX)) {
821 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
822 			hrtimer_cancel(&ts->sched_timer);
823 		return;
824 	}
825 
826 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
827 		hrtimer_start(&ts->sched_timer, tick,
828 			      HRTIMER_MODE_ABS_PINNED_HARD);
829 	} else {
830 		hrtimer_set_expires(&ts->sched_timer, tick);
831 		tick_program_event(tick, 1);
832 	}
833 }
834 
835 static void tick_nohz_retain_tick(struct tick_sched *ts)
836 {
837 	ts->timer_expires_base = 0;
838 }
839 
840 #ifdef CONFIG_NO_HZ_FULL
841 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
842 {
843 	if (tick_nohz_next_event(ts, cpu))
844 		tick_nohz_stop_tick(ts, cpu);
845 	else
846 		tick_nohz_retain_tick(ts);
847 }
848 #endif /* CONFIG_NO_HZ_FULL */
849 
850 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
851 {
852 	/* Update jiffies first */
853 	tick_do_update_jiffies64(now);
854 
855 	/*
856 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
857 	 * the clock forward checks in the enqueue path:
858 	 */
859 	timer_clear_idle();
860 
861 	calc_load_nohz_stop();
862 	touch_softlockup_watchdog_sched();
863 	/*
864 	 * Cancel the scheduled timer and restore the tick
865 	 */
866 	ts->tick_stopped  = 0;
867 	ts->idle_exittime = now;
868 
869 	tick_nohz_restart(ts, now);
870 }
871 
872 static void tick_nohz_full_update_tick(struct tick_sched *ts)
873 {
874 #ifdef CONFIG_NO_HZ_FULL
875 	int cpu = smp_processor_id();
876 
877 	if (!tick_nohz_full_cpu(cpu))
878 		return;
879 
880 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
881 		return;
882 
883 	if (can_stop_full_tick(cpu, ts))
884 		tick_nohz_stop_sched_tick(ts, cpu);
885 	else if (ts->tick_stopped)
886 		tick_nohz_restart_sched_tick(ts, ktime_get());
887 #endif
888 }
889 
890 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
891 {
892 	/*
893 	 * If this CPU is offline and it is the one which updates
894 	 * jiffies, then give up the assignment and let it be taken by
895 	 * the CPU which runs the tick timer next. If we don't drop
896 	 * this here the jiffies might be stale and do_timer() never
897 	 * invoked.
898 	 */
899 	if (unlikely(!cpu_online(cpu))) {
900 		if (cpu == tick_do_timer_cpu)
901 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
902 		/*
903 		 * Make sure the CPU doesn't get fooled by obsolete tick
904 		 * deadline if it comes back online later.
905 		 */
906 		ts->next_tick = 0;
907 		return false;
908 	}
909 
910 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
911 		return false;
912 
913 	if (need_resched())
914 		return false;
915 
916 	if (unlikely(local_softirq_pending())) {
917 		static int ratelimit;
918 
919 		if (ratelimit < 10 &&
920 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
921 			pr_warn("NOHZ: local_softirq_pending %02x\n",
922 				(unsigned int) local_softirq_pending());
923 			ratelimit++;
924 		}
925 		return false;
926 	}
927 
928 	if (tick_nohz_full_enabled()) {
929 		/*
930 		 * Keep the tick alive to guarantee timekeeping progression
931 		 * if there are full dynticks CPUs around
932 		 */
933 		if (tick_do_timer_cpu == cpu)
934 			return false;
935 		/*
936 		 * Boot safety: make sure the timekeeping duty has been
937 		 * assigned before entering dyntick-idle mode,
938 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
939 		 */
940 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
941 			return false;
942 
943 		/* Should not happen for nohz-full */
944 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
945 			return false;
946 	}
947 
948 	return true;
949 }
950 
951 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
952 {
953 	ktime_t expires;
954 	int cpu = smp_processor_id();
955 
956 	/*
957 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
958 	 * tick timer expiration time is known already.
959 	 */
960 	if (ts->timer_expires_base)
961 		expires = ts->timer_expires;
962 	else if (can_stop_idle_tick(cpu, ts))
963 		expires = tick_nohz_next_event(ts, cpu);
964 	else
965 		return;
966 
967 	ts->idle_calls++;
968 
969 	if (expires > 0LL) {
970 		int was_stopped = ts->tick_stopped;
971 
972 		tick_nohz_stop_tick(ts, cpu);
973 
974 		ts->idle_sleeps++;
975 		ts->idle_expires = expires;
976 
977 		if (!was_stopped && ts->tick_stopped) {
978 			ts->idle_jiffies = ts->last_jiffies;
979 			nohz_balance_enter_idle(cpu);
980 		}
981 	} else {
982 		tick_nohz_retain_tick(ts);
983 	}
984 }
985 
986 /**
987  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
988  *
989  * When the next event is more than a tick into the future, stop the idle tick
990  */
991 void tick_nohz_idle_stop_tick(void)
992 {
993 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
994 }
995 
996 void tick_nohz_idle_retain_tick(void)
997 {
998 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
999 	/*
1000 	 * Undo the effect of get_next_timer_interrupt() called from
1001 	 * tick_nohz_next_event().
1002 	 */
1003 	timer_clear_idle();
1004 }
1005 
1006 /**
1007  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1008  *
1009  * Called when we start the idle loop.
1010  */
1011 void tick_nohz_idle_enter(void)
1012 {
1013 	struct tick_sched *ts;
1014 
1015 	lockdep_assert_irqs_enabled();
1016 
1017 	local_irq_disable();
1018 
1019 	ts = this_cpu_ptr(&tick_cpu_sched);
1020 
1021 	WARN_ON_ONCE(ts->timer_expires_base);
1022 
1023 	ts->inidle = 1;
1024 	tick_nohz_start_idle(ts);
1025 
1026 	local_irq_enable();
1027 }
1028 
1029 /**
1030  * tick_nohz_irq_exit - update next tick event from interrupt exit
1031  *
1032  * When an interrupt fires while we are idle and it doesn't cause
1033  * a reschedule, it may still add, modify or delete a timer, enqueue
1034  * an RCU callback, etc...
1035  * So we need to re-calculate and reprogram the next tick event.
1036  */
1037 void tick_nohz_irq_exit(void)
1038 {
1039 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1040 
1041 	if (ts->inidle)
1042 		tick_nohz_start_idle(ts);
1043 	else
1044 		tick_nohz_full_update_tick(ts);
1045 }
1046 
1047 /**
1048  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1049  */
1050 bool tick_nohz_idle_got_tick(void)
1051 {
1052 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1053 
1054 	if (ts->got_idle_tick) {
1055 		ts->got_idle_tick = 0;
1056 		return true;
1057 	}
1058 	return false;
1059 }
1060 
1061 /**
1062  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1063  * or the tick, whatever that expires first. Note that, if the tick has been
1064  * stopped, it returns the next hrtimer.
1065  *
1066  * Called from power state control code with interrupts disabled
1067  */
1068 ktime_t tick_nohz_get_next_hrtimer(void)
1069 {
1070 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1071 }
1072 
1073 /**
1074  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1075  * @delta_next: duration until the next event if the tick cannot be stopped
1076  *
1077  * Called from power state control code with interrupts disabled
1078  */
1079 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1080 {
1081 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1082 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083 	int cpu = smp_processor_id();
1084 	/*
1085 	 * The idle entry time is expected to be a sufficient approximation of
1086 	 * the current time at this point.
1087 	 */
1088 	ktime_t now = ts->idle_entrytime;
1089 	ktime_t next_event;
1090 
1091 	WARN_ON_ONCE(!ts->inidle);
1092 
1093 	*delta_next = ktime_sub(dev->next_event, now);
1094 
1095 	if (!can_stop_idle_tick(cpu, ts))
1096 		return *delta_next;
1097 
1098 	next_event = tick_nohz_next_event(ts, cpu);
1099 	if (!next_event)
1100 		return *delta_next;
1101 
1102 	/*
1103 	 * If the next highres timer to expire is earlier than next_event, the
1104 	 * idle governor needs to know that.
1105 	 */
1106 	next_event = min_t(u64, next_event,
1107 			   hrtimer_next_event_without(&ts->sched_timer));
1108 
1109 	return ktime_sub(next_event, now);
1110 }
1111 
1112 /**
1113  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1114  * for a particular CPU.
1115  *
1116  * Called from the schedutil frequency scaling governor in scheduler context.
1117  */
1118 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1119 {
1120 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1121 
1122 	return ts->idle_calls;
1123 }
1124 
1125 /**
1126  * tick_nohz_get_idle_calls - return the current idle calls counter value
1127  *
1128  * Called from the schedutil frequency scaling governor in scheduler context.
1129  */
1130 unsigned long tick_nohz_get_idle_calls(void)
1131 {
1132 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1133 
1134 	return ts->idle_calls;
1135 }
1136 
1137 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1138 {
1139 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1140 	unsigned long ticks;
1141 
1142 	if (vtime_accounting_enabled_this_cpu())
1143 		return;
1144 	/*
1145 	 * We stopped the tick in idle. Update process times would miss the
1146 	 * time we slept as update_process_times does only a 1 tick
1147 	 * accounting. Enforce that this is accounted to idle !
1148 	 */
1149 	ticks = jiffies - ts->idle_jiffies;
1150 	/*
1151 	 * We might be one off. Do not randomly account a huge number of ticks!
1152 	 */
1153 	if (ticks && ticks < LONG_MAX)
1154 		account_idle_ticks(ticks);
1155 #endif
1156 }
1157 
1158 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1159 {
1160 	tick_nohz_restart_sched_tick(ts, now);
1161 	tick_nohz_account_idle_ticks(ts);
1162 }
1163 
1164 void tick_nohz_idle_restart_tick(void)
1165 {
1166 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1167 
1168 	if (ts->tick_stopped)
1169 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1170 }
1171 
1172 /**
1173  * tick_nohz_idle_exit - restart the idle tick from the idle task
1174  *
1175  * Restart the idle tick when the CPU is woken up from idle
1176  * This also exit the RCU extended quiescent state. The CPU
1177  * can use RCU again after this function is called.
1178  */
1179 void tick_nohz_idle_exit(void)
1180 {
1181 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1182 	bool idle_active, tick_stopped;
1183 	ktime_t now;
1184 
1185 	local_irq_disable();
1186 
1187 	WARN_ON_ONCE(!ts->inidle);
1188 	WARN_ON_ONCE(ts->timer_expires_base);
1189 
1190 	ts->inidle = 0;
1191 	idle_active = ts->idle_active;
1192 	tick_stopped = ts->tick_stopped;
1193 
1194 	if (idle_active || tick_stopped)
1195 		now = ktime_get();
1196 
1197 	if (idle_active)
1198 		tick_nohz_stop_idle(ts, now);
1199 
1200 	if (tick_stopped)
1201 		__tick_nohz_idle_restart_tick(ts, now);
1202 
1203 	local_irq_enable();
1204 }
1205 
1206 /*
1207  * The nohz low res interrupt handler
1208  */
1209 static void tick_nohz_handler(struct clock_event_device *dev)
1210 {
1211 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1212 	struct pt_regs *regs = get_irq_regs();
1213 	ktime_t now = ktime_get();
1214 
1215 	dev->next_event = KTIME_MAX;
1216 
1217 	tick_sched_do_timer(ts, now);
1218 	tick_sched_handle(ts, regs);
1219 
1220 	/* No need to reprogram if we are running tickless  */
1221 	if (unlikely(ts->tick_stopped))
1222 		return;
1223 
1224 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1225 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1226 }
1227 
1228 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1229 {
1230 	if (!tick_nohz_enabled)
1231 		return;
1232 	ts->nohz_mode = mode;
1233 	/* One update is enough */
1234 	if (!test_and_set_bit(0, &tick_nohz_active))
1235 		timers_update_nohz();
1236 }
1237 
1238 /**
1239  * tick_nohz_switch_to_nohz - switch to nohz mode
1240  */
1241 static void tick_nohz_switch_to_nohz(void)
1242 {
1243 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1244 	ktime_t next;
1245 
1246 	if (!tick_nohz_enabled)
1247 		return;
1248 
1249 	if (tick_switch_to_oneshot(tick_nohz_handler))
1250 		return;
1251 
1252 	/*
1253 	 * Recycle the hrtimer in ts, so we can share the
1254 	 * hrtimer_forward with the highres code.
1255 	 */
1256 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1257 	/* Get the next period */
1258 	next = tick_init_jiffy_update();
1259 
1260 	hrtimer_set_expires(&ts->sched_timer, next);
1261 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1262 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1263 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1264 }
1265 
1266 static inline void tick_nohz_irq_enter(void)
1267 {
1268 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1269 	ktime_t now;
1270 
1271 	if (!ts->idle_active && !ts->tick_stopped)
1272 		return;
1273 	now = ktime_get();
1274 	if (ts->idle_active)
1275 		tick_nohz_stop_idle(ts, now);
1276 	if (ts->tick_stopped)
1277 		tick_nohz_update_jiffies(now);
1278 }
1279 
1280 #else
1281 
1282 static inline void tick_nohz_switch_to_nohz(void) { }
1283 static inline void tick_nohz_irq_enter(void) { }
1284 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1285 
1286 #endif /* CONFIG_NO_HZ_COMMON */
1287 
1288 /*
1289  * Called from irq_enter to notify about the possible interruption of idle()
1290  */
1291 void tick_irq_enter(void)
1292 {
1293 	tick_check_oneshot_broadcast_this_cpu();
1294 	tick_nohz_irq_enter();
1295 }
1296 
1297 /*
1298  * High resolution timer specific code
1299  */
1300 #ifdef CONFIG_HIGH_RES_TIMERS
1301 /*
1302  * We rearm the timer until we get disabled by the idle code.
1303  * Called with interrupts disabled.
1304  */
1305 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1306 {
1307 	struct tick_sched *ts =
1308 		container_of(timer, struct tick_sched, sched_timer);
1309 	struct pt_regs *regs = get_irq_regs();
1310 	ktime_t now = ktime_get();
1311 
1312 	tick_sched_do_timer(ts, now);
1313 
1314 	/*
1315 	 * Do not call, when we are not in irq context and have
1316 	 * no valid regs pointer
1317 	 */
1318 	if (regs)
1319 		tick_sched_handle(ts, regs);
1320 	else
1321 		ts->next_tick = 0;
1322 
1323 	/* No need to reprogram if we are in idle or full dynticks mode */
1324 	if (unlikely(ts->tick_stopped))
1325 		return HRTIMER_NORESTART;
1326 
1327 	hrtimer_forward(timer, now, tick_period);
1328 
1329 	return HRTIMER_RESTART;
1330 }
1331 
1332 static int sched_skew_tick;
1333 
1334 static int __init skew_tick(char *str)
1335 {
1336 	get_option(&str, &sched_skew_tick);
1337 
1338 	return 0;
1339 }
1340 early_param("skew_tick", skew_tick);
1341 
1342 /**
1343  * tick_setup_sched_timer - setup the tick emulation timer
1344  */
1345 void tick_setup_sched_timer(void)
1346 {
1347 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1348 	ktime_t now = ktime_get();
1349 
1350 	/*
1351 	 * Emulate tick processing via per-CPU hrtimers:
1352 	 */
1353 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1354 	ts->sched_timer.function = tick_sched_timer;
1355 
1356 	/* Get the next period (per-CPU) */
1357 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1358 
1359 	/* Offset the tick to avert jiffies_lock contention. */
1360 	if (sched_skew_tick) {
1361 		u64 offset = ktime_to_ns(tick_period) >> 1;
1362 		do_div(offset, num_possible_cpus());
1363 		offset *= smp_processor_id();
1364 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1365 	}
1366 
1367 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1368 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1369 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1370 }
1371 #endif /* HIGH_RES_TIMERS */
1372 
1373 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1374 void tick_cancel_sched_timer(int cpu)
1375 {
1376 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1377 
1378 # ifdef CONFIG_HIGH_RES_TIMERS
1379 	if (ts->sched_timer.base)
1380 		hrtimer_cancel(&ts->sched_timer);
1381 # endif
1382 
1383 	memset(ts, 0, sizeof(*ts));
1384 }
1385 #endif
1386 
1387 /**
1388  * Async notification about clocksource changes
1389  */
1390 void tick_clock_notify(void)
1391 {
1392 	int cpu;
1393 
1394 	for_each_possible_cpu(cpu)
1395 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1396 }
1397 
1398 /*
1399  * Async notification about clock event changes
1400  */
1401 void tick_oneshot_notify(void)
1402 {
1403 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1404 
1405 	set_bit(0, &ts->check_clocks);
1406 }
1407 
1408 /**
1409  * Check, if a change happened, which makes oneshot possible.
1410  *
1411  * Called cyclic from the hrtimer softirq (driven by the timer
1412  * softirq) allow_nohz signals, that we can switch into low-res nohz
1413  * mode, because high resolution timers are disabled (either compile
1414  * or runtime). Called with interrupts disabled.
1415  */
1416 int tick_check_oneshot_change(int allow_nohz)
1417 {
1418 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1419 
1420 	if (!test_and_clear_bit(0, &ts->check_clocks))
1421 		return 0;
1422 
1423 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1424 		return 0;
1425 
1426 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1427 		return 0;
1428 
1429 	if (!allow_nohz)
1430 		return 1;
1431 
1432 	tick_nohz_switch_to_nohz();
1433 	return 0;
1434 }
1435