xref: /openbmc/linux/kernel/time/tick-sched.c (revision e23feb16)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	}
88 	write_sequnlock(&jiffies_lock);
89 }
90 
91 /*
92  * Initialize and return retrieve the jiffies update.
93  */
94 static ktime_t tick_init_jiffy_update(void)
95 {
96 	ktime_t period;
97 
98 	write_seqlock(&jiffies_lock);
99 	/* Did we start the jiffies update yet ? */
100 	if (last_jiffies_update.tv64 == 0)
101 		last_jiffies_update = tick_next_period;
102 	period = last_jiffies_update;
103 	write_sequnlock(&jiffies_lock);
104 	return period;
105 }
106 
107 
108 static void tick_sched_do_timer(ktime_t now)
109 {
110 	int cpu = smp_processor_id();
111 
112 #ifdef CONFIG_NO_HZ_COMMON
113 	/*
114 	 * Check if the do_timer duty was dropped. We don't care about
115 	 * concurrency: This happens only when the cpu in charge went
116 	 * into a long sleep. If two cpus happen to assign themself to
117 	 * this duty, then the jiffies update is still serialized by
118 	 * jiffies_lock.
119 	 */
120 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
121 	    && !tick_nohz_full_cpu(cpu))
122 		tick_do_timer_cpu = cpu;
123 #endif
124 
125 	/* Check, if the jiffies need an update */
126 	if (tick_do_timer_cpu == cpu)
127 		tick_do_update_jiffies64(now);
128 }
129 
130 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
131 {
132 #ifdef CONFIG_NO_HZ_COMMON
133 	/*
134 	 * When we are idle and the tick is stopped, we have to touch
135 	 * the watchdog as we might not schedule for a really long
136 	 * time. This happens on complete idle SMP systems while
137 	 * waiting on the login prompt. We also increment the "start of
138 	 * idle" jiffy stamp so the idle accounting adjustment we do
139 	 * when we go busy again does not account too much ticks.
140 	 */
141 	if (ts->tick_stopped) {
142 		touch_softlockup_watchdog();
143 		if (is_idle_task(current))
144 			ts->idle_jiffies++;
145 	}
146 #endif
147 	update_process_times(user_mode(regs));
148 	profile_tick(CPU_PROFILING);
149 }
150 
151 #ifdef CONFIG_NO_HZ_FULL
152 cpumask_var_t tick_nohz_full_mask;
153 bool tick_nohz_full_running;
154 
155 static bool can_stop_full_tick(void)
156 {
157 	WARN_ON_ONCE(!irqs_disabled());
158 
159 	if (!sched_can_stop_tick()) {
160 		trace_tick_stop(0, "more than 1 task in runqueue\n");
161 		return false;
162 	}
163 
164 	if (!posix_cpu_timers_can_stop_tick(current)) {
165 		trace_tick_stop(0, "posix timers running\n");
166 		return false;
167 	}
168 
169 	if (!perf_event_can_stop_tick()) {
170 		trace_tick_stop(0, "perf events running\n");
171 		return false;
172 	}
173 
174 	/* sched_clock_tick() needs us? */
175 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
176 	/*
177 	 * TODO: kick full dynticks CPUs when
178 	 * sched_clock_stable is set.
179 	 */
180 	if (!sched_clock_stable) {
181 		trace_tick_stop(0, "unstable sched clock\n");
182 		/*
183 		 * Don't allow the user to think they can get
184 		 * full NO_HZ with this machine.
185 		 */
186 		WARN_ONCE(tick_nohz_full_running,
187 			  "NO_HZ FULL will not work with unstable sched clock");
188 		return false;
189 	}
190 #endif
191 
192 	return true;
193 }
194 
195 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
196 
197 /*
198  * Re-evaluate the need for the tick on the current CPU
199  * and restart it if necessary.
200  */
201 void __tick_nohz_full_check(void)
202 {
203 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
204 
205 	if (tick_nohz_full_cpu(smp_processor_id())) {
206 		if (ts->tick_stopped && !is_idle_task(current)) {
207 			if (!can_stop_full_tick())
208 				tick_nohz_restart_sched_tick(ts, ktime_get());
209 		}
210 	}
211 }
212 
213 static void nohz_full_kick_work_func(struct irq_work *work)
214 {
215 	__tick_nohz_full_check();
216 }
217 
218 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
219 	.func = nohz_full_kick_work_func,
220 };
221 
222 /*
223  * Kick the current CPU if it's full dynticks in order to force it to
224  * re-evaluate its dependency on the tick and restart it if necessary.
225  */
226 void tick_nohz_full_kick(void)
227 {
228 	if (tick_nohz_full_cpu(smp_processor_id()))
229 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
230 }
231 
232 static void nohz_full_kick_ipi(void *info)
233 {
234 	__tick_nohz_full_check();
235 }
236 
237 /*
238  * Kick all full dynticks CPUs in order to force these to re-evaluate
239  * their dependency on the tick and restart it if necessary.
240  */
241 void tick_nohz_full_kick_all(void)
242 {
243 	if (!tick_nohz_full_running)
244 		return;
245 
246 	preempt_disable();
247 	smp_call_function_many(tick_nohz_full_mask,
248 			       nohz_full_kick_ipi, NULL, false);
249 	tick_nohz_full_kick();
250 	preempt_enable();
251 }
252 
253 /*
254  * Re-evaluate the need for the tick as we switch the current task.
255  * It might need the tick due to per task/process properties:
256  * perf events, posix cpu timers, ...
257  */
258 void __tick_nohz_task_switch(struct task_struct *tsk)
259 {
260 	unsigned long flags;
261 
262 	local_irq_save(flags);
263 
264 	if (!tick_nohz_full_cpu(smp_processor_id()))
265 		goto out;
266 
267 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
268 		tick_nohz_full_kick();
269 
270 out:
271 	local_irq_restore(flags);
272 }
273 
274 /* Parse the boot-time nohz CPU list from the kernel parameters. */
275 static int __init tick_nohz_full_setup(char *str)
276 {
277 	int cpu;
278 
279 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
280 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
281 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
282 		return 1;
283 	}
284 
285 	cpu = smp_processor_id();
286 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
287 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
288 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
289 	}
290 	tick_nohz_full_running = true;
291 
292 	return 1;
293 }
294 __setup("nohz_full=", tick_nohz_full_setup);
295 
296 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
297 						 unsigned long action,
298 						 void *hcpu)
299 {
300 	unsigned int cpu = (unsigned long)hcpu;
301 
302 	switch (action & ~CPU_TASKS_FROZEN) {
303 	case CPU_DOWN_PREPARE:
304 		/*
305 		 * If we handle the timekeeping duty for full dynticks CPUs,
306 		 * we can't safely shutdown that CPU.
307 		 */
308 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
309 			return NOTIFY_BAD;
310 		break;
311 	}
312 	return NOTIFY_OK;
313 }
314 
315 /*
316  * Worst case string length in chunks of CPU range seems 2 steps
317  * separations: 0,2,4,6,...
318  * This is NR_CPUS + sizeof('\0')
319  */
320 static char __initdata nohz_full_buf[NR_CPUS + 1];
321 
322 static int tick_nohz_init_all(void)
323 {
324 	int err = -1;
325 
326 #ifdef CONFIG_NO_HZ_FULL_ALL
327 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
328 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
329 		return err;
330 	}
331 	err = 0;
332 	cpumask_setall(tick_nohz_full_mask);
333 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
334 	tick_nohz_full_running = true;
335 #endif
336 	return err;
337 }
338 
339 void __init tick_nohz_init(void)
340 {
341 	int cpu;
342 
343 	if (!tick_nohz_full_running) {
344 		if (tick_nohz_init_all() < 0)
345 			return;
346 	}
347 
348 	for_each_cpu(cpu, tick_nohz_full_mask)
349 		context_tracking_cpu_set(cpu);
350 
351 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
352 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
353 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
354 }
355 #endif
356 
357 /*
358  * NOHZ - aka dynamic tick functionality
359  */
360 #ifdef CONFIG_NO_HZ_COMMON
361 /*
362  * NO HZ enabled ?
363  */
364 int tick_nohz_enabled __read_mostly  = 1;
365 
366 /*
367  * Enable / Disable tickless mode
368  */
369 static int __init setup_tick_nohz(char *str)
370 {
371 	if (!strcmp(str, "off"))
372 		tick_nohz_enabled = 0;
373 	else if (!strcmp(str, "on"))
374 		tick_nohz_enabled = 1;
375 	else
376 		return 0;
377 	return 1;
378 }
379 
380 __setup("nohz=", setup_tick_nohz);
381 
382 /**
383  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
384  *
385  * Called from interrupt entry when the CPU was idle
386  *
387  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
388  * must be updated. Otherwise an interrupt handler could use a stale jiffy
389  * value. We do this unconditionally on any cpu, as we don't know whether the
390  * cpu, which has the update task assigned is in a long sleep.
391  */
392 static void tick_nohz_update_jiffies(ktime_t now)
393 {
394 	int cpu = smp_processor_id();
395 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
396 	unsigned long flags;
397 
398 	ts->idle_waketime = now;
399 
400 	local_irq_save(flags);
401 	tick_do_update_jiffies64(now);
402 	local_irq_restore(flags);
403 
404 	touch_softlockup_watchdog();
405 }
406 
407 /*
408  * Updates the per cpu time idle statistics counters
409  */
410 static void
411 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
412 {
413 	ktime_t delta;
414 
415 	if (ts->idle_active) {
416 		delta = ktime_sub(now, ts->idle_entrytime);
417 		if (nr_iowait_cpu(cpu) > 0)
418 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
419 		else
420 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
421 		ts->idle_entrytime = now;
422 	}
423 
424 	if (last_update_time)
425 		*last_update_time = ktime_to_us(now);
426 
427 }
428 
429 static void tick_nohz_stop_idle(int cpu, ktime_t now)
430 {
431 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
432 
433 	update_ts_time_stats(cpu, ts, now, NULL);
434 	ts->idle_active = 0;
435 
436 	sched_clock_idle_wakeup_event(0);
437 }
438 
439 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
440 {
441 	ktime_t now = ktime_get();
442 
443 	ts->idle_entrytime = now;
444 	ts->idle_active = 1;
445 	sched_clock_idle_sleep_event();
446 	return now;
447 }
448 
449 /**
450  * get_cpu_idle_time_us - get the total idle time of a cpu
451  * @cpu: CPU number to query
452  * @last_update_time: variable to store update time in. Do not update
453  * counters if NULL.
454  *
455  * Return the cummulative idle time (since boot) for a given
456  * CPU, in microseconds.
457  *
458  * This time is measured via accounting rather than sampling,
459  * and is as accurate as ktime_get() is.
460  *
461  * This function returns -1 if NOHZ is not enabled.
462  */
463 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
464 {
465 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
466 	ktime_t now, idle;
467 
468 	if (!tick_nohz_enabled)
469 		return -1;
470 
471 	now = ktime_get();
472 	if (last_update_time) {
473 		update_ts_time_stats(cpu, ts, now, last_update_time);
474 		idle = ts->idle_sleeptime;
475 	} else {
476 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
477 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
478 
479 			idle = ktime_add(ts->idle_sleeptime, delta);
480 		} else {
481 			idle = ts->idle_sleeptime;
482 		}
483 	}
484 
485 	return ktime_to_us(idle);
486 
487 }
488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
489 
490 /**
491  * get_cpu_iowait_time_us - get the total iowait time of a cpu
492  * @cpu: CPU number to query
493  * @last_update_time: variable to store update time in. Do not update
494  * counters if NULL.
495  *
496  * Return the cummulative iowait time (since boot) for a given
497  * CPU, in microseconds.
498  *
499  * This time is measured via accounting rather than sampling,
500  * and is as accurate as ktime_get() is.
501  *
502  * This function returns -1 if NOHZ is not enabled.
503  */
504 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
505 {
506 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
507 	ktime_t now, iowait;
508 
509 	if (!tick_nohz_enabled)
510 		return -1;
511 
512 	now = ktime_get();
513 	if (last_update_time) {
514 		update_ts_time_stats(cpu, ts, now, last_update_time);
515 		iowait = ts->iowait_sleeptime;
516 	} else {
517 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
518 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
519 
520 			iowait = ktime_add(ts->iowait_sleeptime, delta);
521 		} else {
522 			iowait = ts->iowait_sleeptime;
523 		}
524 	}
525 
526 	return ktime_to_us(iowait);
527 }
528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
529 
530 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
531 					 ktime_t now, int cpu)
532 {
533 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
534 	ktime_t last_update, expires, ret = { .tv64 = 0 };
535 	unsigned long rcu_delta_jiffies;
536 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
537 	u64 time_delta;
538 
539 	/* Read jiffies and the time when jiffies were updated last */
540 	do {
541 		seq = read_seqbegin(&jiffies_lock);
542 		last_update = last_jiffies_update;
543 		last_jiffies = jiffies;
544 		time_delta = timekeeping_max_deferment();
545 	} while (read_seqretry(&jiffies_lock, seq));
546 
547 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
548 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
549 		next_jiffies = last_jiffies + 1;
550 		delta_jiffies = 1;
551 	} else {
552 		/* Get the next timer wheel timer */
553 		next_jiffies = get_next_timer_interrupt(last_jiffies);
554 		delta_jiffies = next_jiffies - last_jiffies;
555 		if (rcu_delta_jiffies < delta_jiffies) {
556 			next_jiffies = last_jiffies + rcu_delta_jiffies;
557 			delta_jiffies = rcu_delta_jiffies;
558 		}
559 	}
560 
561 	/*
562 	 * Do not stop the tick, if we are only one off (or less)
563 	 * or if the cpu is required for RCU:
564 	 */
565 	if (!ts->tick_stopped && delta_jiffies <= 1)
566 		goto out;
567 
568 	/* Schedule the tick, if we are at least one jiffie off */
569 	if ((long)delta_jiffies >= 1) {
570 
571 		/*
572 		 * If this cpu is the one which updates jiffies, then
573 		 * give up the assignment and let it be taken by the
574 		 * cpu which runs the tick timer next, which might be
575 		 * this cpu as well. If we don't drop this here the
576 		 * jiffies might be stale and do_timer() never
577 		 * invoked. Keep track of the fact that it was the one
578 		 * which had the do_timer() duty last. If this cpu is
579 		 * the one which had the do_timer() duty last, we
580 		 * limit the sleep time to the timekeeping
581 		 * max_deferement value which we retrieved
582 		 * above. Otherwise we can sleep as long as we want.
583 		 */
584 		if (cpu == tick_do_timer_cpu) {
585 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
586 			ts->do_timer_last = 1;
587 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
588 			time_delta = KTIME_MAX;
589 			ts->do_timer_last = 0;
590 		} else if (!ts->do_timer_last) {
591 			time_delta = KTIME_MAX;
592 		}
593 
594 #ifdef CONFIG_NO_HZ_FULL
595 		if (!ts->inidle) {
596 			time_delta = min(time_delta,
597 					 scheduler_tick_max_deferment());
598 		}
599 #endif
600 
601 		/*
602 		 * calculate the expiry time for the next timer wheel
603 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
604 		 * that there is no timer pending or at least extremely
605 		 * far into the future (12 days for HZ=1000). In this
606 		 * case we set the expiry to the end of time.
607 		 */
608 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
609 			/*
610 			 * Calculate the time delta for the next timer event.
611 			 * If the time delta exceeds the maximum time delta
612 			 * permitted by the current clocksource then adjust
613 			 * the time delta accordingly to ensure the
614 			 * clocksource does not wrap.
615 			 */
616 			time_delta = min_t(u64, time_delta,
617 					   tick_period.tv64 * delta_jiffies);
618 		}
619 
620 		if (time_delta < KTIME_MAX)
621 			expires = ktime_add_ns(last_update, time_delta);
622 		else
623 			expires.tv64 = KTIME_MAX;
624 
625 		/* Skip reprogram of event if its not changed */
626 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
627 			goto out;
628 
629 		ret = expires;
630 
631 		/*
632 		 * nohz_stop_sched_tick can be called several times before
633 		 * the nohz_restart_sched_tick is called. This happens when
634 		 * interrupts arrive which do not cause a reschedule. In the
635 		 * first call we save the current tick time, so we can restart
636 		 * the scheduler tick in nohz_restart_sched_tick.
637 		 */
638 		if (!ts->tick_stopped) {
639 			nohz_balance_enter_idle(cpu);
640 			calc_load_enter_idle();
641 
642 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
643 			ts->tick_stopped = 1;
644 			trace_tick_stop(1, " ");
645 		}
646 
647 		/*
648 		 * If the expiration time == KTIME_MAX, then
649 		 * in this case we simply stop the tick timer.
650 		 */
651 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
652 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
653 				hrtimer_cancel(&ts->sched_timer);
654 			goto out;
655 		}
656 
657 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
658 			hrtimer_start(&ts->sched_timer, expires,
659 				      HRTIMER_MODE_ABS_PINNED);
660 			/* Check, if the timer was already in the past */
661 			if (hrtimer_active(&ts->sched_timer))
662 				goto out;
663 		} else if (!tick_program_event(expires, 0))
664 				goto out;
665 		/*
666 		 * We are past the event already. So we crossed a
667 		 * jiffie boundary. Update jiffies and raise the
668 		 * softirq.
669 		 */
670 		tick_do_update_jiffies64(ktime_get());
671 	}
672 	raise_softirq_irqoff(TIMER_SOFTIRQ);
673 out:
674 	ts->next_jiffies = next_jiffies;
675 	ts->last_jiffies = last_jiffies;
676 	ts->sleep_length = ktime_sub(dev->next_event, now);
677 
678 	return ret;
679 }
680 
681 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
682 {
683 #ifdef CONFIG_NO_HZ_FULL
684        int cpu = smp_processor_id();
685 
686        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
687                return;
688 
689        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
690 	       return;
691 
692        if (!can_stop_full_tick())
693                return;
694 
695        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
696 #endif
697 }
698 
699 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
700 {
701 	/*
702 	 * If this cpu is offline and it is the one which updates
703 	 * jiffies, then give up the assignment and let it be taken by
704 	 * the cpu which runs the tick timer next. If we don't drop
705 	 * this here the jiffies might be stale and do_timer() never
706 	 * invoked.
707 	 */
708 	if (unlikely(!cpu_online(cpu))) {
709 		if (cpu == tick_do_timer_cpu)
710 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
711 		return false;
712 	}
713 
714 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
715 		return false;
716 
717 	if (need_resched())
718 		return false;
719 
720 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
721 		static int ratelimit;
722 
723 		if (ratelimit < 10 &&
724 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
725 			pr_warn("NOHZ: local_softirq_pending %02x\n",
726 				(unsigned int) local_softirq_pending());
727 			ratelimit++;
728 		}
729 		return false;
730 	}
731 
732 	if (tick_nohz_full_enabled()) {
733 		/*
734 		 * Keep the tick alive to guarantee timekeeping progression
735 		 * if there are full dynticks CPUs around
736 		 */
737 		if (tick_do_timer_cpu == cpu)
738 			return false;
739 		/*
740 		 * Boot safety: make sure the timekeeping duty has been
741 		 * assigned before entering dyntick-idle mode,
742 		 */
743 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
744 			return false;
745 	}
746 
747 	return true;
748 }
749 
750 static void __tick_nohz_idle_enter(struct tick_sched *ts)
751 {
752 	ktime_t now, expires;
753 	int cpu = smp_processor_id();
754 
755 	now = tick_nohz_start_idle(cpu, ts);
756 
757 	if (can_stop_idle_tick(cpu, ts)) {
758 		int was_stopped = ts->tick_stopped;
759 
760 		ts->idle_calls++;
761 
762 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
763 		if (expires.tv64 > 0LL) {
764 			ts->idle_sleeps++;
765 			ts->idle_expires = expires;
766 		}
767 
768 		if (!was_stopped && ts->tick_stopped)
769 			ts->idle_jiffies = ts->last_jiffies;
770 	}
771 }
772 
773 /**
774  * tick_nohz_idle_enter - stop the idle tick from the idle task
775  *
776  * When the next event is more than a tick into the future, stop the idle tick
777  * Called when we start the idle loop.
778  *
779  * The arch is responsible of calling:
780  *
781  * - rcu_idle_enter() after its last use of RCU before the CPU is put
782  *  to sleep.
783  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
784  */
785 void tick_nohz_idle_enter(void)
786 {
787 	struct tick_sched *ts;
788 
789 	WARN_ON_ONCE(irqs_disabled());
790 
791 	/*
792  	 * Update the idle state in the scheduler domain hierarchy
793  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
794  	 * State will be updated to busy during the first busy tick after
795  	 * exiting idle.
796  	 */
797 	set_cpu_sd_state_idle();
798 
799 	local_irq_disable();
800 
801 	ts = &__get_cpu_var(tick_cpu_sched);
802 	/*
803 	 * set ts->inidle unconditionally. even if the system did not
804 	 * switch to nohz mode the cpu frequency governers rely on the
805 	 * update of the idle time accounting in tick_nohz_start_idle().
806 	 */
807 	ts->inidle = 1;
808 	__tick_nohz_idle_enter(ts);
809 
810 	local_irq_enable();
811 }
812 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
813 
814 /**
815  * tick_nohz_irq_exit - update next tick event from interrupt exit
816  *
817  * When an interrupt fires while we are idle and it doesn't cause
818  * a reschedule, it may still add, modify or delete a timer, enqueue
819  * an RCU callback, etc...
820  * So we need to re-calculate and reprogram the next tick event.
821  */
822 void tick_nohz_irq_exit(void)
823 {
824 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
825 
826 	if (ts->inidle)
827 		__tick_nohz_idle_enter(ts);
828 	else
829 		tick_nohz_full_stop_tick(ts);
830 }
831 
832 /**
833  * tick_nohz_get_sleep_length - return the length of the current sleep
834  *
835  * Called from power state control code with interrupts disabled
836  */
837 ktime_t tick_nohz_get_sleep_length(void)
838 {
839 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
840 
841 	return ts->sleep_length;
842 }
843 
844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
845 {
846 	hrtimer_cancel(&ts->sched_timer);
847 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
848 
849 	while (1) {
850 		/* Forward the time to expire in the future */
851 		hrtimer_forward(&ts->sched_timer, now, tick_period);
852 
853 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
854 			hrtimer_start_expires(&ts->sched_timer,
855 					      HRTIMER_MODE_ABS_PINNED);
856 			/* Check, if the timer was already in the past */
857 			if (hrtimer_active(&ts->sched_timer))
858 				break;
859 		} else {
860 			if (!tick_program_event(
861 				hrtimer_get_expires(&ts->sched_timer), 0))
862 				break;
863 		}
864 		/* Reread time and update jiffies */
865 		now = ktime_get();
866 		tick_do_update_jiffies64(now);
867 	}
868 }
869 
870 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
871 {
872 	/* Update jiffies first */
873 	tick_do_update_jiffies64(now);
874 	update_cpu_load_nohz();
875 
876 	calc_load_exit_idle();
877 	touch_softlockup_watchdog();
878 	/*
879 	 * Cancel the scheduled timer and restore the tick
880 	 */
881 	ts->tick_stopped  = 0;
882 	ts->idle_exittime = now;
883 
884 	tick_nohz_restart(ts, now);
885 }
886 
887 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
888 {
889 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
890 	unsigned long ticks;
891 
892 	if (vtime_accounting_enabled())
893 		return;
894 	/*
895 	 * We stopped the tick in idle. Update process times would miss the
896 	 * time we slept as update_process_times does only a 1 tick
897 	 * accounting. Enforce that this is accounted to idle !
898 	 */
899 	ticks = jiffies - ts->idle_jiffies;
900 	/*
901 	 * We might be one off. Do not randomly account a huge number of ticks!
902 	 */
903 	if (ticks && ticks < LONG_MAX)
904 		account_idle_ticks(ticks);
905 #endif
906 }
907 
908 /**
909  * tick_nohz_idle_exit - restart the idle tick from the idle task
910  *
911  * Restart the idle tick when the CPU is woken up from idle
912  * This also exit the RCU extended quiescent state. The CPU
913  * can use RCU again after this function is called.
914  */
915 void tick_nohz_idle_exit(void)
916 {
917 	int cpu = smp_processor_id();
918 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
919 	ktime_t now;
920 
921 	local_irq_disable();
922 
923 	WARN_ON_ONCE(!ts->inidle);
924 
925 	ts->inidle = 0;
926 
927 	if (ts->idle_active || ts->tick_stopped)
928 		now = ktime_get();
929 
930 	if (ts->idle_active)
931 		tick_nohz_stop_idle(cpu, now);
932 
933 	if (ts->tick_stopped) {
934 		tick_nohz_restart_sched_tick(ts, now);
935 		tick_nohz_account_idle_ticks(ts);
936 	}
937 
938 	local_irq_enable();
939 }
940 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
941 
942 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
943 {
944 	hrtimer_forward(&ts->sched_timer, now, tick_period);
945 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
946 }
947 
948 /*
949  * The nohz low res interrupt handler
950  */
951 static void tick_nohz_handler(struct clock_event_device *dev)
952 {
953 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
954 	struct pt_regs *regs = get_irq_regs();
955 	ktime_t now = ktime_get();
956 
957 	dev->next_event.tv64 = KTIME_MAX;
958 
959 	tick_sched_do_timer(now);
960 	tick_sched_handle(ts, regs);
961 
962 	while (tick_nohz_reprogram(ts, now)) {
963 		now = ktime_get();
964 		tick_do_update_jiffies64(now);
965 	}
966 }
967 
968 /**
969  * tick_nohz_switch_to_nohz - switch to nohz mode
970  */
971 static void tick_nohz_switch_to_nohz(void)
972 {
973 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
974 	ktime_t next;
975 
976 	if (!tick_nohz_enabled)
977 		return;
978 
979 	local_irq_disable();
980 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
981 		local_irq_enable();
982 		return;
983 	}
984 
985 	ts->nohz_mode = NOHZ_MODE_LOWRES;
986 
987 	/*
988 	 * Recycle the hrtimer in ts, so we can share the
989 	 * hrtimer_forward with the highres code.
990 	 */
991 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
992 	/* Get the next period */
993 	next = tick_init_jiffy_update();
994 
995 	for (;;) {
996 		hrtimer_set_expires(&ts->sched_timer, next);
997 		if (!tick_program_event(next, 0))
998 			break;
999 		next = ktime_add(next, tick_period);
1000 	}
1001 	local_irq_enable();
1002 }
1003 
1004 /*
1005  * When NOHZ is enabled and the tick is stopped, we need to kick the
1006  * tick timer from irq_enter() so that the jiffies update is kept
1007  * alive during long running softirqs. That's ugly as hell, but
1008  * correctness is key even if we need to fix the offending softirq in
1009  * the first place.
1010  *
1011  * Note, this is different to tick_nohz_restart. We just kick the
1012  * timer and do not touch the other magic bits which need to be done
1013  * when idle is left.
1014  */
1015 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1016 {
1017 #if 0
1018 	/* Switch back to 2.6.27 behaviour */
1019 
1020 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1021 	ktime_t delta;
1022 
1023 	/*
1024 	 * Do not touch the tick device, when the next expiry is either
1025 	 * already reached or less/equal than the tick period.
1026 	 */
1027 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1028 	if (delta.tv64 <= tick_period.tv64)
1029 		return;
1030 
1031 	tick_nohz_restart(ts, now);
1032 #endif
1033 }
1034 
1035 static inline void tick_check_nohz(int cpu)
1036 {
1037 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1038 	ktime_t now;
1039 
1040 	if (!ts->idle_active && !ts->tick_stopped)
1041 		return;
1042 	now = ktime_get();
1043 	if (ts->idle_active)
1044 		tick_nohz_stop_idle(cpu, now);
1045 	if (ts->tick_stopped) {
1046 		tick_nohz_update_jiffies(now);
1047 		tick_nohz_kick_tick(cpu, now);
1048 	}
1049 }
1050 
1051 #else
1052 
1053 static inline void tick_nohz_switch_to_nohz(void) { }
1054 static inline void tick_check_nohz(int cpu) { }
1055 
1056 #endif /* CONFIG_NO_HZ_COMMON */
1057 
1058 /*
1059  * Called from irq_enter to notify about the possible interruption of idle()
1060  */
1061 void tick_check_idle(int cpu)
1062 {
1063 	tick_check_oneshot_broadcast(cpu);
1064 	tick_check_nohz(cpu);
1065 }
1066 
1067 /*
1068  * High resolution timer specific code
1069  */
1070 #ifdef CONFIG_HIGH_RES_TIMERS
1071 /*
1072  * We rearm the timer until we get disabled by the idle code.
1073  * Called with interrupts disabled.
1074  */
1075 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1076 {
1077 	struct tick_sched *ts =
1078 		container_of(timer, struct tick_sched, sched_timer);
1079 	struct pt_regs *regs = get_irq_regs();
1080 	ktime_t now = ktime_get();
1081 
1082 	tick_sched_do_timer(now);
1083 
1084 	/*
1085 	 * Do not call, when we are not in irq context and have
1086 	 * no valid regs pointer
1087 	 */
1088 	if (regs)
1089 		tick_sched_handle(ts, regs);
1090 
1091 	hrtimer_forward(timer, now, tick_period);
1092 
1093 	return HRTIMER_RESTART;
1094 }
1095 
1096 static int sched_skew_tick;
1097 
1098 static int __init skew_tick(char *str)
1099 {
1100 	get_option(&str, &sched_skew_tick);
1101 
1102 	return 0;
1103 }
1104 early_param("skew_tick", skew_tick);
1105 
1106 /**
1107  * tick_setup_sched_timer - setup the tick emulation timer
1108  */
1109 void tick_setup_sched_timer(void)
1110 {
1111 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1112 	ktime_t now = ktime_get();
1113 
1114 	/*
1115 	 * Emulate tick processing via per-CPU hrtimers:
1116 	 */
1117 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1118 	ts->sched_timer.function = tick_sched_timer;
1119 
1120 	/* Get the next period (per cpu) */
1121 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1122 
1123 	/* Offset the tick to avert jiffies_lock contention. */
1124 	if (sched_skew_tick) {
1125 		u64 offset = ktime_to_ns(tick_period) >> 1;
1126 		do_div(offset, num_possible_cpus());
1127 		offset *= smp_processor_id();
1128 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1129 	}
1130 
1131 	for (;;) {
1132 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1133 		hrtimer_start_expires(&ts->sched_timer,
1134 				      HRTIMER_MODE_ABS_PINNED);
1135 		/* Check, if the timer was already in the past */
1136 		if (hrtimer_active(&ts->sched_timer))
1137 			break;
1138 		now = ktime_get();
1139 	}
1140 
1141 #ifdef CONFIG_NO_HZ_COMMON
1142 	if (tick_nohz_enabled)
1143 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1144 #endif
1145 }
1146 #endif /* HIGH_RES_TIMERS */
1147 
1148 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1149 void tick_cancel_sched_timer(int cpu)
1150 {
1151 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1152 
1153 # ifdef CONFIG_HIGH_RES_TIMERS
1154 	if (ts->sched_timer.base)
1155 		hrtimer_cancel(&ts->sched_timer);
1156 # endif
1157 
1158 	memset(ts, 0, sizeof(*ts));
1159 }
1160 #endif
1161 
1162 /**
1163  * Async notification about clocksource changes
1164  */
1165 void tick_clock_notify(void)
1166 {
1167 	int cpu;
1168 
1169 	for_each_possible_cpu(cpu)
1170 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1171 }
1172 
1173 /*
1174  * Async notification about clock event changes
1175  */
1176 void tick_oneshot_notify(void)
1177 {
1178 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1179 
1180 	set_bit(0, &ts->check_clocks);
1181 }
1182 
1183 /**
1184  * Check, if a change happened, which makes oneshot possible.
1185  *
1186  * Called cyclic from the hrtimer softirq (driven by the timer
1187  * softirq) allow_nohz signals, that we can switch into low-res nohz
1188  * mode, because high resolution timers are disabled (either compile
1189  * or runtime).
1190  */
1191 int tick_check_oneshot_change(int allow_nohz)
1192 {
1193 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1194 
1195 	if (!test_and_clear_bit(0, &ts->check_clocks))
1196 		return 0;
1197 
1198 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1199 		return 0;
1200 
1201 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1202 		return 0;
1203 
1204 	if (!allow_nohz)
1205 		return 1;
1206 
1207 	tick_nohz_switch_to_nohz();
1208 	return 0;
1209 }
1210