1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 * The READ_ONCE() pairs with two updates done later in this function. 62 */ 63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update)); 64 if (delta < tick_period) 65 return; 66 67 /* Reevaluate with jiffies_lock held */ 68 raw_spin_lock(&jiffies_lock); 69 write_seqcount_begin(&jiffies_seq); 70 71 delta = ktime_sub(now, last_jiffies_update); 72 if (delta >= tick_period) { 73 74 delta = ktime_sub(delta, tick_period); 75 /* Pairs with the lockless read in this function. */ 76 WRITE_ONCE(last_jiffies_update, 77 ktime_add(last_jiffies_update, tick_period)); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 /* Pairs with the lockless read in this function. */ 86 WRITE_ONCE(last_jiffies_update, 87 ktime_add_ns(last_jiffies_update, 88 incr * ticks)); 89 } 90 do_timer(++ticks); 91 92 /* Keep the tick_next_period variable up to date */ 93 tick_next_period = ktime_add(last_jiffies_update, tick_period); 94 } else { 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 return; 98 } 99 write_seqcount_end(&jiffies_seq); 100 raw_spin_unlock(&jiffies_lock); 101 update_wall_time(); 102 } 103 104 /* 105 * Initialize and return retrieve the jiffies update. 106 */ 107 static ktime_t tick_init_jiffy_update(void) 108 { 109 ktime_t period; 110 111 raw_spin_lock(&jiffies_lock); 112 write_seqcount_begin(&jiffies_seq); 113 /* Did we start the jiffies update yet ? */ 114 if (last_jiffies_update == 0) 115 last_jiffies_update = tick_next_period; 116 period = last_jiffies_update; 117 write_seqcount_end(&jiffies_seq); 118 raw_spin_unlock(&jiffies_lock); 119 return period; 120 } 121 122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 123 { 124 int cpu = smp_processor_id(); 125 126 #ifdef CONFIG_NO_HZ_COMMON 127 /* 128 * Check if the do_timer duty was dropped. We don't care about 129 * concurrency: This happens only when the CPU in charge went 130 * into a long sleep. If two CPUs happen to assign themselves to 131 * this duty, then the jiffies update is still serialized by 132 * jiffies_lock. 133 * 134 * If nohz_full is enabled, this should not happen because the 135 * tick_do_timer_cpu never relinquishes. 136 */ 137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 138 #ifdef CONFIG_NO_HZ_FULL 139 WARN_ON(tick_nohz_full_running); 140 #endif 141 tick_do_timer_cpu = cpu; 142 } 143 #endif 144 145 /* Check, if the jiffies need an update */ 146 if (tick_do_timer_cpu == cpu) 147 tick_do_update_jiffies64(now); 148 149 if (ts->inidle) 150 ts->got_idle_tick = 1; 151 } 152 153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 154 { 155 #ifdef CONFIG_NO_HZ_COMMON 156 /* 157 * When we are idle and the tick is stopped, we have to touch 158 * the watchdog as we might not schedule for a really long 159 * time. This happens on complete idle SMP systems while 160 * waiting on the login prompt. We also increment the "start of 161 * idle" jiffy stamp so the idle accounting adjustment we do 162 * when we go busy again does not account too much ticks. 163 */ 164 if (ts->tick_stopped) { 165 touch_softlockup_watchdog_sched(); 166 if (is_idle_task(current)) 167 ts->idle_jiffies++; 168 /* 169 * In case the current tick fired too early past its expected 170 * expiration, make sure we don't bypass the next clock reprogramming 171 * to the same deadline. 172 */ 173 ts->next_tick = 0; 174 } 175 #endif 176 update_process_times(user_mode(regs)); 177 profile_tick(CPU_PROFILING); 178 } 179 #endif 180 181 #ifdef CONFIG_NO_HZ_FULL 182 cpumask_var_t tick_nohz_full_mask; 183 bool tick_nohz_full_running; 184 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 185 static atomic_t tick_dep_mask; 186 187 static bool check_tick_dependency(atomic_t *dep) 188 { 189 int val = atomic_read(dep); 190 191 if (val & TICK_DEP_MASK_POSIX_TIMER) { 192 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_PERF_EVENTS) { 197 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 198 return true; 199 } 200 201 if (val & TICK_DEP_MASK_SCHED) { 202 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 203 return true; 204 } 205 206 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 207 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 208 return true; 209 } 210 211 if (val & TICK_DEP_MASK_RCU) { 212 trace_tick_stop(0, TICK_DEP_MASK_RCU); 213 return true; 214 } 215 216 return false; 217 } 218 219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 220 { 221 lockdep_assert_irqs_disabled(); 222 223 if (unlikely(!cpu_online(cpu))) 224 return false; 225 226 if (check_tick_dependency(&tick_dep_mask)) 227 return false; 228 229 if (check_tick_dependency(&ts->tick_dep_mask)) 230 return false; 231 232 if (check_tick_dependency(¤t->tick_dep_mask)) 233 return false; 234 235 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 236 return false; 237 238 return true; 239 } 240 241 static void nohz_full_kick_func(struct irq_work *work) 242 { 243 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 244 } 245 246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 247 .func = nohz_full_kick_func, 248 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ), 249 }; 250 251 /* 252 * Kick this CPU if it's full dynticks in order to force it to 253 * re-evaluate its dependency on the tick and restart it if necessary. 254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 255 * is NMI safe. 256 */ 257 static void tick_nohz_full_kick(void) 258 { 259 if (!tick_nohz_full_cpu(smp_processor_id())) 260 return; 261 262 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 263 } 264 265 /* 266 * Kick the CPU if it's full dynticks in order to force it to 267 * re-evaluate its dependency on the tick and restart it if necessary. 268 */ 269 void tick_nohz_full_kick_cpu(int cpu) 270 { 271 if (!tick_nohz_full_cpu(cpu)) 272 return; 273 274 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 275 } 276 277 /* 278 * Kick all full dynticks CPUs in order to force these to re-evaluate 279 * their dependency on the tick and restart it if necessary. 280 */ 281 static void tick_nohz_full_kick_all(void) 282 { 283 int cpu; 284 285 if (!tick_nohz_full_running) 286 return; 287 288 preempt_disable(); 289 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 290 tick_nohz_full_kick_cpu(cpu); 291 preempt_enable(); 292 } 293 294 static void tick_nohz_dep_set_all(atomic_t *dep, 295 enum tick_dep_bits bit) 296 { 297 int prev; 298 299 prev = atomic_fetch_or(BIT(bit), dep); 300 if (!prev) 301 tick_nohz_full_kick_all(); 302 } 303 304 /* 305 * Set a global tick dependency. Used by perf events that rely on freq and 306 * by unstable clock. 307 */ 308 void tick_nohz_dep_set(enum tick_dep_bits bit) 309 { 310 tick_nohz_dep_set_all(&tick_dep_mask, bit); 311 } 312 313 void tick_nohz_dep_clear(enum tick_dep_bits bit) 314 { 315 atomic_andnot(BIT(bit), &tick_dep_mask); 316 } 317 318 /* 319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 320 * manage events throttling. 321 */ 322 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 323 { 324 int prev; 325 struct tick_sched *ts; 326 327 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 328 329 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 330 if (!prev) { 331 preempt_disable(); 332 /* Perf needs local kick that is NMI safe */ 333 if (cpu == smp_processor_id()) { 334 tick_nohz_full_kick(); 335 } else { 336 /* Remote irq work not NMI-safe */ 337 if (!WARN_ON_ONCE(in_nmi())) 338 tick_nohz_full_kick_cpu(cpu); 339 } 340 preempt_enable(); 341 } 342 } 343 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 344 345 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 346 { 347 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 348 349 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 350 } 351 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 352 353 /* 354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers 355 * in order to elapse per task timers. 356 */ 357 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 358 { 359 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) { 360 if (tsk == current) { 361 preempt_disable(); 362 tick_nohz_full_kick(); 363 preempt_enable(); 364 } else { 365 /* 366 * Some future tick_nohz_full_kick_task() 367 * should optimize this. 368 */ 369 tick_nohz_full_kick_all(); 370 } 371 } 372 } 373 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 374 375 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 376 { 377 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 378 } 379 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 380 381 /* 382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 383 * per process timers. 384 */ 385 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 386 { 387 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 388 } 389 390 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 391 { 392 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 393 } 394 395 /* 396 * Re-evaluate the need for the tick as we switch the current task. 397 * It might need the tick due to per task/process properties: 398 * perf events, posix CPU timers, ... 399 */ 400 void __tick_nohz_task_switch(void) 401 { 402 unsigned long flags; 403 struct tick_sched *ts; 404 405 local_irq_save(flags); 406 407 if (!tick_nohz_full_cpu(smp_processor_id())) 408 goto out; 409 410 ts = this_cpu_ptr(&tick_cpu_sched); 411 412 if (ts->tick_stopped) { 413 if (atomic_read(¤t->tick_dep_mask) || 414 atomic_read(¤t->signal->tick_dep_mask)) 415 tick_nohz_full_kick(); 416 } 417 out: 418 local_irq_restore(flags); 419 } 420 421 /* Get the boot-time nohz CPU list from the kernel parameters. */ 422 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 423 { 424 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 425 cpumask_copy(tick_nohz_full_mask, cpumask); 426 tick_nohz_full_running = true; 427 } 428 EXPORT_SYMBOL_GPL(tick_nohz_full_setup); 429 430 static int tick_nohz_cpu_down(unsigned int cpu) 431 { 432 /* 433 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 434 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 435 * CPUs. It must remain online when nohz full is enabled. 436 */ 437 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 438 return -EBUSY; 439 return 0; 440 } 441 442 void __init tick_nohz_init(void) 443 { 444 int cpu, ret; 445 446 if (!tick_nohz_full_running) 447 return; 448 449 /* 450 * Full dynticks uses irq work to drive the tick rescheduling on safe 451 * locking contexts. But then we need irq work to raise its own 452 * interrupts to avoid circular dependency on the tick 453 */ 454 if (!arch_irq_work_has_interrupt()) { 455 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 456 cpumask_clear(tick_nohz_full_mask); 457 tick_nohz_full_running = false; 458 return; 459 } 460 461 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 462 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 463 cpu = smp_processor_id(); 464 465 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 466 pr_warn("NO_HZ: Clearing %d from nohz_full range " 467 "for timekeeping\n", cpu); 468 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 469 } 470 } 471 472 for_each_cpu(cpu, tick_nohz_full_mask) 473 context_tracking_cpu_set(cpu); 474 475 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 476 "kernel/nohz:predown", NULL, 477 tick_nohz_cpu_down); 478 WARN_ON(ret < 0); 479 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 480 cpumask_pr_args(tick_nohz_full_mask)); 481 } 482 #endif 483 484 /* 485 * NOHZ - aka dynamic tick functionality 486 */ 487 #ifdef CONFIG_NO_HZ_COMMON 488 /* 489 * NO HZ enabled ? 490 */ 491 bool tick_nohz_enabled __read_mostly = true; 492 unsigned long tick_nohz_active __read_mostly; 493 /* 494 * Enable / Disable tickless mode 495 */ 496 static int __init setup_tick_nohz(char *str) 497 { 498 return (kstrtobool(str, &tick_nohz_enabled) == 0); 499 } 500 501 __setup("nohz=", setup_tick_nohz); 502 503 bool tick_nohz_tick_stopped(void) 504 { 505 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 506 507 return ts->tick_stopped; 508 } 509 510 bool tick_nohz_tick_stopped_cpu(int cpu) 511 { 512 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 513 514 return ts->tick_stopped; 515 } 516 517 /** 518 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 519 * 520 * Called from interrupt entry when the CPU was idle 521 * 522 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 523 * must be updated. Otherwise an interrupt handler could use a stale jiffy 524 * value. We do this unconditionally on any CPU, as we don't know whether the 525 * CPU, which has the update task assigned is in a long sleep. 526 */ 527 static void tick_nohz_update_jiffies(ktime_t now) 528 { 529 unsigned long flags; 530 531 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 532 533 local_irq_save(flags); 534 tick_do_update_jiffies64(now); 535 local_irq_restore(flags); 536 537 touch_softlockup_watchdog_sched(); 538 } 539 540 /* 541 * Updates the per-CPU time idle statistics counters 542 */ 543 static void 544 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 545 { 546 ktime_t delta; 547 548 if (ts->idle_active) { 549 delta = ktime_sub(now, ts->idle_entrytime); 550 if (nr_iowait_cpu(cpu) > 0) 551 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 552 else 553 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 554 ts->idle_entrytime = now; 555 } 556 557 if (last_update_time) 558 *last_update_time = ktime_to_us(now); 559 560 } 561 562 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 563 { 564 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 565 ts->idle_active = 0; 566 567 sched_clock_idle_wakeup_event(); 568 } 569 570 static void tick_nohz_start_idle(struct tick_sched *ts) 571 { 572 ts->idle_entrytime = ktime_get(); 573 ts->idle_active = 1; 574 sched_clock_idle_sleep_event(); 575 } 576 577 /** 578 * get_cpu_idle_time_us - get the total idle time of a CPU 579 * @cpu: CPU number to query 580 * @last_update_time: variable to store update time in. Do not update 581 * counters if NULL. 582 * 583 * Return the cumulative idle time (since boot) for a given 584 * CPU, in microseconds. 585 * 586 * This time is measured via accounting rather than sampling, 587 * and is as accurate as ktime_get() is. 588 * 589 * This function returns -1 if NOHZ is not enabled. 590 */ 591 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 592 { 593 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 594 ktime_t now, idle; 595 596 if (!tick_nohz_active) 597 return -1; 598 599 now = ktime_get(); 600 if (last_update_time) { 601 update_ts_time_stats(cpu, ts, now, last_update_time); 602 idle = ts->idle_sleeptime; 603 } else { 604 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 605 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 606 607 idle = ktime_add(ts->idle_sleeptime, delta); 608 } else { 609 idle = ts->idle_sleeptime; 610 } 611 } 612 613 return ktime_to_us(idle); 614 615 } 616 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 617 618 /** 619 * get_cpu_iowait_time_us - get the total iowait time of a CPU 620 * @cpu: CPU number to query 621 * @last_update_time: variable to store update time in. Do not update 622 * counters if NULL. 623 * 624 * Return the cumulative iowait time (since boot) for a given 625 * CPU, in microseconds. 626 * 627 * This time is measured via accounting rather than sampling, 628 * and is as accurate as ktime_get() is. 629 * 630 * This function returns -1 if NOHZ is not enabled. 631 */ 632 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 633 { 634 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 635 ktime_t now, iowait; 636 637 if (!tick_nohz_active) 638 return -1; 639 640 now = ktime_get(); 641 if (last_update_time) { 642 update_ts_time_stats(cpu, ts, now, last_update_time); 643 iowait = ts->iowait_sleeptime; 644 } else { 645 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 646 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 647 648 iowait = ktime_add(ts->iowait_sleeptime, delta); 649 } else { 650 iowait = ts->iowait_sleeptime; 651 } 652 } 653 654 return ktime_to_us(iowait); 655 } 656 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 657 658 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 659 { 660 hrtimer_cancel(&ts->sched_timer); 661 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 662 663 /* Forward the time to expire in the future */ 664 hrtimer_forward(&ts->sched_timer, now, tick_period); 665 666 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 667 hrtimer_start_expires(&ts->sched_timer, 668 HRTIMER_MODE_ABS_PINNED_HARD); 669 } else { 670 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 671 } 672 673 /* 674 * Reset to make sure next tick stop doesn't get fooled by past 675 * cached clock deadline. 676 */ 677 ts->next_tick = 0; 678 } 679 680 static inline bool local_timer_softirq_pending(void) 681 { 682 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 683 } 684 685 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 686 { 687 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 688 unsigned long basejiff; 689 unsigned int seq; 690 691 /* Read jiffies and the time when jiffies were updated last */ 692 do { 693 seq = read_seqcount_begin(&jiffies_seq); 694 basemono = last_jiffies_update; 695 basejiff = jiffies; 696 } while (read_seqcount_retry(&jiffies_seq, seq)); 697 ts->last_jiffies = basejiff; 698 ts->timer_expires_base = basemono; 699 700 /* 701 * Keep the periodic tick, when RCU, architecture or irq_work 702 * requests it. 703 * Aside of that check whether the local timer softirq is 704 * pending. If so its a bad idea to call get_next_timer_interrupt() 705 * because there is an already expired timer, so it will request 706 * immeditate expiry, which rearms the hardware timer with a 707 * minimal delta which brings us back to this place 708 * immediately. Lather, rinse and repeat... 709 */ 710 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 711 irq_work_needs_cpu() || local_timer_softirq_pending()) { 712 next_tick = basemono + TICK_NSEC; 713 } else { 714 /* 715 * Get the next pending timer. If high resolution 716 * timers are enabled this only takes the timer wheel 717 * timers into account. If high resolution timers are 718 * disabled this also looks at the next expiring 719 * hrtimer. 720 */ 721 next_tmr = get_next_timer_interrupt(basejiff, basemono); 722 ts->next_timer = next_tmr; 723 /* Take the next rcu event into account */ 724 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 725 } 726 727 /* 728 * If the tick is due in the next period, keep it ticking or 729 * force prod the timer. 730 */ 731 delta = next_tick - basemono; 732 if (delta <= (u64)TICK_NSEC) { 733 /* 734 * Tell the timer code that the base is not idle, i.e. undo 735 * the effect of get_next_timer_interrupt(): 736 */ 737 timer_clear_idle(); 738 /* 739 * We've not stopped the tick yet, and there's a timer in the 740 * next period, so no point in stopping it either, bail. 741 */ 742 if (!ts->tick_stopped) { 743 ts->timer_expires = 0; 744 goto out; 745 } 746 } 747 748 /* 749 * If this CPU is the one which had the do_timer() duty last, we limit 750 * the sleep time to the timekeeping max_deferment value. 751 * Otherwise we can sleep as long as we want. 752 */ 753 delta = timekeeping_max_deferment(); 754 if (cpu != tick_do_timer_cpu && 755 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 756 delta = KTIME_MAX; 757 758 /* Calculate the next expiry time */ 759 if (delta < (KTIME_MAX - basemono)) 760 expires = basemono + delta; 761 else 762 expires = KTIME_MAX; 763 764 ts->timer_expires = min_t(u64, expires, next_tick); 765 766 out: 767 return ts->timer_expires; 768 } 769 770 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 771 { 772 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 773 u64 basemono = ts->timer_expires_base; 774 u64 expires = ts->timer_expires; 775 ktime_t tick = expires; 776 777 /* Make sure we won't be trying to stop it twice in a row. */ 778 ts->timer_expires_base = 0; 779 780 /* 781 * If this CPU is the one which updates jiffies, then give up 782 * the assignment and let it be taken by the CPU which runs 783 * the tick timer next, which might be this CPU as well. If we 784 * don't drop this here the jiffies might be stale and 785 * do_timer() never invoked. Keep track of the fact that it 786 * was the one which had the do_timer() duty last. 787 */ 788 if (cpu == tick_do_timer_cpu) { 789 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 790 ts->do_timer_last = 1; 791 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 792 ts->do_timer_last = 0; 793 } 794 795 /* Skip reprogram of event if its not changed */ 796 if (ts->tick_stopped && (expires == ts->next_tick)) { 797 /* Sanity check: make sure clockevent is actually programmed */ 798 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 799 return; 800 801 WARN_ON_ONCE(1); 802 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 803 basemono, ts->next_tick, dev->next_event, 804 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 805 } 806 807 /* 808 * nohz_stop_sched_tick can be called several times before 809 * the nohz_restart_sched_tick is called. This happens when 810 * interrupts arrive which do not cause a reschedule. In the 811 * first call we save the current tick time, so we can restart 812 * the scheduler tick in nohz_restart_sched_tick. 813 */ 814 if (!ts->tick_stopped) { 815 calc_load_nohz_start(); 816 quiet_vmstat(); 817 818 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 819 ts->tick_stopped = 1; 820 trace_tick_stop(1, TICK_DEP_MASK_NONE); 821 } 822 823 ts->next_tick = tick; 824 825 /* 826 * If the expiration time == KTIME_MAX, then we simply stop 827 * the tick timer. 828 */ 829 if (unlikely(expires == KTIME_MAX)) { 830 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 831 hrtimer_cancel(&ts->sched_timer); 832 return; 833 } 834 835 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 836 hrtimer_start(&ts->sched_timer, tick, 837 HRTIMER_MODE_ABS_PINNED_HARD); 838 } else { 839 hrtimer_set_expires(&ts->sched_timer, tick); 840 tick_program_event(tick, 1); 841 } 842 } 843 844 static void tick_nohz_retain_tick(struct tick_sched *ts) 845 { 846 ts->timer_expires_base = 0; 847 } 848 849 #ifdef CONFIG_NO_HZ_FULL 850 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 851 { 852 if (tick_nohz_next_event(ts, cpu)) 853 tick_nohz_stop_tick(ts, cpu); 854 else 855 tick_nohz_retain_tick(ts); 856 } 857 #endif /* CONFIG_NO_HZ_FULL */ 858 859 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 860 { 861 /* Update jiffies first */ 862 tick_do_update_jiffies64(now); 863 864 /* 865 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 866 * the clock forward checks in the enqueue path: 867 */ 868 timer_clear_idle(); 869 870 calc_load_nohz_stop(); 871 touch_softlockup_watchdog_sched(); 872 /* 873 * Cancel the scheduled timer and restore the tick 874 */ 875 ts->tick_stopped = 0; 876 ts->idle_exittime = now; 877 878 tick_nohz_restart(ts, now); 879 } 880 881 static void tick_nohz_full_update_tick(struct tick_sched *ts) 882 { 883 #ifdef CONFIG_NO_HZ_FULL 884 int cpu = smp_processor_id(); 885 886 if (!tick_nohz_full_cpu(cpu)) 887 return; 888 889 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 890 return; 891 892 if (can_stop_full_tick(cpu, ts)) 893 tick_nohz_stop_sched_tick(ts, cpu); 894 else if (ts->tick_stopped) 895 tick_nohz_restart_sched_tick(ts, ktime_get()); 896 #endif 897 } 898 899 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 900 { 901 /* 902 * If this CPU is offline and it is the one which updates 903 * jiffies, then give up the assignment and let it be taken by 904 * the CPU which runs the tick timer next. If we don't drop 905 * this here the jiffies might be stale and do_timer() never 906 * invoked. 907 */ 908 if (unlikely(!cpu_online(cpu))) { 909 if (cpu == tick_do_timer_cpu) 910 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 911 /* 912 * Make sure the CPU doesn't get fooled by obsolete tick 913 * deadline if it comes back online later. 914 */ 915 ts->next_tick = 0; 916 return false; 917 } 918 919 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 920 return false; 921 922 if (need_resched()) 923 return false; 924 925 if (unlikely(local_softirq_pending())) { 926 static int ratelimit; 927 928 if (ratelimit < 10 && 929 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 930 pr_warn("NOHZ: local_softirq_pending %02x\n", 931 (unsigned int) local_softirq_pending()); 932 ratelimit++; 933 } 934 return false; 935 } 936 937 if (tick_nohz_full_enabled()) { 938 /* 939 * Keep the tick alive to guarantee timekeeping progression 940 * if there are full dynticks CPUs around 941 */ 942 if (tick_do_timer_cpu == cpu) 943 return false; 944 /* 945 * Boot safety: make sure the timekeeping duty has been 946 * assigned before entering dyntick-idle mode, 947 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 948 */ 949 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 950 return false; 951 952 /* Should not happen for nohz-full */ 953 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 954 return false; 955 } 956 957 return true; 958 } 959 960 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 961 { 962 ktime_t expires; 963 int cpu = smp_processor_id(); 964 965 /* 966 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 967 * tick timer expiration time is known already. 968 */ 969 if (ts->timer_expires_base) 970 expires = ts->timer_expires; 971 else if (can_stop_idle_tick(cpu, ts)) 972 expires = tick_nohz_next_event(ts, cpu); 973 else 974 return; 975 976 ts->idle_calls++; 977 978 if (expires > 0LL) { 979 int was_stopped = ts->tick_stopped; 980 981 tick_nohz_stop_tick(ts, cpu); 982 983 ts->idle_sleeps++; 984 ts->idle_expires = expires; 985 986 if (!was_stopped && ts->tick_stopped) { 987 ts->idle_jiffies = ts->last_jiffies; 988 nohz_balance_enter_idle(cpu); 989 } 990 } else { 991 tick_nohz_retain_tick(ts); 992 } 993 } 994 995 /** 996 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 997 * 998 * When the next event is more than a tick into the future, stop the idle tick 999 */ 1000 void tick_nohz_idle_stop_tick(void) 1001 { 1002 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 1003 } 1004 1005 void tick_nohz_idle_retain_tick(void) 1006 { 1007 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1008 /* 1009 * Undo the effect of get_next_timer_interrupt() called from 1010 * tick_nohz_next_event(). 1011 */ 1012 timer_clear_idle(); 1013 } 1014 1015 /** 1016 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1017 * 1018 * Called when we start the idle loop. 1019 */ 1020 void tick_nohz_idle_enter(void) 1021 { 1022 struct tick_sched *ts; 1023 1024 lockdep_assert_irqs_enabled(); 1025 1026 local_irq_disable(); 1027 1028 ts = this_cpu_ptr(&tick_cpu_sched); 1029 1030 WARN_ON_ONCE(ts->timer_expires_base); 1031 1032 ts->inidle = 1; 1033 tick_nohz_start_idle(ts); 1034 1035 local_irq_enable(); 1036 } 1037 1038 /** 1039 * tick_nohz_irq_exit - update next tick event from interrupt exit 1040 * 1041 * When an interrupt fires while we are idle and it doesn't cause 1042 * a reschedule, it may still add, modify or delete a timer, enqueue 1043 * an RCU callback, etc... 1044 * So we need to re-calculate and reprogram the next tick event. 1045 */ 1046 void tick_nohz_irq_exit(void) 1047 { 1048 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1049 1050 if (ts->inidle) 1051 tick_nohz_start_idle(ts); 1052 else 1053 tick_nohz_full_update_tick(ts); 1054 } 1055 1056 /** 1057 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1058 */ 1059 bool tick_nohz_idle_got_tick(void) 1060 { 1061 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1062 1063 if (ts->got_idle_tick) { 1064 ts->got_idle_tick = 0; 1065 return true; 1066 } 1067 return false; 1068 } 1069 1070 /** 1071 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1072 * or the tick, whatever that expires first. Note that, if the tick has been 1073 * stopped, it returns the next hrtimer. 1074 * 1075 * Called from power state control code with interrupts disabled 1076 */ 1077 ktime_t tick_nohz_get_next_hrtimer(void) 1078 { 1079 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1080 } 1081 1082 /** 1083 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1084 * @delta_next: duration until the next event if the tick cannot be stopped 1085 * 1086 * Called from power state control code with interrupts disabled 1087 */ 1088 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1089 { 1090 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1091 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1092 int cpu = smp_processor_id(); 1093 /* 1094 * The idle entry time is expected to be a sufficient approximation of 1095 * the current time at this point. 1096 */ 1097 ktime_t now = ts->idle_entrytime; 1098 ktime_t next_event; 1099 1100 WARN_ON_ONCE(!ts->inidle); 1101 1102 *delta_next = ktime_sub(dev->next_event, now); 1103 1104 if (!can_stop_idle_tick(cpu, ts)) 1105 return *delta_next; 1106 1107 next_event = tick_nohz_next_event(ts, cpu); 1108 if (!next_event) 1109 return *delta_next; 1110 1111 /* 1112 * If the next highres timer to expire is earlier than next_event, the 1113 * idle governor needs to know that. 1114 */ 1115 next_event = min_t(u64, next_event, 1116 hrtimer_next_event_without(&ts->sched_timer)); 1117 1118 return ktime_sub(next_event, now); 1119 } 1120 1121 /** 1122 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1123 * for a particular CPU. 1124 * 1125 * Called from the schedutil frequency scaling governor in scheduler context. 1126 */ 1127 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1128 { 1129 struct tick_sched *ts = tick_get_tick_sched(cpu); 1130 1131 return ts->idle_calls; 1132 } 1133 1134 /** 1135 * tick_nohz_get_idle_calls - return the current idle calls counter value 1136 * 1137 * Called from the schedutil frequency scaling governor in scheduler context. 1138 */ 1139 unsigned long tick_nohz_get_idle_calls(void) 1140 { 1141 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1142 1143 return ts->idle_calls; 1144 } 1145 1146 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1147 { 1148 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1149 unsigned long ticks; 1150 1151 if (vtime_accounting_enabled_this_cpu()) 1152 return; 1153 /* 1154 * We stopped the tick in idle. Update process times would miss the 1155 * time we slept as update_process_times does only a 1 tick 1156 * accounting. Enforce that this is accounted to idle ! 1157 */ 1158 ticks = jiffies - ts->idle_jiffies; 1159 /* 1160 * We might be one off. Do not randomly account a huge number of ticks! 1161 */ 1162 if (ticks && ticks < LONG_MAX) 1163 account_idle_ticks(ticks); 1164 #endif 1165 } 1166 1167 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1168 { 1169 tick_nohz_restart_sched_tick(ts, now); 1170 tick_nohz_account_idle_ticks(ts); 1171 } 1172 1173 void tick_nohz_idle_restart_tick(void) 1174 { 1175 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1176 1177 if (ts->tick_stopped) 1178 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1179 } 1180 1181 /** 1182 * tick_nohz_idle_exit - restart the idle tick from the idle task 1183 * 1184 * Restart the idle tick when the CPU is woken up from idle 1185 * This also exit the RCU extended quiescent state. The CPU 1186 * can use RCU again after this function is called. 1187 */ 1188 void tick_nohz_idle_exit(void) 1189 { 1190 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1191 bool idle_active, tick_stopped; 1192 ktime_t now; 1193 1194 local_irq_disable(); 1195 1196 WARN_ON_ONCE(!ts->inidle); 1197 WARN_ON_ONCE(ts->timer_expires_base); 1198 1199 ts->inidle = 0; 1200 idle_active = ts->idle_active; 1201 tick_stopped = ts->tick_stopped; 1202 1203 if (idle_active || tick_stopped) 1204 now = ktime_get(); 1205 1206 if (idle_active) 1207 tick_nohz_stop_idle(ts, now); 1208 1209 if (tick_stopped) 1210 __tick_nohz_idle_restart_tick(ts, now); 1211 1212 local_irq_enable(); 1213 } 1214 1215 /* 1216 * The nohz low res interrupt handler 1217 */ 1218 static void tick_nohz_handler(struct clock_event_device *dev) 1219 { 1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1221 struct pt_regs *regs = get_irq_regs(); 1222 ktime_t now = ktime_get(); 1223 1224 dev->next_event = KTIME_MAX; 1225 1226 tick_sched_do_timer(ts, now); 1227 tick_sched_handle(ts, regs); 1228 1229 /* No need to reprogram if we are running tickless */ 1230 if (unlikely(ts->tick_stopped)) 1231 return; 1232 1233 hrtimer_forward(&ts->sched_timer, now, tick_period); 1234 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1235 } 1236 1237 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1238 { 1239 if (!tick_nohz_enabled) 1240 return; 1241 ts->nohz_mode = mode; 1242 /* One update is enough */ 1243 if (!test_and_set_bit(0, &tick_nohz_active)) 1244 timers_update_nohz(); 1245 } 1246 1247 /** 1248 * tick_nohz_switch_to_nohz - switch to nohz mode 1249 */ 1250 static void tick_nohz_switch_to_nohz(void) 1251 { 1252 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1253 ktime_t next; 1254 1255 if (!tick_nohz_enabled) 1256 return; 1257 1258 if (tick_switch_to_oneshot(tick_nohz_handler)) 1259 return; 1260 1261 /* 1262 * Recycle the hrtimer in ts, so we can share the 1263 * hrtimer_forward with the highres code. 1264 */ 1265 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1266 /* Get the next period */ 1267 next = tick_init_jiffy_update(); 1268 1269 hrtimer_set_expires(&ts->sched_timer, next); 1270 hrtimer_forward_now(&ts->sched_timer, tick_period); 1271 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1272 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1273 } 1274 1275 static inline void tick_nohz_irq_enter(void) 1276 { 1277 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1278 ktime_t now; 1279 1280 if (!ts->idle_active && !ts->tick_stopped) 1281 return; 1282 now = ktime_get(); 1283 if (ts->idle_active) 1284 tick_nohz_stop_idle(ts, now); 1285 if (ts->tick_stopped) 1286 tick_nohz_update_jiffies(now); 1287 } 1288 1289 #else 1290 1291 static inline void tick_nohz_switch_to_nohz(void) { } 1292 static inline void tick_nohz_irq_enter(void) { } 1293 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1294 1295 #endif /* CONFIG_NO_HZ_COMMON */ 1296 1297 /* 1298 * Called from irq_enter to notify about the possible interruption of idle() 1299 */ 1300 void tick_irq_enter(void) 1301 { 1302 tick_check_oneshot_broadcast_this_cpu(); 1303 tick_nohz_irq_enter(); 1304 } 1305 1306 /* 1307 * High resolution timer specific code 1308 */ 1309 #ifdef CONFIG_HIGH_RES_TIMERS 1310 /* 1311 * We rearm the timer until we get disabled by the idle code. 1312 * Called with interrupts disabled. 1313 */ 1314 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1315 { 1316 struct tick_sched *ts = 1317 container_of(timer, struct tick_sched, sched_timer); 1318 struct pt_regs *regs = get_irq_regs(); 1319 ktime_t now = ktime_get(); 1320 1321 tick_sched_do_timer(ts, now); 1322 1323 /* 1324 * Do not call, when we are not in irq context and have 1325 * no valid regs pointer 1326 */ 1327 if (regs) 1328 tick_sched_handle(ts, regs); 1329 else 1330 ts->next_tick = 0; 1331 1332 /* No need to reprogram if we are in idle or full dynticks mode */ 1333 if (unlikely(ts->tick_stopped)) 1334 return HRTIMER_NORESTART; 1335 1336 hrtimer_forward(timer, now, tick_period); 1337 1338 return HRTIMER_RESTART; 1339 } 1340 1341 static int sched_skew_tick; 1342 1343 static int __init skew_tick(char *str) 1344 { 1345 get_option(&str, &sched_skew_tick); 1346 1347 return 0; 1348 } 1349 early_param("skew_tick", skew_tick); 1350 1351 /** 1352 * tick_setup_sched_timer - setup the tick emulation timer 1353 */ 1354 void tick_setup_sched_timer(void) 1355 { 1356 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1357 ktime_t now = ktime_get(); 1358 1359 /* 1360 * Emulate tick processing via per-CPU hrtimers: 1361 */ 1362 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1363 ts->sched_timer.function = tick_sched_timer; 1364 1365 /* Get the next period (per-CPU) */ 1366 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1367 1368 /* Offset the tick to avert jiffies_lock contention. */ 1369 if (sched_skew_tick) { 1370 u64 offset = ktime_to_ns(tick_period) >> 1; 1371 do_div(offset, num_possible_cpus()); 1372 offset *= smp_processor_id(); 1373 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1374 } 1375 1376 hrtimer_forward(&ts->sched_timer, now, tick_period); 1377 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1378 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1379 } 1380 #endif /* HIGH_RES_TIMERS */ 1381 1382 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1383 void tick_cancel_sched_timer(int cpu) 1384 { 1385 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1386 1387 # ifdef CONFIG_HIGH_RES_TIMERS 1388 if (ts->sched_timer.base) 1389 hrtimer_cancel(&ts->sched_timer); 1390 # endif 1391 1392 memset(ts, 0, sizeof(*ts)); 1393 } 1394 #endif 1395 1396 /** 1397 * Async notification about clocksource changes 1398 */ 1399 void tick_clock_notify(void) 1400 { 1401 int cpu; 1402 1403 for_each_possible_cpu(cpu) 1404 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1405 } 1406 1407 /* 1408 * Async notification about clock event changes 1409 */ 1410 void tick_oneshot_notify(void) 1411 { 1412 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1413 1414 set_bit(0, &ts->check_clocks); 1415 } 1416 1417 /** 1418 * Check, if a change happened, which makes oneshot possible. 1419 * 1420 * Called cyclic from the hrtimer softirq (driven by the timer 1421 * softirq) allow_nohz signals, that we can switch into low-res nohz 1422 * mode, because high resolution timers are disabled (either compile 1423 * or runtime). Called with interrupts disabled. 1424 */ 1425 int tick_check_oneshot_change(int allow_nohz) 1426 { 1427 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1428 1429 if (!test_and_clear_bit(0, &ts->check_clocks)) 1430 return 0; 1431 1432 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1433 return 0; 1434 1435 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1436 return 0; 1437 1438 if (!allow_nohz) 1439 return 1; 1440 1441 tick_nohz_switch_to_nohz(); 1442 return 0; 1443 } 1444