xref: /openbmc/linux/kernel/time/tick-sched.c (revision e4e4e534)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 	}
79 	write_sequnlock(&xtime_lock);
80 }
81 
82 /*
83  * Initialize and return retrieve the jiffies update.
84  */
85 static ktime_t tick_init_jiffy_update(void)
86 {
87 	ktime_t period;
88 
89 	write_seqlock(&xtime_lock);
90 	/* Did we start the jiffies update yet ? */
91 	if (last_jiffies_update.tv64 == 0)
92 		last_jiffies_update = tick_next_period;
93 	period = last_jiffies_update;
94 	write_sequnlock(&xtime_lock);
95 	return period;
96 }
97 
98 /*
99  * NOHZ - aka dynamic tick functionality
100  */
101 #ifdef CONFIG_NO_HZ
102 /*
103  * NO HZ enabled ?
104  */
105 static int tick_nohz_enabled __read_mostly  = 1;
106 
107 /*
108  * Enable / Disable tickless mode
109  */
110 static int __init setup_tick_nohz(char *str)
111 {
112 	if (!strcmp(str, "off"))
113 		tick_nohz_enabled = 0;
114 	else if (!strcmp(str, "on"))
115 		tick_nohz_enabled = 1;
116 	else
117 		return 0;
118 	return 1;
119 }
120 
121 __setup("nohz=", setup_tick_nohz);
122 
123 /**
124  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
125  *
126  * Called from interrupt entry when the CPU was idle
127  *
128  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
129  * must be updated. Otherwise an interrupt handler could use a stale jiffy
130  * value. We do this unconditionally on any cpu, as we don't know whether the
131  * cpu, which has the update task assigned is in a long sleep.
132  */
133 void tick_nohz_update_jiffies(void)
134 {
135 	int cpu = smp_processor_id();
136 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
137 	unsigned long flags;
138 	ktime_t now;
139 
140 	if (!ts->tick_stopped)
141 		return;
142 
143 	cpu_clear(cpu, nohz_cpu_mask);
144 	now = ktime_get();
145 	ts->idle_waketime = now;
146 
147 	local_irq_save(flags);
148 	tick_do_update_jiffies64(now);
149 	local_irq_restore(flags);
150 
151 	touch_softlockup_watchdog();
152 }
153 
154 void tick_nohz_stop_idle(int cpu)
155 {
156 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
157 
158 	if (ts->idle_active) {
159 		ktime_t now, delta;
160 		now = ktime_get();
161 		delta = ktime_sub(now, ts->idle_entrytime);
162 		ts->idle_lastupdate = now;
163 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 		ts->idle_active = 0;
165 	}
166 }
167 
168 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
169 {
170 	ktime_t now, delta;
171 
172 	now = ktime_get();
173 	if (ts->idle_active) {
174 		delta = ktime_sub(now, ts->idle_entrytime);
175 		ts->idle_lastupdate = now;
176 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
177 	}
178 	ts->idle_entrytime = now;
179 	ts->idle_active = 1;
180 	return now;
181 }
182 
183 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
184 {
185 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
186 
187 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
188 	return ktime_to_us(ts->idle_sleeptime);
189 }
190 
191 /**
192  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
193  *
194  * When the next event is more than a tick into the future, stop the idle tick
195  * Called either from the idle loop or from irq_exit() when an idle period was
196  * just interrupted by an interrupt which did not cause a reschedule.
197  */
198 void tick_nohz_stop_sched_tick(int inidle)
199 {
200 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
201 	struct tick_sched *ts;
202 	ktime_t last_update, expires, now;
203 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
204 	int cpu;
205 
206 	local_irq_save(flags);
207 
208 	cpu = smp_processor_id();
209 	ts = &per_cpu(tick_cpu_sched, cpu);
210 	now = tick_nohz_start_idle(ts);
211 
212 	/*
213 	 * If this cpu is offline and it is the one which updates
214 	 * jiffies, then give up the assignment and let it be taken by
215 	 * the cpu which runs the tick timer next. If we don't drop
216 	 * this here the jiffies might be stale and do_timer() never
217 	 * invoked.
218 	 */
219 	if (unlikely(!cpu_online(cpu))) {
220 		if (cpu == tick_do_timer_cpu)
221 			tick_do_timer_cpu = -1;
222 	}
223 
224 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
225 		goto end;
226 
227 	if (!inidle && !ts->inidle)
228 		goto end;
229 
230 	ts->inidle = 1;
231 
232 	if (need_resched())
233 		goto end;
234 
235 	if (unlikely(local_softirq_pending())) {
236 		static int ratelimit;
237 
238 		if (ratelimit < 10) {
239 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
240 			       local_softirq_pending());
241 			ratelimit++;
242 		}
243 		goto end;
244 	}
245 
246 	ts->idle_calls++;
247 	/* Read jiffies and the time when jiffies were updated last */
248 	do {
249 		seq = read_seqbegin(&xtime_lock);
250 		last_update = last_jiffies_update;
251 		last_jiffies = jiffies;
252 	} while (read_seqretry(&xtime_lock, seq));
253 
254 	/* Get the next timer wheel timer */
255 	next_jiffies = get_next_timer_interrupt(last_jiffies);
256 	delta_jiffies = next_jiffies - last_jiffies;
257 
258 	if (rcu_needs_cpu(cpu))
259 		delta_jiffies = 1;
260 	/*
261 	 * Do not stop the tick, if we are only one off
262 	 * or if the cpu is required for rcu
263 	 */
264 	if (!ts->tick_stopped && delta_jiffies == 1)
265 		goto out;
266 
267 	/* Schedule the tick, if we are at least one jiffie off */
268 	if ((long)delta_jiffies >= 1) {
269 
270 		if (delta_jiffies > 1)
271 			cpu_set(cpu, nohz_cpu_mask);
272 		/*
273 		 * nohz_stop_sched_tick can be called several times before
274 		 * the nohz_restart_sched_tick is called. This happens when
275 		 * interrupts arrive which do not cause a reschedule. In the
276 		 * first call we save the current tick time, so we can restart
277 		 * the scheduler tick in nohz_restart_sched_tick.
278 		 */
279 		if (!ts->tick_stopped) {
280 			if (select_nohz_load_balancer(1)) {
281 				/*
282 				 * sched tick not stopped!
283 				 */
284 				cpu_clear(cpu, nohz_cpu_mask);
285 				goto out;
286 			}
287 
288 			ts->idle_tick = ts->sched_timer.expires;
289 			ts->tick_stopped = 1;
290 			ts->idle_jiffies = last_jiffies;
291 			rcu_enter_nohz();
292 		}
293 
294 		/*
295 		 * If this cpu is the one which updates jiffies, then
296 		 * give up the assignment and let it be taken by the
297 		 * cpu which runs the tick timer next, which might be
298 		 * this cpu as well. If we don't drop this here the
299 		 * jiffies might be stale and do_timer() never
300 		 * invoked.
301 		 */
302 		if (cpu == tick_do_timer_cpu)
303 			tick_do_timer_cpu = -1;
304 
305 		ts->idle_sleeps++;
306 
307 		/*
308 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
309 		 * there is no timer pending or at least extremly far
310 		 * into the future (12 days for HZ=1000). In this case
311 		 * we simply stop the tick timer:
312 		 */
313 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
314 			ts->idle_expires.tv64 = KTIME_MAX;
315 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
316 				hrtimer_cancel(&ts->sched_timer);
317 			goto out;
318 		}
319 
320 		/*
321 		 * calculate the expiry time for the next timer wheel
322 		 * timer
323 		 */
324 		expires = ktime_add_ns(last_update, tick_period.tv64 *
325 				       delta_jiffies);
326 		ts->idle_expires = expires;
327 
328 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
329 			hrtimer_start(&ts->sched_timer, expires,
330 				      HRTIMER_MODE_ABS);
331 			/* Check, if the timer was already in the past */
332 			if (hrtimer_active(&ts->sched_timer))
333 				goto out;
334 		} else if (!tick_program_event(expires, 0))
335 				goto out;
336 		/*
337 		 * We are past the event already. So we crossed a
338 		 * jiffie boundary. Update jiffies and raise the
339 		 * softirq.
340 		 */
341 		tick_do_update_jiffies64(ktime_get());
342 		cpu_clear(cpu, nohz_cpu_mask);
343 	}
344 	raise_softirq_irqoff(TIMER_SOFTIRQ);
345 out:
346 	ts->next_jiffies = next_jiffies;
347 	ts->last_jiffies = last_jiffies;
348 	ts->sleep_length = ktime_sub(dev->next_event, now);
349 end:
350 	local_irq_restore(flags);
351 }
352 
353 /**
354  * tick_nohz_get_sleep_length - return the length of the current sleep
355  *
356  * Called from power state control code with interrupts disabled
357  */
358 ktime_t tick_nohz_get_sleep_length(void)
359 {
360 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
361 
362 	return ts->sleep_length;
363 }
364 
365 /**
366  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
367  *
368  * Restart the idle tick when the CPU is woken up from idle
369  */
370 void tick_nohz_restart_sched_tick(void)
371 {
372 	int cpu = smp_processor_id();
373 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
374 	unsigned long ticks;
375 	ktime_t now;
376 
377 	local_irq_disable();
378 	tick_nohz_stop_idle(cpu);
379 
380 	if (!ts->inidle || !ts->tick_stopped) {
381 		ts->inidle = 0;
382 		local_irq_enable();
383 		return;
384 	}
385 
386 	ts->inidle = 0;
387 
388 	rcu_exit_nohz();
389 
390 	/* Update jiffies first */
391 	select_nohz_load_balancer(0);
392 	now = ktime_get();
393 	tick_do_update_jiffies64(now);
394 	cpu_clear(cpu, nohz_cpu_mask);
395 
396 	/*
397 	 * We stopped the tick in idle. Update process times would miss the
398 	 * time we slept as update_process_times does only a 1 tick
399 	 * accounting. Enforce that this is accounted to idle !
400 	 */
401 	ticks = jiffies - ts->idle_jiffies;
402 	/*
403 	 * We might be one off. Do not randomly account a huge number of ticks!
404 	 */
405 	if (ticks && ticks < LONG_MAX) {
406 		add_preempt_count(HARDIRQ_OFFSET);
407 		account_system_time(current, HARDIRQ_OFFSET,
408 				    jiffies_to_cputime(ticks));
409 		sub_preempt_count(HARDIRQ_OFFSET);
410 	}
411 
412 	touch_softlockup_watchdog();
413 	/*
414 	 * Cancel the scheduled timer and restore the tick
415 	 */
416 	ts->tick_stopped  = 0;
417 	ts->idle_exittime = now;
418 	hrtimer_cancel(&ts->sched_timer);
419 	ts->sched_timer.expires = ts->idle_tick;
420 
421 	while (1) {
422 		/* Forward the time to expire in the future */
423 		hrtimer_forward(&ts->sched_timer, now, tick_period);
424 
425 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
426 			hrtimer_start(&ts->sched_timer,
427 				      ts->sched_timer.expires,
428 				      HRTIMER_MODE_ABS);
429 			/* Check, if the timer was already in the past */
430 			if (hrtimer_active(&ts->sched_timer))
431 				break;
432 		} else {
433 			if (!tick_program_event(ts->sched_timer.expires, 0))
434 				break;
435 		}
436 		/* Update jiffies and reread time */
437 		tick_do_update_jiffies64(now);
438 		now = ktime_get();
439 	}
440 	local_irq_enable();
441 }
442 
443 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
444 {
445 	hrtimer_forward(&ts->sched_timer, now, tick_period);
446 	return tick_program_event(ts->sched_timer.expires, 0);
447 }
448 
449 /*
450  * The nohz low res interrupt handler
451  */
452 static void tick_nohz_handler(struct clock_event_device *dev)
453 {
454 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
455 	struct pt_regs *regs = get_irq_regs();
456 	int cpu = smp_processor_id();
457 	ktime_t now = ktime_get();
458 
459 	dev->next_event.tv64 = KTIME_MAX;
460 
461 	/*
462 	 * Check if the do_timer duty was dropped. We don't care about
463 	 * concurrency: This happens only when the cpu in charge went
464 	 * into a long sleep. If two cpus happen to assign themself to
465 	 * this duty, then the jiffies update is still serialized by
466 	 * xtime_lock.
467 	 */
468 	if (unlikely(tick_do_timer_cpu == -1))
469 		tick_do_timer_cpu = cpu;
470 
471 	/* Check, if the jiffies need an update */
472 	if (tick_do_timer_cpu == cpu)
473 		tick_do_update_jiffies64(now);
474 
475 	/*
476 	 * When we are idle and the tick is stopped, we have to touch
477 	 * the watchdog as we might not schedule for a really long
478 	 * time. This happens on complete idle SMP systems while
479 	 * waiting on the login prompt. We also increment the "start
480 	 * of idle" jiffy stamp so the idle accounting adjustment we
481 	 * do when we go busy again does not account too much ticks.
482 	 */
483 	if (ts->tick_stopped) {
484 		touch_softlockup_watchdog();
485 		ts->idle_jiffies++;
486 	}
487 
488 	update_process_times(user_mode(regs));
489 	profile_tick(CPU_PROFILING);
490 
491 	/* Do not restart, when we are in the idle loop */
492 	if (ts->tick_stopped)
493 		return;
494 
495 	while (tick_nohz_reprogram(ts, now)) {
496 		now = ktime_get();
497 		tick_do_update_jiffies64(now);
498 	}
499 }
500 
501 /**
502  * tick_nohz_switch_to_nohz - switch to nohz mode
503  */
504 static void tick_nohz_switch_to_nohz(void)
505 {
506 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
507 	ktime_t next;
508 
509 	if (!tick_nohz_enabled)
510 		return;
511 
512 	local_irq_disable();
513 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
514 		local_irq_enable();
515 		return;
516 	}
517 
518 	ts->nohz_mode = NOHZ_MODE_LOWRES;
519 
520 	/*
521 	 * Recycle the hrtimer in ts, so we can share the
522 	 * hrtimer_forward with the highres code.
523 	 */
524 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
525 	/* Get the next period */
526 	next = tick_init_jiffy_update();
527 
528 	for (;;) {
529 		ts->sched_timer.expires = next;
530 		if (!tick_program_event(next, 0))
531 			break;
532 		next = ktime_add(next, tick_period);
533 	}
534 	local_irq_enable();
535 
536 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
537 	       smp_processor_id());
538 }
539 
540 #else
541 
542 static inline void tick_nohz_switch_to_nohz(void) { }
543 
544 #endif /* NO_HZ */
545 
546 /*
547  * High resolution timer specific code
548  */
549 #ifdef CONFIG_HIGH_RES_TIMERS
550 /*
551  * We rearm the timer until we get disabled by the idle code.
552  * Called with interrupts disabled and timer->base->cpu_base->lock held.
553  */
554 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
555 {
556 	struct tick_sched *ts =
557 		container_of(timer, struct tick_sched, sched_timer);
558 	struct pt_regs *regs = get_irq_regs();
559 	ktime_t now = ktime_get();
560 	int cpu = smp_processor_id();
561 
562 #ifdef CONFIG_NO_HZ
563 	/*
564 	 * Check if the do_timer duty was dropped. We don't care about
565 	 * concurrency: This happens only when the cpu in charge went
566 	 * into a long sleep. If two cpus happen to assign themself to
567 	 * this duty, then the jiffies update is still serialized by
568 	 * xtime_lock.
569 	 */
570 	if (unlikely(tick_do_timer_cpu == -1))
571 		tick_do_timer_cpu = cpu;
572 #endif
573 
574 	/* Check, if the jiffies need an update */
575 	if (tick_do_timer_cpu == cpu)
576 		tick_do_update_jiffies64(now);
577 
578 	/*
579 	 * Do not call, when we are not in irq context and have
580 	 * no valid regs pointer
581 	 */
582 	if (regs) {
583 		/*
584 		 * When we are idle and the tick is stopped, we have to touch
585 		 * the watchdog as we might not schedule for a really long
586 		 * time. This happens on complete idle SMP systems while
587 		 * waiting on the login prompt. We also increment the "start of
588 		 * idle" jiffy stamp so the idle accounting adjustment we do
589 		 * when we go busy again does not account too much ticks.
590 		 */
591 		if (ts->tick_stopped) {
592 			touch_softlockup_watchdog();
593 			ts->idle_jiffies++;
594 		}
595 		update_process_times(user_mode(regs));
596 		profile_tick(CPU_PROFILING);
597 	}
598 
599 	/* Do not restart, when we are in the idle loop */
600 	if (ts->tick_stopped)
601 		return HRTIMER_NORESTART;
602 
603 	hrtimer_forward(timer, now, tick_period);
604 
605 	return HRTIMER_RESTART;
606 }
607 
608 /**
609  * tick_setup_sched_timer - setup the tick emulation timer
610  */
611 void tick_setup_sched_timer(void)
612 {
613 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
614 	ktime_t now = ktime_get();
615 	u64 offset;
616 
617 	/*
618 	 * Emulate tick processing via per-CPU hrtimers:
619 	 */
620 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
621 	ts->sched_timer.function = tick_sched_timer;
622 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
623 
624 	/* Get the next period (per cpu) */
625 	ts->sched_timer.expires = tick_init_jiffy_update();
626 	offset = ktime_to_ns(tick_period) >> 1;
627 	do_div(offset, num_possible_cpus());
628 	offset *= smp_processor_id();
629 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
630 
631 	for (;;) {
632 		hrtimer_forward(&ts->sched_timer, now, tick_period);
633 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
634 			      HRTIMER_MODE_ABS);
635 		/* Check, if the timer was already in the past */
636 		if (hrtimer_active(&ts->sched_timer))
637 			break;
638 		now = ktime_get();
639 	}
640 
641 #ifdef CONFIG_NO_HZ
642 	if (tick_nohz_enabled)
643 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
644 #endif
645 }
646 
647 void tick_cancel_sched_timer(int cpu)
648 {
649 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
650 
651 	if (ts->sched_timer.base)
652 		hrtimer_cancel(&ts->sched_timer);
653 
654 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
655 }
656 #endif /* HIGH_RES_TIMERS */
657 
658 /**
659  * Async notification about clocksource changes
660  */
661 void tick_clock_notify(void)
662 {
663 	int cpu;
664 
665 	for_each_possible_cpu(cpu)
666 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
667 }
668 
669 /*
670  * Async notification about clock event changes
671  */
672 void tick_oneshot_notify(void)
673 {
674 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
675 
676 	set_bit(0, &ts->check_clocks);
677 }
678 
679 /**
680  * Check, if a change happened, which makes oneshot possible.
681  *
682  * Called cyclic from the hrtimer softirq (driven by the timer
683  * softirq) allow_nohz signals, that we can switch into low-res nohz
684  * mode, because high resolution timers are disabled (either compile
685  * or runtime).
686  */
687 int tick_check_oneshot_change(int allow_nohz)
688 {
689 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
690 
691 	if (!test_and_clear_bit(0, &ts->check_clocks))
692 		return 0;
693 
694 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
695 		return 0;
696 
697 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
698 		return 0;
699 
700 	if (!allow_nohz)
701 		return 1;
702 
703 	tick_nohz_switch_to_nohz();
704 	return 0;
705 }
706