xref: /openbmc/linux/kernel/time/tick-sched.c (revision d28bcd53)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49  * The time, when the last jiffy update happened. Protected by jiffies_lock.
50  */
51 static ktime_t last_jiffies_update;
52 
53 /*
54  * Must be called with interrupts disabled !
55  */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 	unsigned long ticks = 0;
59 	ktime_t delta;
60 
61 	/*
62 	 * Do a quick check without holding jiffies_lock:
63 	 */
64 	delta = ktime_sub(now, last_jiffies_update);
65 	if (delta < tick_period)
66 		return;
67 
68 	/* Reevaluate with jiffies_lock held */
69 	write_seqlock(&jiffies_lock);
70 
71 	delta = ktime_sub(now, last_jiffies_update);
72 	if (delta >= tick_period) {
73 
74 		delta = ktime_sub(delta, tick_period);
75 		last_jiffies_update = ktime_add(last_jiffies_update,
76 						tick_period);
77 
78 		/* Slow path for long timeouts */
79 		if (unlikely(delta >= tick_period)) {
80 			s64 incr = ktime_to_ns(tick_period);
81 
82 			ticks = ktime_divns(delta, incr);
83 
84 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 							   incr * ticks);
86 		}
87 		do_timer(++ticks);
88 
89 		/* Keep the tick_next_period variable up to date */
90 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 	} else {
92 		write_sequnlock(&jiffies_lock);
93 		return;
94 	}
95 	write_sequnlock(&jiffies_lock);
96 	update_wall_time();
97 }
98 
99 /*
100  * Initialize and return retrieve the jiffies update.
101  */
102 static ktime_t tick_init_jiffy_update(void)
103 {
104 	ktime_t period;
105 
106 	write_seqlock(&jiffies_lock);
107 	/* Did we start the jiffies update yet ? */
108 	if (last_jiffies_update == 0)
109 		last_jiffies_update = tick_next_period;
110 	period = last_jiffies_update;
111 	write_sequnlock(&jiffies_lock);
112 	return period;
113 }
114 
115 
116 static void tick_sched_do_timer(ktime_t now)
117 {
118 	int cpu = smp_processor_id();
119 
120 #ifdef CONFIG_NO_HZ_COMMON
121 	/*
122 	 * Check if the do_timer duty was dropped. We don't care about
123 	 * concurrency: This happens only when the CPU in charge went
124 	 * into a long sleep. If two CPUs happen to assign themselves to
125 	 * this duty, then the jiffies update is still serialized by
126 	 * jiffies_lock.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 	    && !tick_nohz_full_cpu(cpu))
130 		tick_do_timer_cpu = cpu;
131 #endif
132 
133 	/* Check, if the jiffies need an update */
134 	if (tick_do_timer_cpu == cpu)
135 		tick_do_update_jiffies64(now);
136 }
137 
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 	/*
142 	 * When we are idle and the tick is stopped, we have to touch
143 	 * the watchdog as we might not schedule for a really long
144 	 * time. This happens on complete idle SMP systems while
145 	 * waiting on the login prompt. We also increment the "start of
146 	 * idle" jiffy stamp so the idle accounting adjustment we do
147 	 * when we go busy again does not account too much ticks.
148 	 */
149 	if (ts->tick_stopped) {
150 		touch_softlockup_watchdog_sched();
151 		if (is_idle_task(current))
152 			ts->idle_jiffies++;
153 	}
154 #endif
155 	update_process_times(user_mode(regs));
156 	profile_tick(CPU_PROFILING);
157 }
158 #endif
159 
160 #ifdef CONFIG_NO_HZ_FULL
161 cpumask_var_t tick_nohz_full_mask;
162 cpumask_var_t housekeeping_mask;
163 bool tick_nohz_full_running;
164 static atomic_t tick_dep_mask;
165 
166 static bool check_tick_dependency(atomic_t *dep)
167 {
168 	int val = atomic_read(dep);
169 
170 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
171 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
172 		return true;
173 	}
174 
175 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
176 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
177 		return true;
178 	}
179 
180 	if (val & TICK_DEP_MASK_SCHED) {
181 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
182 		return true;
183 	}
184 
185 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
186 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
187 		return true;
188 	}
189 
190 	return false;
191 }
192 
193 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
194 {
195 	WARN_ON_ONCE(!irqs_disabled());
196 
197 	if (unlikely(!cpu_online(cpu)))
198 		return false;
199 
200 	if (check_tick_dependency(&tick_dep_mask))
201 		return false;
202 
203 	if (check_tick_dependency(&ts->tick_dep_mask))
204 		return false;
205 
206 	if (check_tick_dependency(&current->tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&current->signal->tick_dep_mask))
210 		return false;
211 
212 	return true;
213 }
214 
215 static void nohz_full_kick_func(struct irq_work *work)
216 {
217 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
218 }
219 
220 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
221 	.func = nohz_full_kick_func,
222 };
223 
224 /*
225  * Kick this CPU if it's full dynticks in order to force it to
226  * re-evaluate its dependency on the tick and restart it if necessary.
227  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
228  * is NMI safe.
229  */
230 static void tick_nohz_full_kick(void)
231 {
232 	if (!tick_nohz_full_cpu(smp_processor_id()))
233 		return;
234 
235 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
236 }
237 
238 /*
239  * Kick the CPU if it's full dynticks in order to force it to
240  * re-evaluate its dependency on the tick and restart it if necessary.
241  */
242 void tick_nohz_full_kick_cpu(int cpu)
243 {
244 	if (!tick_nohz_full_cpu(cpu))
245 		return;
246 
247 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
248 }
249 
250 /*
251  * Kick all full dynticks CPUs in order to force these to re-evaluate
252  * their dependency on the tick and restart it if necessary.
253  */
254 static void tick_nohz_full_kick_all(void)
255 {
256 	int cpu;
257 
258 	if (!tick_nohz_full_running)
259 		return;
260 
261 	preempt_disable();
262 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
263 		tick_nohz_full_kick_cpu(cpu);
264 	preempt_enable();
265 }
266 
267 static void tick_nohz_dep_set_all(atomic_t *dep,
268 				  enum tick_dep_bits bit)
269 {
270 	int prev;
271 
272 	prev = atomic_fetch_or(BIT(bit), dep);
273 	if (!prev)
274 		tick_nohz_full_kick_all();
275 }
276 
277 /*
278  * Set a global tick dependency. Used by perf events that rely on freq and
279  * by unstable clock.
280  */
281 void tick_nohz_dep_set(enum tick_dep_bits bit)
282 {
283 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
284 }
285 
286 void tick_nohz_dep_clear(enum tick_dep_bits bit)
287 {
288 	atomic_andnot(BIT(bit), &tick_dep_mask);
289 }
290 
291 /*
292  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
293  * manage events throttling.
294  */
295 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
296 {
297 	int prev;
298 	struct tick_sched *ts;
299 
300 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
301 
302 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
303 	if (!prev) {
304 		preempt_disable();
305 		/* Perf needs local kick that is NMI safe */
306 		if (cpu == smp_processor_id()) {
307 			tick_nohz_full_kick();
308 		} else {
309 			/* Remote irq work not NMI-safe */
310 			if (!WARN_ON_ONCE(in_nmi()))
311 				tick_nohz_full_kick_cpu(cpu);
312 		}
313 		preempt_enable();
314 	}
315 }
316 
317 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
318 {
319 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
320 
321 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
322 }
323 
324 /*
325  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
326  * per task timers.
327  */
328 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
329 {
330 	/*
331 	 * We could optimize this with just kicking the target running the task
332 	 * if that noise matters for nohz full users.
333 	 */
334 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
335 }
336 
337 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
338 {
339 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
340 }
341 
342 /*
343  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
344  * per process timers.
345  */
346 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
347 {
348 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
349 }
350 
351 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
352 {
353 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
354 }
355 
356 /*
357  * Re-evaluate the need for the tick as we switch the current task.
358  * It might need the tick due to per task/process properties:
359  * perf events, posix CPU timers, ...
360  */
361 void __tick_nohz_task_switch(void)
362 {
363 	unsigned long flags;
364 	struct tick_sched *ts;
365 
366 	local_irq_save(flags);
367 
368 	if (!tick_nohz_full_cpu(smp_processor_id()))
369 		goto out;
370 
371 	ts = this_cpu_ptr(&tick_cpu_sched);
372 
373 	if (ts->tick_stopped) {
374 		if (atomic_read(&current->tick_dep_mask) ||
375 		    atomic_read(&current->signal->tick_dep_mask))
376 			tick_nohz_full_kick();
377 	}
378 out:
379 	local_irq_restore(flags);
380 }
381 
382 /* Parse the boot-time nohz CPU list from the kernel parameters. */
383 static int __init tick_nohz_full_setup(char *str)
384 {
385 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
386 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
387 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
388 		free_bootmem_cpumask_var(tick_nohz_full_mask);
389 		return 1;
390 	}
391 	tick_nohz_full_running = true;
392 
393 	return 1;
394 }
395 __setup("nohz_full=", tick_nohz_full_setup);
396 
397 static int tick_nohz_cpu_down(unsigned int cpu)
398 {
399 	/*
400 	 * The boot CPU handles housekeeping duty (unbound timers,
401 	 * workqueues, timekeeping, ...) on behalf of full dynticks
402 	 * CPUs. It must remain online when nohz full is enabled.
403 	 */
404 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405 		return -EBUSY;
406 	return 0;
407 }
408 
409 static int tick_nohz_init_all(void)
410 {
411 	int err = -1;
412 
413 #ifdef CONFIG_NO_HZ_FULL_ALL
414 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
415 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
416 		return err;
417 	}
418 	err = 0;
419 	cpumask_setall(tick_nohz_full_mask);
420 	tick_nohz_full_running = true;
421 #endif
422 	return err;
423 }
424 
425 void __init tick_nohz_init(void)
426 {
427 	int cpu, ret;
428 
429 	if (!tick_nohz_full_running) {
430 		if (tick_nohz_init_all() < 0)
431 			return;
432 	}
433 
434 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
435 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
436 		cpumask_clear(tick_nohz_full_mask);
437 		tick_nohz_full_running = false;
438 		return;
439 	}
440 
441 	/*
442 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
443 	 * locking contexts. But then we need irq work to raise its own
444 	 * interrupts to avoid circular dependency on the tick
445 	 */
446 	if (!arch_irq_work_has_interrupt()) {
447 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
448 		cpumask_clear(tick_nohz_full_mask);
449 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
450 		tick_nohz_full_running = false;
451 		return;
452 	}
453 
454 	cpu = smp_processor_id();
455 
456 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
457 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
458 			cpu);
459 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
460 	}
461 
462 	cpumask_andnot(housekeeping_mask,
463 		       cpu_possible_mask, tick_nohz_full_mask);
464 
465 	for_each_cpu(cpu, tick_nohz_full_mask)
466 		context_tracking_cpu_set(cpu);
467 
468 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
469 					"kernel/nohz:predown", NULL,
470 					tick_nohz_cpu_down);
471 	WARN_ON(ret < 0);
472 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
473 		cpumask_pr_args(tick_nohz_full_mask));
474 
475 	/*
476 	 * We need at least one CPU to handle housekeeping work such
477 	 * as timekeeping, unbound timers, workqueues, ...
478 	 */
479 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
480 }
481 #endif
482 
483 /*
484  * NOHZ - aka dynamic tick functionality
485  */
486 #ifdef CONFIG_NO_HZ_COMMON
487 /*
488  * NO HZ enabled ?
489  */
490 bool tick_nohz_enabled __read_mostly  = true;
491 unsigned long tick_nohz_active  __read_mostly;
492 /*
493  * Enable / Disable tickless mode
494  */
495 static int __init setup_tick_nohz(char *str)
496 {
497 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
498 }
499 
500 __setup("nohz=", setup_tick_nohz);
501 
502 int tick_nohz_tick_stopped(void)
503 {
504 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
505 }
506 
507 /**
508  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
509  *
510  * Called from interrupt entry when the CPU was idle
511  *
512  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
513  * must be updated. Otherwise an interrupt handler could use a stale jiffy
514  * value. We do this unconditionally on any CPU, as we don't know whether the
515  * CPU, which has the update task assigned is in a long sleep.
516  */
517 static void tick_nohz_update_jiffies(ktime_t now)
518 {
519 	unsigned long flags;
520 
521 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
522 
523 	local_irq_save(flags);
524 	tick_do_update_jiffies64(now);
525 	local_irq_restore(flags);
526 
527 	touch_softlockup_watchdog_sched();
528 }
529 
530 /*
531  * Updates the per-CPU time idle statistics counters
532  */
533 static void
534 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
535 {
536 	ktime_t delta;
537 
538 	if (ts->idle_active) {
539 		delta = ktime_sub(now, ts->idle_entrytime);
540 		if (nr_iowait_cpu(cpu) > 0)
541 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
542 		else
543 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
544 		ts->idle_entrytime = now;
545 	}
546 
547 	if (last_update_time)
548 		*last_update_time = ktime_to_us(now);
549 
550 }
551 
552 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
553 {
554 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
555 	ts->idle_active = 0;
556 
557 	sched_clock_idle_wakeup_event(0);
558 }
559 
560 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
561 {
562 	ktime_t now = ktime_get();
563 
564 	ts->idle_entrytime = now;
565 	ts->idle_active = 1;
566 	sched_clock_idle_sleep_event();
567 	return now;
568 }
569 
570 /**
571  * get_cpu_idle_time_us - get the total idle time of a CPU
572  * @cpu: CPU number to query
573  * @last_update_time: variable to store update time in. Do not update
574  * counters if NULL.
575  *
576  * Return the cumulative idle time (since boot) for a given
577  * CPU, in microseconds.
578  *
579  * This time is measured via accounting rather than sampling,
580  * and is as accurate as ktime_get() is.
581  *
582  * This function returns -1 if NOHZ is not enabled.
583  */
584 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
585 {
586 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
587 	ktime_t now, idle;
588 
589 	if (!tick_nohz_active)
590 		return -1;
591 
592 	now = ktime_get();
593 	if (last_update_time) {
594 		update_ts_time_stats(cpu, ts, now, last_update_time);
595 		idle = ts->idle_sleeptime;
596 	} else {
597 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
598 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
599 
600 			idle = ktime_add(ts->idle_sleeptime, delta);
601 		} else {
602 			idle = ts->idle_sleeptime;
603 		}
604 	}
605 
606 	return ktime_to_us(idle);
607 
608 }
609 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
610 
611 /**
612  * get_cpu_iowait_time_us - get the total iowait time of a CPU
613  * @cpu: CPU number to query
614  * @last_update_time: variable to store update time in. Do not update
615  * counters if NULL.
616  *
617  * Return the cumulative iowait time (since boot) for a given
618  * CPU, in microseconds.
619  *
620  * This time is measured via accounting rather than sampling,
621  * and is as accurate as ktime_get() is.
622  *
623  * This function returns -1 if NOHZ is not enabled.
624  */
625 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
626 {
627 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
628 	ktime_t now, iowait;
629 
630 	if (!tick_nohz_active)
631 		return -1;
632 
633 	now = ktime_get();
634 	if (last_update_time) {
635 		update_ts_time_stats(cpu, ts, now, last_update_time);
636 		iowait = ts->iowait_sleeptime;
637 	} else {
638 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
639 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
640 
641 			iowait = ktime_add(ts->iowait_sleeptime, delta);
642 		} else {
643 			iowait = ts->iowait_sleeptime;
644 		}
645 	}
646 
647 	return ktime_to_us(iowait);
648 }
649 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
650 
651 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
652 {
653 	hrtimer_cancel(&ts->sched_timer);
654 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
655 
656 	/* Forward the time to expire in the future */
657 	hrtimer_forward(&ts->sched_timer, now, tick_period);
658 
659 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
660 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
661 	else
662 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
663 }
664 
665 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
666 					 ktime_t now, int cpu)
667 {
668 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
669 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 	unsigned long seq, basejiff;
671 	ktime_t	tick;
672 
673 	/* Read jiffies and the time when jiffies were updated last */
674 	do {
675 		seq = read_seqbegin(&jiffies_lock);
676 		basemono = last_jiffies_update;
677 		basejiff = jiffies;
678 	} while (read_seqretry(&jiffies_lock, seq));
679 	ts->last_jiffies = basejiff;
680 
681 	if (rcu_needs_cpu(basemono, &next_rcu) ||
682 	    arch_needs_cpu() || irq_work_needs_cpu()) {
683 		next_tick = basemono + TICK_NSEC;
684 	} else {
685 		/*
686 		 * Get the next pending timer. If high resolution
687 		 * timers are enabled this only takes the timer wheel
688 		 * timers into account. If high resolution timers are
689 		 * disabled this also looks at the next expiring
690 		 * hrtimer.
691 		 */
692 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 		ts->next_timer = next_tmr;
694 		/* Take the next rcu event into account */
695 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
696 	}
697 
698 	/*
699 	 * If the tick is due in the next period, keep it ticking or
700 	 * force prod the timer.
701 	 */
702 	delta = next_tick - basemono;
703 	if (delta <= (u64)TICK_NSEC) {
704 		tick = 0;
705 
706 		/*
707 		 * Tell the timer code that the base is not idle, i.e. undo
708 		 * the effect of get_next_timer_interrupt():
709 		 */
710 		timer_clear_idle();
711 		/*
712 		 * We've not stopped the tick yet, and there's a timer in the
713 		 * next period, so no point in stopping it either, bail.
714 		 */
715 		if (!ts->tick_stopped)
716 			goto out;
717 
718 		/*
719 		 * If, OTOH, we did stop it, but there's a pending (expired)
720 		 * timer reprogram the timer hardware to fire now.
721 		 *
722 		 * We will not restart the tick proper, just prod the timer
723 		 * hardware into firing an interrupt to process the pending
724 		 * timers. Just like tick_irq_exit() will not restart the tick
725 		 * for 'normal' interrupts.
726 		 *
727 		 * Only once we exit the idle loop will we re-enable the tick,
728 		 * see tick_nohz_idle_exit().
729 		 */
730 		if (delta == 0) {
731 			tick_nohz_restart(ts, now);
732 			goto out;
733 		}
734 	}
735 
736 	/*
737 	 * If this CPU is the one which updates jiffies, then give up
738 	 * the assignment and let it be taken by the CPU which runs
739 	 * the tick timer next, which might be this CPU as well. If we
740 	 * don't drop this here the jiffies might be stale and
741 	 * do_timer() never invoked. Keep track of the fact that it
742 	 * was the one which had the do_timer() duty last. If this CPU
743 	 * is the one which had the do_timer() duty last, we limit the
744 	 * sleep time to the timekeeping max_deferment value.
745 	 * Otherwise we can sleep as long as we want.
746 	 */
747 	delta = timekeeping_max_deferment();
748 	if (cpu == tick_do_timer_cpu) {
749 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750 		ts->do_timer_last = 1;
751 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
752 		delta = KTIME_MAX;
753 		ts->do_timer_last = 0;
754 	} else if (!ts->do_timer_last) {
755 		delta = KTIME_MAX;
756 	}
757 
758 #ifdef CONFIG_NO_HZ_FULL
759 	/* Limit the tick delta to the maximum scheduler deferment */
760 	if (!ts->inidle)
761 		delta = min(delta, scheduler_tick_max_deferment());
762 #endif
763 
764 	/* Calculate the next expiry time */
765 	if (delta < (KTIME_MAX - basemono))
766 		expires = basemono + delta;
767 	else
768 		expires = KTIME_MAX;
769 
770 	expires = min_t(u64, expires, next_tick);
771 	tick = expires;
772 
773 	/* Skip reprogram of event if its not changed */
774 	if (ts->tick_stopped && (expires == dev->next_event))
775 		goto out;
776 
777 	/*
778 	 * nohz_stop_sched_tick can be called several times before
779 	 * the nohz_restart_sched_tick is called. This happens when
780 	 * interrupts arrive which do not cause a reschedule. In the
781 	 * first call we save the current tick time, so we can restart
782 	 * the scheduler tick in nohz_restart_sched_tick.
783 	 */
784 	if (!ts->tick_stopped) {
785 		nohz_balance_enter_idle(cpu);
786 		calc_load_enter_idle();
787 		cpu_load_update_nohz_start();
788 
789 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
790 		ts->tick_stopped = 1;
791 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
792 	}
793 
794 	/*
795 	 * If the expiration time == KTIME_MAX, then we simply stop
796 	 * the tick timer.
797 	 */
798 	if (unlikely(expires == KTIME_MAX)) {
799 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
800 			hrtimer_cancel(&ts->sched_timer);
801 		goto out;
802 	}
803 
804 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
805 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
806 	else
807 		tick_program_event(tick, 1);
808 out:
809 	/* Update the estimated sleep length */
810 	ts->sleep_length = ktime_sub(dev->next_event, now);
811 	return tick;
812 }
813 
814 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
815 {
816 	/* Update jiffies first */
817 	tick_do_update_jiffies64(now);
818 	cpu_load_update_nohz_stop();
819 
820 	/*
821 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
822 	 * the clock forward checks in the enqueue path:
823 	 */
824 	timer_clear_idle();
825 
826 	calc_load_exit_idle();
827 	touch_softlockup_watchdog_sched();
828 	/*
829 	 * Cancel the scheduled timer and restore the tick
830 	 */
831 	ts->tick_stopped  = 0;
832 	ts->idle_exittime = now;
833 
834 	tick_nohz_restart(ts, now);
835 }
836 
837 static void tick_nohz_full_update_tick(struct tick_sched *ts)
838 {
839 #ifdef CONFIG_NO_HZ_FULL
840 	int cpu = smp_processor_id();
841 
842 	if (!tick_nohz_full_cpu(cpu))
843 		return;
844 
845 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
846 		return;
847 
848 	if (can_stop_full_tick(cpu, ts))
849 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
850 	else if (ts->tick_stopped)
851 		tick_nohz_restart_sched_tick(ts, ktime_get());
852 #endif
853 }
854 
855 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
856 {
857 	/*
858 	 * If this CPU is offline and it is the one which updates
859 	 * jiffies, then give up the assignment and let it be taken by
860 	 * the CPU which runs the tick timer next. If we don't drop
861 	 * this here the jiffies might be stale and do_timer() never
862 	 * invoked.
863 	 */
864 	if (unlikely(!cpu_online(cpu))) {
865 		if (cpu == tick_do_timer_cpu)
866 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
867 		return false;
868 	}
869 
870 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
871 		ts->sleep_length = NSEC_PER_SEC / HZ;
872 		return false;
873 	}
874 
875 	if (need_resched())
876 		return false;
877 
878 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
879 		static int ratelimit;
880 
881 		if (ratelimit < 10 &&
882 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
883 			pr_warn("NOHZ: local_softirq_pending %02x\n",
884 				(unsigned int) local_softirq_pending());
885 			ratelimit++;
886 		}
887 		return false;
888 	}
889 
890 	if (tick_nohz_full_enabled()) {
891 		/*
892 		 * Keep the tick alive to guarantee timekeeping progression
893 		 * if there are full dynticks CPUs around
894 		 */
895 		if (tick_do_timer_cpu == cpu)
896 			return false;
897 		/*
898 		 * Boot safety: make sure the timekeeping duty has been
899 		 * assigned before entering dyntick-idle mode,
900 		 */
901 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
902 			return false;
903 	}
904 
905 	return true;
906 }
907 
908 static void __tick_nohz_idle_enter(struct tick_sched *ts)
909 {
910 	ktime_t now, expires;
911 	int cpu = smp_processor_id();
912 
913 	now = tick_nohz_start_idle(ts);
914 
915 	if (can_stop_idle_tick(cpu, ts)) {
916 		int was_stopped = ts->tick_stopped;
917 
918 		ts->idle_calls++;
919 
920 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
921 		if (expires > 0LL) {
922 			ts->idle_sleeps++;
923 			ts->idle_expires = expires;
924 		}
925 
926 		if (!was_stopped && ts->tick_stopped)
927 			ts->idle_jiffies = ts->last_jiffies;
928 	}
929 }
930 
931 /**
932  * tick_nohz_idle_enter - stop the idle tick from the idle task
933  *
934  * When the next event is more than a tick into the future, stop the idle tick
935  * Called when we start the idle loop.
936  *
937  * The arch is responsible of calling:
938  *
939  * - rcu_idle_enter() after its last use of RCU before the CPU is put
940  *  to sleep.
941  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
942  */
943 void tick_nohz_idle_enter(void)
944 {
945 	struct tick_sched *ts;
946 
947 	WARN_ON_ONCE(irqs_disabled());
948 
949 	/*
950 	 * Update the idle state in the scheduler domain hierarchy
951 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
952 	 * State will be updated to busy during the first busy tick after
953 	 * exiting idle.
954 	 */
955 	set_cpu_sd_state_idle();
956 
957 	local_irq_disable();
958 
959 	ts = this_cpu_ptr(&tick_cpu_sched);
960 	ts->inidle = 1;
961 	__tick_nohz_idle_enter(ts);
962 
963 	local_irq_enable();
964 }
965 
966 /**
967  * tick_nohz_irq_exit - update next tick event from interrupt exit
968  *
969  * When an interrupt fires while we are idle and it doesn't cause
970  * a reschedule, it may still add, modify or delete a timer, enqueue
971  * an RCU callback, etc...
972  * So we need to re-calculate and reprogram the next tick event.
973  */
974 void tick_nohz_irq_exit(void)
975 {
976 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
977 
978 	if (ts->inidle)
979 		__tick_nohz_idle_enter(ts);
980 	else
981 		tick_nohz_full_update_tick(ts);
982 }
983 
984 /**
985  * tick_nohz_get_sleep_length - return the length of the current sleep
986  *
987  * Called from power state control code with interrupts disabled
988  */
989 ktime_t tick_nohz_get_sleep_length(void)
990 {
991 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
992 
993 	return ts->sleep_length;
994 }
995 
996 /**
997  * tick_nohz_get_idle_calls - return the current idle calls counter value
998  *
999  * Called from the schedutil frequency scaling governor in scheduler context.
1000  */
1001 unsigned long tick_nohz_get_idle_calls(void)
1002 {
1003 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004 
1005 	return ts->idle_calls;
1006 }
1007 
1008 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1009 {
1010 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1011 	unsigned long ticks;
1012 
1013 	if (vtime_accounting_cpu_enabled())
1014 		return;
1015 	/*
1016 	 * We stopped the tick in idle. Update process times would miss the
1017 	 * time we slept as update_process_times does only a 1 tick
1018 	 * accounting. Enforce that this is accounted to idle !
1019 	 */
1020 	ticks = jiffies - ts->idle_jiffies;
1021 	/*
1022 	 * We might be one off. Do not randomly account a huge number of ticks!
1023 	 */
1024 	if (ticks && ticks < LONG_MAX)
1025 		account_idle_ticks(ticks);
1026 #endif
1027 }
1028 
1029 /**
1030  * tick_nohz_idle_exit - restart the idle tick from the idle task
1031  *
1032  * Restart the idle tick when the CPU is woken up from idle
1033  * This also exit the RCU extended quiescent state. The CPU
1034  * can use RCU again after this function is called.
1035  */
1036 void tick_nohz_idle_exit(void)
1037 {
1038 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1039 	ktime_t now;
1040 
1041 	local_irq_disable();
1042 
1043 	WARN_ON_ONCE(!ts->inidle);
1044 
1045 	ts->inidle = 0;
1046 
1047 	if (ts->idle_active || ts->tick_stopped)
1048 		now = ktime_get();
1049 
1050 	if (ts->idle_active)
1051 		tick_nohz_stop_idle(ts, now);
1052 
1053 	if (ts->tick_stopped) {
1054 		tick_nohz_restart_sched_tick(ts, now);
1055 		tick_nohz_account_idle_ticks(ts);
1056 	}
1057 
1058 	local_irq_enable();
1059 }
1060 
1061 /*
1062  * The nohz low res interrupt handler
1063  */
1064 static void tick_nohz_handler(struct clock_event_device *dev)
1065 {
1066 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1067 	struct pt_regs *regs = get_irq_regs();
1068 	ktime_t now = ktime_get();
1069 
1070 	dev->next_event = KTIME_MAX;
1071 
1072 	tick_sched_do_timer(now);
1073 	tick_sched_handle(ts, regs);
1074 
1075 	/* No need to reprogram if we are running tickless  */
1076 	if (unlikely(ts->tick_stopped))
1077 		return;
1078 
1079 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1080 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1081 }
1082 
1083 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1084 {
1085 	if (!tick_nohz_enabled)
1086 		return;
1087 	ts->nohz_mode = mode;
1088 	/* One update is enough */
1089 	if (!test_and_set_bit(0, &tick_nohz_active))
1090 		timers_update_migration(true);
1091 }
1092 
1093 /**
1094  * tick_nohz_switch_to_nohz - switch to nohz mode
1095  */
1096 static void tick_nohz_switch_to_nohz(void)
1097 {
1098 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1099 	ktime_t next;
1100 
1101 	if (!tick_nohz_enabled)
1102 		return;
1103 
1104 	if (tick_switch_to_oneshot(tick_nohz_handler))
1105 		return;
1106 
1107 	/*
1108 	 * Recycle the hrtimer in ts, so we can share the
1109 	 * hrtimer_forward with the highres code.
1110 	 */
1111 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1112 	/* Get the next period */
1113 	next = tick_init_jiffy_update();
1114 
1115 	hrtimer_set_expires(&ts->sched_timer, next);
1116 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1117 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1118 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1119 }
1120 
1121 static inline void tick_nohz_irq_enter(void)
1122 {
1123 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1124 	ktime_t now;
1125 
1126 	if (!ts->idle_active && !ts->tick_stopped)
1127 		return;
1128 	now = ktime_get();
1129 	if (ts->idle_active)
1130 		tick_nohz_stop_idle(ts, now);
1131 	if (ts->tick_stopped)
1132 		tick_nohz_update_jiffies(now);
1133 }
1134 
1135 #else
1136 
1137 static inline void tick_nohz_switch_to_nohz(void) { }
1138 static inline void tick_nohz_irq_enter(void) { }
1139 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1140 
1141 #endif /* CONFIG_NO_HZ_COMMON */
1142 
1143 /*
1144  * Called from irq_enter to notify about the possible interruption of idle()
1145  */
1146 void tick_irq_enter(void)
1147 {
1148 	tick_check_oneshot_broadcast_this_cpu();
1149 	tick_nohz_irq_enter();
1150 }
1151 
1152 /*
1153  * High resolution timer specific code
1154  */
1155 #ifdef CONFIG_HIGH_RES_TIMERS
1156 /*
1157  * We rearm the timer until we get disabled by the idle code.
1158  * Called with interrupts disabled.
1159  */
1160 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1161 {
1162 	struct tick_sched *ts =
1163 		container_of(timer, struct tick_sched, sched_timer);
1164 	struct pt_regs *regs = get_irq_regs();
1165 	ktime_t now = ktime_get();
1166 
1167 	tick_sched_do_timer(now);
1168 
1169 	/*
1170 	 * Do not call, when we are not in irq context and have
1171 	 * no valid regs pointer
1172 	 */
1173 	if (regs)
1174 		tick_sched_handle(ts, regs);
1175 
1176 	/* No need to reprogram if we are in idle or full dynticks mode */
1177 	if (unlikely(ts->tick_stopped))
1178 		return HRTIMER_NORESTART;
1179 
1180 	hrtimer_forward(timer, now, tick_period);
1181 
1182 	return HRTIMER_RESTART;
1183 }
1184 
1185 static int sched_skew_tick;
1186 
1187 static int __init skew_tick(char *str)
1188 {
1189 	get_option(&str, &sched_skew_tick);
1190 
1191 	return 0;
1192 }
1193 early_param("skew_tick", skew_tick);
1194 
1195 /**
1196  * tick_setup_sched_timer - setup the tick emulation timer
1197  */
1198 void tick_setup_sched_timer(void)
1199 {
1200 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1201 	ktime_t now = ktime_get();
1202 
1203 	/*
1204 	 * Emulate tick processing via per-CPU hrtimers:
1205 	 */
1206 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1207 	ts->sched_timer.function = tick_sched_timer;
1208 
1209 	/* Get the next period (per-CPU) */
1210 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1211 
1212 	/* Offset the tick to avert jiffies_lock contention. */
1213 	if (sched_skew_tick) {
1214 		u64 offset = ktime_to_ns(tick_period) >> 1;
1215 		do_div(offset, num_possible_cpus());
1216 		offset *= smp_processor_id();
1217 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1218 	}
1219 
1220 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1221 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1222 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1223 }
1224 #endif /* HIGH_RES_TIMERS */
1225 
1226 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1227 void tick_cancel_sched_timer(int cpu)
1228 {
1229 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1230 
1231 # ifdef CONFIG_HIGH_RES_TIMERS
1232 	if (ts->sched_timer.base)
1233 		hrtimer_cancel(&ts->sched_timer);
1234 # endif
1235 
1236 	memset(ts, 0, sizeof(*ts));
1237 }
1238 #endif
1239 
1240 /**
1241  * Async notification about clocksource changes
1242  */
1243 void tick_clock_notify(void)
1244 {
1245 	int cpu;
1246 
1247 	for_each_possible_cpu(cpu)
1248 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1249 }
1250 
1251 /*
1252  * Async notification about clock event changes
1253  */
1254 void tick_oneshot_notify(void)
1255 {
1256 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1257 
1258 	set_bit(0, &ts->check_clocks);
1259 }
1260 
1261 /**
1262  * Check, if a change happened, which makes oneshot possible.
1263  *
1264  * Called cyclic from the hrtimer softirq (driven by the timer
1265  * softirq) allow_nohz signals, that we can switch into low-res nohz
1266  * mode, because high resolution timers are disabled (either compile
1267  * or runtime). Called with interrupts disabled.
1268  */
1269 int tick_check_oneshot_change(int allow_nohz)
1270 {
1271 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272 
1273 	if (!test_and_clear_bit(0, &ts->check_clocks))
1274 		return 0;
1275 
1276 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1277 		return 0;
1278 
1279 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1280 		return 0;
1281 
1282 	if (!allow_nohz)
1283 		return 1;
1284 
1285 	tick_nohz_switch_to_nohz();
1286 	return 0;
1287 }
1288