xref: /openbmc/linux/kernel/time/tick-sched.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Called after resume. Make sure that jiffies are not fast forwarded due to
56  * clock monotonic being forwarded by the suspended time.
57  */
58 void tick_sched_forward_next_period(void)
59 {
60 	last_jiffies_update = tick_next_period;
61 }
62 
63 /*
64  * Must be called with interrupts disabled !
65  */
66 static void tick_do_update_jiffies64(ktime_t now)
67 {
68 	unsigned long ticks = 0;
69 	ktime_t delta;
70 
71 	/*
72 	 * Do a quick check without holding jiffies_lock:
73 	 */
74 	delta = ktime_sub(now, last_jiffies_update);
75 	if (delta < tick_period)
76 		return;
77 
78 	/* Reevaluate with jiffies_lock held */
79 	write_seqlock(&jiffies_lock);
80 
81 	delta = ktime_sub(now, last_jiffies_update);
82 	if (delta >= tick_period) {
83 
84 		delta = ktime_sub(delta, tick_period);
85 		last_jiffies_update = ktime_add(last_jiffies_update,
86 						tick_period);
87 
88 		/* Slow path for long timeouts */
89 		if (unlikely(delta >= tick_period)) {
90 			s64 incr = ktime_to_ns(tick_period);
91 
92 			ticks = ktime_divns(delta, incr);
93 
94 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
95 							   incr * ticks);
96 		}
97 		do_timer(++ticks);
98 
99 		/* Keep the tick_next_period variable up to date */
100 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
101 	} else {
102 		write_sequnlock(&jiffies_lock);
103 		return;
104 	}
105 	write_sequnlock(&jiffies_lock);
106 	update_wall_time();
107 }
108 
109 /*
110  * Initialize and return retrieve the jiffies update.
111  */
112 static ktime_t tick_init_jiffy_update(void)
113 {
114 	ktime_t period;
115 
116 	write_seqlock(&jiffies_lock);
117 	/* Did we start the jiffies update yet ? */
118 	if (last_jiffies_update == 0)
119 		last_jiffies_update = tick_next_period;
120 	period = last_jiffies_update;
121 	write_sequnlock(&jiffies_lock);
122 	return period;
123 }
124 
125 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
126 {
127 	int cpu = smp_processor_id();
128 
129 #ifdef CONFIG_NO_HZ_COMMON
130 	/*
131 	 * Check if the do_timer duty was dropped. We don't care about
132 	 * concurrency: This happens only when the CPU in charge went
133 	 * into a long sleep. If two CPUs happen to assign themselves to
134 	 * this duty, then the jiffies update is still serialized by
135 	 * jiffies_lock.
136 	 */
137 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
138 	    && !tick_nohz_full_cpu(cpu))
139 		tick_do_timer_cpu = cpu;
140 #endif
141 
142 	/* Check, if the jiffies need an update */
143 	if (tick_do_timer_cpu == cpu)
144 		tick_do_update_jiffies64(now);
145 
146 	if (ts->inidle)
147 		ts->got_idle_tick = 1;
148 }
149 
150 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
151 {
152 #ifdef CONFIG_NO_HZ_COMMON
153 	/*
154 	 * When we are idle and the tick is stopped, we have to touch
155 	 * the watchdog as we might not schedule for a really long
156 	 * time. This happens on complete idle SMP systems while
157 	 * waiting on the login prompt. We also increment the "start of
158 	 * idle" jiffy stamp so the idle accounting adjustment we do
159 	 * when we go busy again does not account too much ticks.
160 	 */
161 	if (ts->tick_stopped) {
162 		touch_softlockup_watchdog_sched();
163 		if (is_idle_task(current))
164 			ts->idle_jiffies++;
165 		/*
166 		 * In case the current tick fired too early past its expected
167 		 * expiration, make sure we don't bypass the next clock reprogramming
168 		 * to the same deadline.
169 		 */
170 		ts->next_tick = 0;
171 	}
172 #endif
173 	update_process_times(user_mode(regs));
174 	profile_tick(CPU_PROFILING);
175 }
176 #endif
177 
178 #ifdef CONFIG_NO_HZ_FULL
179 cpumask_var_t tick_nohz_full_mask;
180 bool tick_nohz_full_running;
181 static atomic_t tick_dep_mask;
182 
183 static bool check_tick_dependency(atomic_t *dep)
184 {
185 	int val = atomic_read(dep);
186 
187 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
188 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
189 		return true;
190 	}
191 
192 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
193 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
194 		return true;
195 	}
196 
197 	if (val & TICK_DEP_MASK_SCHED) {
198 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
199 		return true;
200 	}
201 
202 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
203 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
204 		return true;
205 	}
206 
207 	return false;
208 }
209 
210 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
211 {
212 	lockdep_assert_irqs_disabled();
213 
214 	if (unlikely(!cpu_online(cpu)))
215 		return false;
216 
217 	if (check_tick_dependency(&tick_dep_mask))
218 		return false;
219 
220 	if (check_tick_dependency(&ts->tick_dep_mask))
221 		return false;
222 
223 	if (check_tick_dependency(&current->tick_dep_mask))
224 		return false;
225 
226 	if (check_tick_dependency(&current->signal->tick_dep_mask))
227 		return false;
228 
229 	return true;
230 }
231 
232 static void nohz_full_kick_func(struct irq_work *work)
233 {
234 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
235 }
236 
237 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
238 	.func = nohz_full_kick_func,
239 };
240 
241 /*
242  * Kick this CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
245  * is NMI safe.
246  */
247 static void tick_nohz_full_kick(void)
248 {
249 	if (!tick_nohz_full_cpu(smp_processor_id()))
250 		return;
251 
252 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
253 }
254 
255 /*
256  * Kick the CPU if it's full dynticks in order to force it to
257  * re-evaluate its dependency on the tick and restart it if necessary.
258  */
259 void tick_nohz_full_kick_cpu(int cpu)
260 {
261 	if (!tick_nohz_full_cpu(cpu))
262 		return;
263 
264 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
265 }
266 
267 /*
268  * Kick all full dynticks CPUs in order to force these to re-evaluate
269  * their dependency on the tick and restart it if necessary.
270  */
271 static void tick_nohz_full_kick_all(void)
272 {
273 	int cpu;
274 
275 	if (!tick_nohz_full_running)
276 		return;
277 
278 	preempt_disable();
279 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
280 		tick_nohz_full_kick_cpu(cpu);
281 	preempt_enable();
282 }
283 
284 static void tick_nohz_dep_set_all(atomic_t *dep,
285 				  enum tick_dep_bits bit)
286 {
287 	int prev;
288 
289 	prev = atomic_fetch_or(BIT(bit), dep);
290 	if (!prev)
291 		tick_nohz_full_kick_all();
292 }
293 
294 /*
295  * Set a global tick dependency. Used by perf events that rely on freq and
296  * by unstable clock.
297  */
298 void tick_nohz_dep_set(enum tick_dep_bits bit)
299 {
300 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
301 }
302 
303 void tick_nohz_dep_clear(enum tick_dep_bits bit)
304 {
305 	atomic_andnot(BIT(bit), &tick_dep_mask);
306 }
307 
308 /*
309  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
310  * manage events throttling.
311  */
312 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
313 {
314 	int prev;
315 	struct tick_sched *ts;
316 
317 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
318 
319 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
320 	if (!prev) {
321 		preempt_disable();
322 		/* Perf needs local kick that is NMI safe */
323 		if (cpu == smp_processor_id()) {
324 			tick_nohz_full_kick();
325 		} else {
326 			/* Remote irq work not NMI-safe */
327 			if (!WARN_ON_ONCE(in_nmi()))
328 				tick_nohz_full_kick_cpu(cpu);
329 		}
330 		preempt_enable();
331 	}
332 }
333 
334 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
335 {
336 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
337 
338 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
339 }
340 
341 /*
342  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
343  * per task timers.
344  */
345 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
346 {
347 	/*
348 	 * We could optimize this with just kicking the target running the task
349 	 * if that noise matters for nohz full users.
350 	 */
351 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
352 }
353 
354 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
355 {
356 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
357 }
358 
359 /*
360  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
361  * per process timers.
362  */
363 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
364 {
365 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
366 }
367 
368 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
369 {
370 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
371 }
372 
373 /*
374  * Re-evaluate the need for the tick as we switch the current task.
375  * It might need the tick due to per task/process properties:
376  * perf events, posix CPU timers, ...
377  */
378 void __tick_nohz_task_switch(void)
379 {
380 	unsigned long flags;
381 	struct tick_sched *ts;
382 
383 	local_irq_save(flags);
384 
385 	if (!tick_nohz_full_cpu(smp_processor_id()))
386 		goto out;
387 
388 	ts = this_cpu_ptr(&tick_cpu_sched);
389 
390 	if (ts->tick_stopped) {
391 		if (atomic_read(&current->tick_dep_mask) ||
392 		    atomic_read(&current->signal->tick_dep_mask))
393 			tick_nohz_full_kick();
394 	}
395 out:
396 	local_irq_restore(flags);
397 }
398 
399 /* Get the boot-time nohz CPU list from the kernel parameters. */
400 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
401 {
402 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
403 	cpumask_copy(tick_nohz_full_mask, cpumask);
404 	tick_nohz_full_running = true;
405 }
406 
407 static int tick_nohz_cpu_down(unsigned int cpu)
408 {
409 	/*
410 	 * The boot CPU handles housekeeping duty (unbound timers,
411 	 * workqueues, timekeeping, ...) on behalf of full dynticks
412 	 * CPUs. It must remain online when nohz full is enabled.
413 	 */
414 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
415 		return -EBUSY;
416 	return 0;
417 }
418 
419 void __init tick_nohz_init(void)
420 {
421 	int cpu, ret;
422 
423 	if (!tick_nohz_full_running)
424 		return;
425 
426 	/*
427 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
428 	 * locking contexts. But then we need irq work to raise its own
429 	 * interrupts to avoid circular dependency on the tick
430 	 */
431 	if (!arch_irq_work_has_interrupt()) {
432 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
433 		cpumask_clear(tick_nohz_full_mask);
434 		tick_nohz_full_running = false;
435 		return;
436 	}
437 
438 	cpu = smp_processor_id();
439 
440 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
441 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
442 			cpu);
443 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
444 	}
445 
446 	for_each_cpu(cpu, tick_nohz_full_mask)
447 		context_tracking_cpu_set(cpu);
448 
449 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
450 					"kernel/nohz:predown", NULL,
451 					tick_nohz_cpu_down);
452 	WARN_ON(ret < 0);
453 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
454 		cpumask_pr_args(tick_nohz_full_mask));
455 }
456 #endif
457 
458 /*
459  * NOHZ - aka dynamic tick functionality
460  */
461 #ifdef CONFIG_NO_HZ_COMMON
462 /*
463  * NO HZ enabled ?
464  */
465 bool tick_nohz_enabled __read_mostly  = true;
466 unsigned long tick_nohz_active  __read_mostly;
467 /*
468  * Enable / Disable tickless mode
469  */
470 static int __init setup_tick_nohz(char *str)
471 {
472 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
473 }
474 
475 __setup("nohz=", setup_tick_nohz);
476 
477 bool tick_nohz_tick_stopped(void)
478 {
479 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
480 
481 	return ts->tick_stopped;
482 }
483 
484 bool tick_nohz_tick_stopped_cpu(int cpu)
485 {
486 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
487 
488 	return ts->tick_stopped;
489 }
490 
491 /**
492  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
493  *
494  * Called from interrupt entry when the CPU was idle
495  *
496  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
497  * must be updated. Otherwise an interrupt handler could use a stale jiffy
498  * value. We do this unconditionally on any CPU, as we don't know whether the
499  * CPU, which has the update task assigned is in a long sleep.
500  */
501 static void tick_nohz_update_jiffies(ktime_t now)
502 {
503 	unsigned long flags;
504 
505 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
506 
507 	local_irq_save(flags);
508 	tick_do_update_jiffies64(now);
509 	local_irq_restore(flags);
510 
511 	touch_softlockup_watchdog_sched();
512 }
513 
514 /*
515  * Updates the per-CPU time idle statistics counters
516  */
517 static void
518 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
519 {
520 	ktime_t delta;
521 
522 	if (ts->idle_active) {
523 		delta = ktime_sub(now, ts->idle_entrytime);
524 		if (nr_iowait_cpu(cpu) > 0)
525 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
526 		else
527 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
528 		ts->idle_entrytime = now;
529 	}
530 
531 	if (last_update_time)
532 		*last_update_time = ktime_to_us(now);
533 
534 }
535 
536 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
537 {
538 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
539 	ts->idle_active = 0;
540 
541 	sched_clock_idle_wakeup_event();
542 }
543 
544 static void tick_nohz_start_idle(struct tick_sched *ts)
545 {
546 	ts->idle_entrytime = ktime_get();
547 	ts->idle_active = 1;
548 	sched_clock_idle_sleep_event();
549 }
550 
551 /**
552  * get_cpu_idle_time_us - get the total idle time of a CPU
553  * @cpu: CPU number to query
554  * @last_update_time: variable to store update time in. Do not update
555  * counters if NULL.
556  *
557  * Return the cumulative idle time (since boot) for a given
558  * CPU, in microseconds.
559  *
560  * This time is measured via accounting rather than sampling,
561  * and is as accurate as ktime_get() is.
562  *
563  * This function returns -1 if NOHZ is not enabled.
564  */
565 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
566 {
567 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
568 	ktime_t now, idle;
569 
570 	if (!tick_nohz_active)
571 		return -1;
572 
573 	now = ktime_get();
574 	if (last_update_time) {
575 		update_ts_time_stats(cpu, ts, now, last_update_time);
576 		idle = ts->idle_sleeptime;
577 	} else {
578 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
579 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
580 
581 			idle = ktime_add(ts->idle_sleeptime, delta);
582 		} else {
583 			idle = ts->idle_sleeptime;
584 		}
585 	}
586 
587 	return ktime_to_us(idle);
588 
589 }
590 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
591 
592 /**
593  * get_cpu_iowait_time_us - get the total iowait time of a CPU
594  * @cpu: CPU number to query
595  * @last_update_time: variable to store update time in. Do not update
596  * counters if NULL.
597  *
598  * Return the cumulative iowait time (since boot) for a given
599  * CPU, in microseconds.
600  *
601  * This time is measured via accounting rather than sampling,
602  * and is as accurate as ktime_get() is.
603  *
604  * This function returns -1 if NOHZ is not enabled.
605  */
606 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
607 {
608 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
609 	ktime_t now, iowait;
610 
611 	if (!tick_nohz_active)
612 		return -1;
613 
614 	now = ktime_get();
615 	if (last_update_time) {
616 		update_ts_time_stats(cpu, ts, now, last_update_time);
617 		iowait = ts->iowait_sleeptime;
618 	} else {
619 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
620 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
621 
622 			iowait = ktime_add(ts->iowait_sleeptime, delta);
623 		} else {
624 			iowait = ts->iowait_sleeptime;
625 		}
626 	}
627 
628 	return ktime_to_us(iowait);
629 }
630 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
631 
632 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
633 {
634 	hrtimer_cancel(&ts->sched_timer);
635 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
636 
637 	/* Forward the time to expire in the future */
638 	hrtimer_forward(&ts->sched_timer, now, tick_period);
639 
640 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
641 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
642 	else
643 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
644 
645 	/*
646 	 * Reset to make sure next tick stop doesn't get fooled by past
647 	 * cached clock deadline.
648 	 */
649 	ts->next_tick = 0;
650 }
651 
652 static inline bool local_timer_softirq_pending(void)
653 {
654 	return local_softirq_pending() & TIMER_SOFTIRQ;
655 }
656 
657 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
658 {
659 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
660 	unsigned long seq, basejiff;
661 
662 	/* Read jiffies and the time when jiffies were updated last */
663 	do {
664 		seq = read_seqbegin(&jiffies_lock);
665 		basemono = last_jiffies_update;
666 		basejiff = jiffies;
667 	} while (read_seqretry(&jiffies_lock, seq));
668 	ts->last_jiffies = basejiff;
669 	ts->timer_expires_base = basemono;
670 
671 	/*
672 	 * Keep the periodic tick, when RCU, architecture or irq_work
673 	 * requests it.
674 	 * Aside of that check whether the local timer softirq is
675 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
676 	 * because there is an already expired timer, so it will request
677 	 * immeditate expiry, which rearms the hardware timer with a
678 	 * minimal delta which brings us back to this place
679 	 * immediately. Lather, rinse and repeat...
680 	 */
681 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
682 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
683 		next_tick = basemono + TICK_NSEC;
684 	} else {
685 		/*
686 		 * Get the next pending timer. If high resolution
687 		 * timers are enabled this only takes the timer wheel
688 		 * timers into account. If high resolution timers are
689 		 * disabled this also looks at the next expiring
690 		 * hrtimer.
691 		 */
692 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 		ts->next_timer = next_tmr;
694 		/* Take the next rcu event into account */
695 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
696 	}
697 
698 	/*
699 	 * If the tick is due in the next period, keep it ticking or
700 	 * force prod the timer.
701 	 */
702 	delta = next_tick - basemono;
703 	if (delta <= (u64)TICK_NSEC) {
704 		/*
705 		 * Tell the timer code that the base is not idle, i.e. undo
706 		 * the effect of get_next_timer_interrupt():
707 		 */
708 		timer_clear_idle();
709 		/*
710 		 * We've not stopped the tick yet, and there's a timer in the
711 		 * next period, so no point in stopping it either, bail.
712 		 */
713 		if (!ts->tick_stopped) {
714 			ts->timer_expires = 0;
715 			goto out;
716 		}
717 	}
718 
719 	/*
720 	 * If this CPU is the one which had the do_timer() duty last, we limit
721 	 * the sleep time to the timekeeping max_deferment value.
722 	 * Otherwise we can sleep as long as we want.
723 	 */
724 	delta = timekeeping_max_deferment();
725 	if (cpu != tick_do_timer_cpu &&
726 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
727 		delta = KTIME_MAX;
728 
729 	/* Calculate the next expiry time */
730 	if (delta < (KTIME_MAX - basemono))
731 		expires = basemono + delta;
732 	else
733 		expires = KTIME_MAX;
734 
735 	ts->timer_expires = min_t(u64, expires, next_tick);
736 
737 out:
738 	return ts->timer_expires;
739 }
740 
741 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
742 {
743 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
744 	u64 basemono = ts->timer_expires_base;
745 	u64 expires = ts->timer_expires;
746 	ktime_t tick = expires;
747 
748 	/* Make sure we won't be trying to stop it twice in a row. */
749 	ts->timer_expires_base = 0;
750 
751 	/*
752 	 * If this CPU is the one which updates jiffies, then give up
753 	 * the assignment and let it be taken by the CPU which runs
754 	 * the tick timer next, which might be this CPU as well. If we
755 	 * don't drop this here the jiffies might be stale and
756 	 * do_timer() never invoked. Keep track of the fact that it
757 	 * was the one which had the do_timer() duty last.
758 	 */
759 	if (cpu == tick_do_timer_cpu) {
760 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
761 		ts->do_timer_last = 1;
762 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
763 		ts->do_timer_last = 0;
764 	}
765 
766 	/* Skip reprogram of event if its not changed */
767 	if (ts->tick_stopped && (expires == ts->next_tick)) {
768 		/* Sanity check: make sure clockevent is actually programmed */
769 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
770 			return;
771 
772 		WARN_ON_ONCE(1);
773 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
774 			    basemono, ts->next_tick, dev->next_event,
775 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
776 	}
777 
778 	/*
779 	 * nohz_stop_sched_tick can be called several times before
780 	 * the nohz_restart_sched_tick is called. This happens when
781 	 * interrupts arrive which do not cause a reschedule. In the
782 	 * first call we save the current tick time, so we can restart
783 	 * the scheduler tick in nohz_restart_sched_tick.
784 	 */
785 	if (!ts->tick_stopped) {
786 		calc_load_nohz_start();
787 		cpu_load_update_nohz_start();
788 		quiet_vmstat();
789 
790 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
791 		ts->tick_stopped = 1;
792 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 	}
794 
795 	ts->next_tick = tick;
796 
797 	/*
798 	 * If the expiration time == KTIME_MAX, then we simply stop
799 	 * the tick timer.
800 	 */
801 	if (unlikely(expires == KTIME_MAX)) {
802 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 			hrtimer_cancel(&ts->sched_timer);
804 		return;
805 	}
806 
807 	hrtimer_set_expires(&ts->sched_timer, tick);
808 
809 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
810 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
811 	else
812 		tick_program_event(tick, 1);
813 }
814 
815 static void tick_nohz_retain_tick(struct tick_sched *ts)
816 {
817 	ts->timer_expires_base = 0;
818 }
819 
820 #ifdef CONFIG_NO_HZ_FULL
821 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
822 {
823 	if (tick_nohz_next_event(ts, cpu))
824 		tick_nohz_stop_tick(ts, cpu);
825 	else
826 		tick_nohz_retain_tick(ts);
827 }
828 #endif /* CONFIG_NO_HZ_FULL */
829 
830 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
831 {
832 	/* Update jiffies first */
833 	tick_do_update_jiffies64(now);
834 	cpu_load_update_nohz_stop();
835 
836 	/*
837 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
838 	 * the clock forward checks in the enqueue path:
839 	 */
840 	timer_clear_idle();
841 
842 	calc_load_nohz_stop();
843 	touch_softlockup_watchdog_sched();
844 	/*
845 	 * Cancel the scheduled timer and restore the tick
846 	 */
847 	ts->tick_stopped  = 0;
848 	ts->idle_exittime = now;
849 
850 	tick_nohz_restart(ts, now);
851 }
852 
853 static void tick_nohz_full_update_tick(struct tick_sched *ts)
854 {
855 #ifdef CONFIG_NO_HZ_FULL
856 	int cpu = smp_processor_id();
857 
858 	if (!tick_nohz_full_cpu(cpu))
859 		return;
860 
861 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
862 		return;
863 
864 	if (can_stop_full_tick(cpu, ts))
865 		tick_nohz_stop_sched_tick(ts, cpu);
866 	else if (ts->tick_stopped)
867 		tick_nohz_restart_sched_tick(ts, ktime_get());
868 #endif
869 }
870 
871 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
872 {
873 	/*
874 	 * If this CPU is offline and it is the one which updates
875 	 * jiffies, then give up the assignment and let it be taken by
876 	 * the CPU which runs the tick timer next. If we don't drop
877 	 * this here the jiffies might be stale and do_timer() never
878 	 * invoked.
879 	 */
880 	if (unlikely(!cpu_online(cpu))) {
881 		if (cpu == tick_do_timer_cpu)
882 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
883 		/*
884 		 * Make sure the CPU doesn't get fooled by obsolete tick
885 		 * deadline if it comes back online later.
886 		 */
887 		ts->next_tick = 0;
888 		return false;
889 	}
890 
891 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
892 		return false;
893 
894 	if (need_resched())
895 		return false;
896 
897 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
898 		static int ratelimit;
899 
900 		if (ratelimit < 10 &&
901 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
902 			pr_warn("NOHZ: local_softirq_pending %02x\n",
903 				(unsigned int) local_softirq_pending());
904 			ratelimit++;
905 		}
906 		return false;
907 	}
908 
909 	if (tick_nohz_full_enabled()) {
910 		/*
911 		 * Keep the tick alive to guarantee timekeeping progression
912 		 * if there are full dynticks CPUs around
913 		 */
914 		if (tick_do_timer_cpu == cpu)
915 			return false;
916 		/*
917 		 * Boot safety: make sure the timekeeping duty has been
918 		 * assigned before entering dyntick-idle mode,
919 		 */
920 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
921 			return false;
922 	}
923 
924 	return true;
925 }
926 
927 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
928 {
929 	ktime_t expires;
930 	int cpu = smp_processor_id();
931 
932 	/*
933 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
934 	 * tick timer expiration time is known already.
935 	 */
936 	if (ts->timer_expires_base)
937 		expires = ts->timer_expires;
938 	else if (can_stop_idle_tick(cpu, ts))
939 		expires = tick_nohz_next_event(ts, cpu);
940 	else
941 		return;
942 
943 	ts->idle_calls++;
944 
945 	if (expires > 0LL) {
946 		int was_stopped = ts->tick_stopped;
947 
948 		tick_nohz_stop_tick(ts, cpu);
949 
950 		ts->idle_sleeps++;
951 		ts->idle_expires = expires;
952 
953 		if (!was_stopped && ts->tick_stopped) {
954 			ts->idle_jiffies = ts->last_jiffies;
955 			nohz_balance_enter_idle(cpu);
956 		}
957 	} else {
958 		tick_nohz_retain_tick(ts);
959 	}
960 }
961 
962 /**
963  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
964  *
965  * When the next event is more than a tick into the future, stop the idle tick
966  */
967 void tick_nohz_idle_stop_tick(void)
968 {
969 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
970 }
971 
972 void tick_nohz_idle_retain_tick(void)
973 {
974 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
975 	/*
976 	 * Undo the effect of get_next_timer_interrupt() called from
977 	 * tick_nohz_next_event().
978 	 */
979 	timer_clear_idle();
980 }
981 
982 /**
983  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
984  *
985  * Called when we start the idle loop.
986  */
987 void tick_nohz_idle_enter(void)
988 {
989 	struct tick_sched *ts;
990 
991 	lockdep_assert_irqs_enabled();
992 
993 	local_irq_disable();
994 
995 	ts = this_cpu_ptr(&tick_cpu_sched);
996 
997 	WARN_ON_ONCE(ts->timer_expires_base);
998 
999 	ts->inidle = 1;
1000 	tick_nohz_start_idle(ts);
1001 
1002 	local_irq_enable();
1003 }
1004 
1005 /**
1006  * tick_nohz_irq_exit - update next tick event from interrupt exit
1007  *
1008  * When an interrupt fires while we are idle and it doesn't cause
1009  * a reschedule, it may still add, modify or delete a timer, enqueue
1010  * an RCU callback, etc...
1011  * So we need to re-calculate and reprogram the next tick event.
1012  */
1013 void tick_nohz_irq_exit(void)
1014 {
1015 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1016 
1017 	if (ts->inidle)
1018 		tick_nohz_start_idle(ts);
1019 	else
1020 		tick_nohz_full_update_tick(ts);
1021 }
1022 
1023 /**
1024  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1025  */
1026 bool tick_nohz_idle_got_tick(void)
1027 {
1028 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1029 
1030 	if (ts->got_idle_tick) {
1031 		ts->got_idle_tick = 0;
1032 		return true;
1033 	}
1034 	return false;
1035 }
1036 
1037 /**
1038  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1039  * @delta_next: duration until the next event if the tick cannot be stopped
1040  *
1041  * Called from power state control code with interrupts disabled
1042  */
1043 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1044 {
1045 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1046 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1047 	int cpu = smp_processor_id();
1048 	/*
1049 	 * The idle entry time is expected to be a sufficient approximation of
1050 	 * the current time at this point.
1051 	 */
1052 	ktime_t now = ts->idle_entrytime;
1053 	ktime_t next_event;
1054 
1055 	WARN_ON_ONCE(!ts->inidle);
1056 
1057 	*delta_next = ktime_sub(dev->next_event, now);
1058 
1059 	if (!can_stop_idle_tick(cpu, ts))
1060 		return *delta_next;
1061 
1062 	next_event = tick_nohz_next_event(ts, cpu);
1063 	if (!next_event)
1064 		return *delta_next;
1065 
1066 	/*
1067 	 * If the next highres timer to expire is earlier than next_event, the
1068 	 * idle governor needs to know that.
1069 	 */
1070 	next_event = min_t(u64, next_event,
1071 			   hrtimer_next_event_without(&ts->sched_timer));
1072 
1073 	return ktime_sub(next_event, now);
1074 }
1075 
1076 /**
1077  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1078  * for a particular CPU.
1079  *
1080  * Called from the schedutil frequency scaling governor in scheduler context.
1081  */
1082 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1083 {
1084 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1085 
1086 	return ts->idle_calls;
1087 }
1088 
1089 /**
1090  * tick_nohz_get_idle_calls - return the current idle calls counter value
1091  *
1092  * Called from the schedutil frequency scaling governor in scheduler context.
1093  */
1094 unsigned long tick_nohz_get_idle_calls(void)
1095 {
1096 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1097 
1098 	return ts->idle_calls;
1099 }
1100 
1101 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1102 {
1103 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1104 	unsigned long ticks;
1105 
1106 	if (vtime_accounting_cpu_enabled())
1107 		return;
1108 	/*
1109 	 * We stopped the tick in idle. Update process times would miss the
1110 	 * time we slept as update_process_times does only a 1 tick
1111 	 * accounting. Enforce that this is accounted to idle !
1112 	 */
1113 	ticks = jiffies - ts->idle_jiffies;
1114 	/*
1115 	 * We might be one off. Do not randomly account a huge number of ticks!
1116 	 */
1117 	if (ticks && ticks < LONG_MAX)
1118 		account_idle_ticks(ticks);
1119 #endif
1120 }
1121 
1122 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1123 {
1124 	tick_nohz_restart_sched_tick(ts, now);
1125 	tick_nohz_account_idle_ticks(ts);
1126 }
1127 
1128 void tick_nohz_idle_restart_tick(void)
1129 {
1130 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1131 
1132 	if (ts->tick_stopped)
1133 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1134 }
1135 
1136 /**
1137  * tick_nohz_idle_exit - restart the idle tick from the idle task
1138  *
1139  * Restart the idle tick when the CPU is woken up from idle
1140  * This also exit the RCU extended quiescent state. The CPU
1141  * can use RCU again after this function is called.
1142  */
1143 void tick_nohz_idle_exit(void)
1144 {
1145 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1146 	bool idle_active, tick_stopped;
1147 	ktime_t now;
1148 
1149 	local_irq_disable();
1150 
1151 	WARN_ON_ONCE(!ts->inidle);
1152 	WARN_ON_ONCE(ts->timer_expires_base);
1153 
1154 	ts->inidle = 0;
1155 	idle_active = ts->idle_active;
1156 	tick_stopped = ts->tick_stopped;
1157 
1158 	if (idle_active || tick_stopped)
1159 		now = ktime_get();
1160 
1161 	if (idle_active)
1162 		tick_nohz_stop_idle(ts, now);
1163 
1164 	if (tick_stopped)
1165 		__tick_nohz_idle_restart_tick(ts, now);
1166 
1167 	local_irq_enable();
1168 }
1169 
1170 /*
1171  * The nohz low res interrupt handler
1172  */
1173 static void tick_nohz_handler(struct clock_event_device *dev)
1174 {
1175 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176 	struct pt_regs *regs = get_irq_regs();
1177 	ktime_t now = ktime_get();
1178 
1179 	dev->next_event = KTIME_MAX;
1180 
1181 	tick_sched_do_timer(ts, now);
1182 	tick_sched_handle(ts, regs);
1183 
1184 	/* No need to reprogram if we are running tickless  */
1185 	if (unlikely(ts->tick_stopped))
1186 		return;
1187 
1188 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1189 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1190 }
1191 
1192 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1193 {
1194 	if (!tick_nohz_enabled)
1195 		return;
1196 	ts->nohz_mode = mode;
1197 	/* One update is enough */
1198 	if (!test_and_set_bit(0, &tick_nohz_active))
1199 		timers_update_nohz();
1200 }
1201 
1202 /**
1203  * tick_nohz_switch_to_nohz - switch to nohz mode
1204  */
1205 static void tick_nohz_switch_to_nohz(void)
1206 {
1207 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1208 	ktime_t next;
1209 
1210 	if (!tick_nohz_enabled)
1211 		return;
1212 
1213 	if (tick_switch_to_oneshot(tick_nohz_handler))
1214 		return;
1215 
1216 	/*
1217 	 * Recycle the hrtimer in ts, so we can share the
1218 	 * hrtimer_forward with the highres code.
1219 	 */
1220 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1221 	/* Get the next period */
1222 	next = tick_init_jiffy_update();
1223 
1224 	hrtimer_set_expires(&ts->sched_timer, next);
1225 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1226 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1227 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1228 }
1229 
1230 static inline void tick_nohz_irq_enter(void)
1231 {
1232 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1233 	ktime_t now;
1234 
1235 	if (!ts->idle_active && !ts->tick_stopped)
1236 		return;
1237 	now = ktime_get();
1238 	if (ts->idle_active)
1239 		tick_nohz_stop_idle(ts, now);
1240 	if (ts->tick_stopped)
1241 		tick_nohz_update_jiffies(now);
1242 }
1243 
1244 #else
1245 
1246 static inline void tick_nohz_switch_to_nohz(void) { }
1247 static inline void tick_nohz_irq_enter(void) { }
1248 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1249 
1250 #endif /* CONFIG_NO_HZ_COMMON */
1251 
1252 /*
1253  * Called from irq_enter to notify about the possible interruption of idle()
1254  */
1255 void tick_irq_enter(void)
1256 {
1257 	tick_check_oneshot_broadcast_this_cpu();
1258 	tick_nohz_irq_enter();
1259 }
1260 
1261 /*
1262  * High resolution timer specific code
1263  */
1264 #ifdef CONFIG_HIGH_RES_TIMERS
1265 /*
1266  * We rearm the timer until we get disabled by the idle code.
1267  * Called with interrupts disabled.
1268  */
1269 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1270 {
1271 	struct tick_sched *ts =
1272 		container_of(timer, struct tick_sched, sched_timer);
1273 	struct pt_regs *regs = get_irq_regs();
1274 	ktime_t now = ktime_get();
1275 
1276 	tick_sched_do_timer(ts, now);
1277 
1278 	/*
1279 	 * Do not call, when we are not in irq context and have
1280 	 * no valid regs pointer
1281 	 */
1282 	if (regs)
1283 		tick_sched_handle(ts, regs);
1284 	else
1285 		ts->next_tick = 0;
1286 
1287 	/* No need to reprogram if we are in idle or full dynticks mode */
1288 	if (unlikely(ts->tick_stopped))
1289 		return HRTIMER_NORESTART;
1290 
1291 	hrtimer_forward(timer, now, tick_period);
1292 
1293 	return HRTIMER_RESTART;
1294 }
1295 
1296 static int sched_skew_tick;
1297 
1298 static int __init skew_tick(char *str)
1299 {
1300 	get_option(&str, &sched_skew_tick);
1301 
1302 	return 0;
1303 }
1304 early_param("skew_tick", skew_tick);
1305 
1306 /**
1307  * tick_setup_sched_timer - setup the tick emulation timer
1308  */
1309 void tick_setup_sched_timer(void)
1310 {
1311 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1312 	ktime_t now = ktime_get();
1313 
1314 	/*
1315 	 * Emulate tick processing via per-CPU hrtimers:
1316 	 */
1317 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1318 	ts->sched_timer.function = tick_sched_timer;
1319 
1320 	/* Get the next period (per-CPU) */
1321 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1322 
1323 	/* Offset the tick to avert jiffies_lock contention. */
1324 	if (sched_skew_tick) {
1325 		u64 offset = ktime_to_ns(tick_period) >> 1;
1326 		do_div(offset, num_possible_cpus());
1327 		offset *= smp_processor_id();
1328 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1329 	}
1330 
1331 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1332 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1333 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1334 }
1335 #endif /* HIGH_RES_TIMERS */
1336 
1337 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1338 void tick_cancel_sched_timer(int cpu)
1339 {
1340 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1341 
1342 # ifdef CONFIG_HIGH_RES_TIMERS
1343 	if (ts->sched_timer.base)
1344 		hrtimer_cancel(&ts->sched_timer);
1345 # endif
1346 
1347 	memset(ts, 0, sizeof(*ts));
1348 }
1349 #endif
1350 
1351 /**
1352  * Async notification about clocksource changes
1353  */
1354 void tick_clock_notify(void)
1355 {
1356 	int cpu;
1357 
1358 	for_each_possible_cpu(cpu)
1359 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1360 }
1361 
1362 /*
1363  * Async notification about clock event changes
1364  */
1365 void tick_oneshot_notify(void)
1366 {
1367 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1368 
1369 	set_bit(0, &ts->check_clocks);
1370 }
1371 
1372 /**
1373  * Check, if a change happened, which makes oneshot possible.
1374  *
1375  * Called cyclic from the hrtimer softirq (driven by the timer
1376  * softirq) allow_nohz signals, that we can switch into low-res nohz
1377  * mode, because high resolution timers are disabled (either compile
1378  * or runtime). Called with interrupts disabled.
1379  */
1380 int tick_check_oneshot_change(int allow_nohz)
1381 {
1382 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1383 
1384 	if (!test_and_clear_bit(0, &ts->check_clocks))
1385 		return 0;
1386 
1387 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1388 		return 0;
1389 
1390 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1391 		return 0;
1392 
1393 	if (!allow_nohz)
1394 		return 1;
1395 
1396 	tick_nohz_switch_to_nohz();
1397 	return 0;
1398 }
1399