xref: /openbmc/linux/kernel/time/tick-sched.c (revision cdfce539)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 /*
39  * The time, when the last jiffy update happened. Protected by jiffies_lock.
40  */
41 static ktime_t last_jiffies_update;
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 /*
49  * Must be called with interrupts disabled !
50  */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 	unsigned long ticks = 0;
54 	ktime_t delta;
55 
56 	/*
57 	 * Do a quick check without holding jiffies_lock:
58 	 */
59 	delta = ktime_sub(now, last_jiffies_update);
60 	if (delta.tv64 < tick_period.tv64)
61 		return;
62 
63 	/* Reevalute with jiffies_lock held */
64 	write_seqlock(&jiffies_lock);
65 
66 	delta = ktime_sub(now, last_jiffies_update);
67 	if (delta.tv64 >= tick_period.tv64) {
68 
69 		delta = ktime_sub(delta, tick_period);
70 		last_jiffies_update = ktime_add(last_jiffies_update,
71 						tick_period);
72 
73 		/* Slow path for long timeouts */
74 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 			s64 incr = ktime_to_ns(tick_period);
76 
77 			ticks = ktime_divns(delta, incr);
78 
79 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 							   incr * ticks);
81 		}
82 		do_timer(++ticks);
83 
84 		/* Keep the tick_next_period variable up to date */
85 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 	}
87 	write_sequnlock(&jiffies_lock);
88 }
89 
90 /*
91  * Initialize and return retrieve the jiffies update.
92  */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 	ktime_t period;
96 
97 	write_seqlock(&jiffies_lock);
98 	/* Did we start the jiffies update yet ? */
99 	if (last_jiffies_update.tv64 == 0)
100 		last_jiffies_update = tick_next_period;
101 	period = last_jiffies_update;
102 	write_sequnlock(&jiffies_lock);
103 	return period;
104 }
105 
106 
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 	int cpu = smp_processor_id();
110 
111 #ifdef CONFIG_NO_HZ_COMMON
112 	/*
113 	 * Check if the do_timer duty was dropped. We don't care about
114 	 * concurrency: This happens only when the cpu in charge went
115 	 * into a long sleep. If two cpus happen to assign themself to
116 	 * this duty, then the jiffies update is still serialized by
117 	 * jiffies_lock.
118 	 */
119 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 	    && !tick_nohz_full_cpu(cpu))
121 		tick_do_timer_cpu = cpu;
122 #endif
123 
124 	/* Check, if the jiffies need an update */
125 	if (tick_do_timer_cpu == cpu)
126 		tick_do_update_jiffies64(now);
127 }
128 
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 	/*
133 	 * When we are idle and the tick is stopped, we have to touch
134 	 * the watchdog as we might not schedule for a really long
135 	 * time. This happens on complete idle SMP systems while
136 	 * waiting on the login prompt. We also increment the "start of
137 	 * idle" jiffy stamp so the idle accounting adjustment we do
138 	 * when we go busy again does not account too much ticks.
139 	 */
140 	if (ts->tick_stopped) {
141 		touch_softlockup_watchdog();
142 		if (is_idle_task(current))
143 			ts->idle_jiffies++;
144 	}
145 #endif
146 	update_process_times(user_mode(regs));
147 	profile_tick(CPU_PROFILING);
148 }
149 
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153 
154 static bool can_stop_full_tick(void)
155 {
156 	WARN_ON_ONCE(!irqs_disabled());
157 
158 	if (!sched_can_stop_tick()) {
159 		trace_tick_stop(0, "more than 1 task in runqueue\n");
160 		return false;
161 	}
162 
163 	if (!posix_cpu_timers_can_stop_tick(current)) {
164 		trace_tick_stop(0, "posix timers running\n");
165 		return false;
166 	}
167 
168 	if (!perf_event_can_stop_tick()) {
169 		trace_tick_stop(0, "perf events running\n");
170 		return false;
171 	}
172 
173 	/* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 	/*
176 	 * TODO: kick full dynticks CPUs when
177 	 * sched_clock_stable is set.
178 	 */
179 	if (!sched_clock_stable) {
180 		trace_tick_stop(0, "unstable sched clock\n");
181 		return false;
182 	}
183 #endif
184 
185 	return true;
186 }
187 
188 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
189 
190 /*
191  * Re-evaluate the need for the tick on the current CPU
192  * and restart it if necessary.
193  */
194 void tick_nohz_full_check(void)
195 {
196 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
197 
198 	if (tick_nohz_full_cpu(smp_processor_id())) {
199 		if (ts->tick_stopped && !is_idle_task(current)) {
200 			if (!can_stop_full_tick())
201 				tick_nohz_restart_sched_tick(ts, ktime_get());
202 		}
203 	}
204 }
205 
206 static void nohz_full_kick_work_func(struct irq_work *work)
207 {
208 	tick_nohz_full_check();
209 }
210 
211 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
212 	.func = nohz_full_kick_work_func,
213 };
214 
215 /*
216  * Kick the current CPU if it's full dynticks in order to force it to
217  * re-evaluate its dependency on the tick and restart it if necessary.
218  */
219 void tick_nohz_full_kick(void)
220 {
221 	if (tick_nohz_full_cpu(smp_processor_id()))
222 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
223 }
224 
225 static void nohz_full_kick_ipi(void *info)
226 {
227 	tick_nohz_full_check();
228 }
229 
230 /*
231  * Kick all full dynticks CPUs in order to force these to re-evaluate
232  * their dependency on the tick and restart it if necessary.
233  */
234 void tick_nohz_full_kick_all(void)
235 {
236 	if (!have_nohz_full_mask)
237 		return;
238 
239 	preempt_disable();
240 	smp_call_function_many(nohz_full_mask,
241 			       nohz_full_kick_ipi, NULL, false);
242 	preempt_enable();
243 }
244 
245 /*
246  * Re-evaluate the need for the tick as we switch the current task.
247  * It might need the tick due to per task/process properties:
248  * perf events, posix cpu timers, ...
249  */
250 void tick_nohz_task_switch(struct task_struct *tsk)
251 {
252 	unsigned long flags;
253 
254 	local_irq_save(flags);
255 
256 	if (!tick_nohz_full_cpu(smp_processor_id()))
257 		goto out;
258 
259 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
260 		tick_nohz_full_kick();
261 
262 out:
263 	local_irq_restore(flags);
264 }
265 
266 int tick_nohz_full_cpu(int cpu)
267 {
268 	if (!have_nohz_full_mask)
269 		return 0;
270 
271 	return cpumask_test_cpu(cpu, nohz_full_mask);
272 }
273 
274 /* Parse the boot-time nohz CPU list from the kernel parameters. */
275 static int __init tick_nohz_full_setup(char *str)
276 {
277 	int cpu;
278 
279 	alloc_bootmem_cpumask_var(&nohz_full_mask);
280 	if (cpulist_parse(str, nohz_full_mask) < 0) {
281 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
282 		return 1;
283 	}
284 
285 	cpu = smp_processor_id();
286 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
287 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
288 		cpumask_clear_cpu(cpu, nohz_full_mask);
289 	}
290 	have_nohz_full_mask = true;
291 
292 	return 1;
293 }
294 __setup("nohz_full=", tick_nohz_full_setup);
295 
296 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
297 						 unsigned long action,
298 						 void *hcpu)
299 {
300 	unsigned int cpu = (unsigned long)hcpu;
301 
302 	switch (action & ~CPU_TASKS_FROZEN) {
303 	case CPU_DOWN_PREPARE:
304 		/*
305 		 * If we handle the timekeeping duty for full dynticks CPUs,
306 		 * we can't safely shutdown that CPU.
307 		 */
308 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
309 			return -EINVAL;
310 		break;
311 	}
312 	return NOTIFY_OK;
313 }
314 
315 /*
316  * Worst case string length in chunks of CPU range seems 2 steps
317  * separations: 0,2,4,6,...
318  * This is NR_CPUS + sizeof('\0')
319  */
320 static char __initdata nohz_full_buf[NR_CPUS + 1];
321 
322 static int tick_nohz_init_all(void)
323 {
324 	int err = -1;
325 
326 #ifdef CONFIG_NO_HZ_FULL_ALL
327 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
328 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
329 		return err;
330 	}
331 	err = 0;
332 	cpumask_setall(nohz_full_mask);
333 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
334 	have_nohz_full_mask = true;
335 #endif
336 	return err;
337 }
338 
339 void __init tick_nohz_init(void)
340 {
341 	int cpu;
342 
343 	if (!have_nohz_full_mask) {
344 		if (tick_nohz_init_all() < 0)
345 			return;
346 	}
347 
348 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
349 
350 	/* Make sure full dynticks CPU are also RCU nocbs */
351 	for_each_cpu(cpu, nohz_full_mask) {
352 		if (!rcu_is_nocb_cpu(cpu)) {
353 			pr_warning("NO_HZ: CPU %d is not RCU nocb: "
354 				   "cleared from nohz_full range", cpu);
355 			cpumask_clear_cpu(cpu, nohz_full_mask);
356 		}
357 	}
358 
359 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
360 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
361 }
362 #else
363 #define have_nohz_full_mask (0)
364 #endif
365 
366 /*
367  * NOHZ - aka dynamic tick functionality
368  */
369 #ifdef CONFIG_NO_HZ_COMMON
370 /*
371  * NO HZ enabled ?
372  */
373 int tick_nohz_enabled __read_mostly  = 1;
374 
375 /*
376  * Enable / Disable tickless mode
377  */
378 static int __init setup_tick_nohz(char *str)
379 {
380 	if (!strcmp(str, "off"))
381 		tick_nohz_enabled = 0;
382 	else if (!strcmp(str, "on"))
383 		tick_nohz_enabled = 1;
384 	else
385 		return 0;
386 	return 1;
387 }
388 
389 __setup("nohz=", setup_tick_nohz);
390 
391 /**
392  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
393  *
394  * Called from interrupt entry when the CPU was idle
395  *
396  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
397  * must be updated. Otherwise an interrupt handler could use a stale jiffy
398  * value. We do this unconditionally on any cpu, as we don't know whether the
399  * cpu, which has the update task assigned is in a long sleep.
400  */
401 static void tick_nohz_update_jiffies(ktime_t now)
402 {
403 	int cpu = smp_processor_id();
404 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
405 	unsigned long flags;
406 
407 	ts->idle_waketime = now;
408 
409 	local_irq_save(flags);
410 	tick_do_update_jiffies64(now);
411 	local_irq_restore(flags);
412 
413 	touch_softlockup_watchdog();
414 }
415 
416 /*
417  * Updates the per cpu time idle statistics counters
418  */
419 static void
420 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
421 {
422 	ktime_t delta;
423 
424 	if (ts->idle_active) {
425 		delta = ktime_sub(now, ts->idle_entrytime);
426 		if (nr_iowait_cpu(cpu) > 0)
427 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
428 		else
429 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
430 		ts->idle_entrytime = now;
431 	}
432 
433 	if (last_update_time)
434 		*last_update_time = ktime_to_us(now);
435 
436 }
437 
438 static void tick_nohz_stop_idle(int cpu, ktime_t now)
439 {
440 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
441 
442 	update_ts_time_stats(cpu, ts, now, NULL);
443 	ts->idle_active = 0;
444 
445 	sched_clock_idle_wakeup_event(0);
446 }
447 
448 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
449 {
450 	ktime_t now = ktime_get();
451 
452 	ts->idle_entrytime = now;
453 	ts->idle_active = 1;
454 	sched_clock_idle_sleep_event();
455 	return now;
456 }
457 
458 /**
459  * get_cpu_idle_time_us - get the total idle time of a cpu
460  * @cpu: CPU number to query
461  * @last_update_time: variable to store update time in. Do not update
462  * counters if NULL.
463  *
464  * Return the cummulative idle time (since boot) for a given
465  * CPU, in microseconds.
466  *
467  * This time is measured via accounting rather than sampling,
468  * and is as accurate as ktime_get() is.
469  *
470  * This function returns -1 if NOHZ is not enabled.
471  */
472 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
473 {
474 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
475 	ktime_t now, idle;
476 
477 	if (!tick_nohz_enabled)
478 		return -1;
479 
480 	now = ktime_get();
481 	if (last_update_time) {
482 		update_ts_time_stats(cpu, ts, now, last_update_time);
483 		idle = ts->idle_sleeptime;
484 	} else {
485 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
486 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
487 
488 			idle = ktime_add(ts->idle_sleeptime, delta);
489 		} else {
490 			idle = ts->idle_sleeptime;
491 		}
492 	}
493 
494 	return ktime_to_us(idle);
495 
496 }
497 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
498 
499 /**
500  * get_cpu_iowait_time_us - get the total iowait time of a cpu
501  * @cpu: CPU number to query
502  * @last_update_time: variable to store update time in. Do not update
503  * counters if NULL.
504  *
505  * Return the cummulative iowait time (since boot) for a given
506  * CPU, in microseconds.
507  *
508  * This time is measured via accounting rather than sampling,
509  * and is as accurate as ktime_get() is.
510  *
511  * This function returns -1 if NOHZ is not enabled.
512  */
513 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
514 {
515 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
516 	ktime_t now, iowait;
517 
518 	if (!tick_nohz_enabled)
519 		return -1;
520 
521 	now = ktime_get();
522 	if (last_update_time) {
523 		update_ts_time_stats(cpu, ts, now, last_update_time);
524 		iowait = ts->iowait_sleeptime;
525 	} else {
526 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
527 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
528 
529 			iowait = ktime_add(ts->iowait_sleeptime, delta);
530 		} else {
531 			iowait = ts->iowait_sleeptime;
532 		}
533 	}
534 
535 	return ktime_to_us(iowait);
536 }
537 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
538 
539 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
540 					 ktime_t now, int cpu)
541 {
542 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
543 	ktime_t last_update, expires, ret = { .tv64 = 0 };
544 	unsigned long rcu_delta_jiffies;
545 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
546 	u64 time_delta;
547 
548 	/* Read jiffies and the time when jiffies were updated last */
549 	do {
550 		seq = read_seqbegin(&jiffies_lock);
551 		last_update = last_jiffies_update;
552 		last_jiffies = jiffies;
553 		time_delta = timekeeping_max_deferment();
554 	} while (read_seqretry(&jiffies_lock, seq));
555 
556 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
557 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
558 		next_jiffies = last_jiffies + 1;
559 		delta_jiffies = 1;
560 	} else {
561 		/* Get the next timer wheel timer */
562 		next_jiffies = get_next_timer_interrupt(last_jiffies);
563 		delta_jiffies = next_jiffies - last_jiffies;
564 		if (rcu_delta_jiffies < delta_jiffies) {
565 			next_jiffies = last_jiffies + rcu_delta_jiffies;
566 			delta_jiffies = rcu_delta_jiffies;
567 		}
568 	}
569 
570 	/*
571 	 * Do not stop the tick, if we are only one off (or less)
572 	 * or if the cpu is required for RCU:
573 	 */
574 	if (!ts->tick_stopped && delta_jiffies <= 1)
575 		goto out;
576 
577 	/* Schedule the tick, if we are at least one jiffie off */
578 	if ((long)delta_jiffies >= 1) {
579 
580 		/*
581 		 * If this cpu is the one which updates jiffies, then
582 		 * give up the assignment and let it be taken by the
583 		 * cpu which runs the tick timer next, which might be
584 		 * this cpu as well. If we don't drop this here the
585 		 * jiffies might be stale and do_timer() never
586 		 * invoked. Keep track of the fact that it was the one
587 		 * which had the do_timer() duty last. If this cpu is
588 		 * the one which had the do_timer() duty last, we
589 		 * limit the sleep time to the timekeeping
590 		 * max_deferement value which we retrieved
591 		 * above. Otherwise we can sleep as long as we want.
592 		 */
593 		if (cpu == tick_do_timer_cpu) {
594 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
595 			ts->do_timer_last = 1;
596 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
597 			time_delta = KTIME_MAX;
598 			ts->do_timer_last = 0;
599 		} else if (!ts->do_timer_last) {
600 			time_delta = KTIME_MAX;
601 		}
602 
603 #ifdef CONFIG_NO_HZ_FULL
604 		if (!ts->inidle) {
605 			time_delta = min(time_delta,
606 					 scheduler_tick_max_deferment());
607 		}
608 #endif
609 
610 		/*
611 		 * calculate the expiry time for the next timer wheel
612 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
613 		 * that there is no timer pending or at least extremely
614 		 * far into the future (12 days for HZ=1000). In this
615 		 * case we set the expiry to the end of time.
616 		 */
617 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
618 			/*
619 			 * Calculate the time delta for the next timer event.
620 			 * If the time delta exceeds the maximum time delta
621 			 * permitted by the current clocksource then adjust
622 			 * the time delta accordingly to ensure the
623 			 * clocksource does not wrap.
624 			 */
625 			time_delta = min_t(u64, time_delta,
626 					   tick_period.tv64 * delta_jiffies);
627 		}
628 
629 		if (time_delta < KTIME_MAX)
630 			expires = ktime_add_ns(last_update, time_delta);
631 		else
632 			expires.tv64 = KTIME_MAX;
633 
634 		/* Skip reprogram of event if its not changed */
635 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
636 			goto out;
637 
638 		ret = expires;
639 
640 		/*
641 		 * nohz_stop_sched_tick can be called several times before
642 		 * the nohz_restart_sched_tick is called. This happens when
643 		 * interrupts arrive which do not cause a reschedule. In the
644 		 * first call we save the current tick time, so we can restart
645 		 * the scheduler tick in nohz_restart_sched_tick.
646 		 */
647 		if (!ts->tick_stopped) {
648 			nohz_balance_enter_idle(cpu);
649 			calc_load_enter_idle();
650 
651 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
652 			ts->tick_stopped = 1;
653 			trace_tick_stop(1, " ");
654 		}
655 
656 		/*
657 		 * If the expiration time == KTIME_MAX, then
658 		 * in this case we simply stop the tick timer.
659 		 */
660 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
661 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
662 				hrtimer_cancel(&ts->sched_timer);
663 			goto out;
664 		}
665 
666 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
667 			hrtimer_start(&ts->sched_timer, expires,
668 				      HRTIMER_MODE_ABS_PINNED);
669 			/* Check, if the timer was already in the past */
670 			if (hrtimer_active(&ts->sched_timer))
671 				goto out;
672 		} else if (!tick_program_event(expires, 0))
673 				goto out;
674 		/*
675 		 * We are past the event already. So we crossed a
676 		 * jiffie boundary. Update jiffies and raise the
677 		 * softirq.
678 		 */
679 		tick_do_update_jiffies64(ktime_get());
680 	}
681 	raise_softirq_irqoff(TIMER_SOFTIRQ);
682 out:
683 	ts->next_jiffies = next_jiffies;
684 	ts->last_jiffies = last_jiffies;
685 	ts->sleep_length = ktime_sub(dev->next_event, now);
686 
687 	return ret;
688 }
689 
690 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
691 {
692 #ifdef CONFIG_NO_HZ_FULL
693        int cpu = smp_processor_id();
694 
695        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
696                return;
697 
698        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
699 	       return;
700 
701        if (!can_stop_full_tick())
702                return;
703 
704        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
705 #endif
706 }
707 
708 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
709 {
710 	/*
711 	 * If this cpu is offline and it is the one which updates
712 	 * jiffies, then give up the assignment and let it be taken by
713 	 * the cpu which runs the tick timer next. If we don't drop
714 	 * this here the jiffies might be stale and do_timer() never
715 	 * invoked.
716 	 */
717 	if (unlikely(!cpu_online(cpu))) {
718 		if (cpu == tick_do_timer_cpu)
719 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
720 		return false;
721 	}
722 
723 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
724 		return false;
725 
726 	if (need_resched())
727 		return false;
728 
729 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
730 		static int ratelimit;
731 
732 		if (ratelimit < 10 &&
733 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
734 			pr_warn("NOHZ: local_softirq_pending %02x\n",
735 				(unsigned int) local_softirq_pending());
736 			ratelimit++;
737 		}
738 		return false;
739 	}
740 
741 	if (have_nohz_full_mask) {
742 		/*
743 		 * Keep the tick alive to guarantee timekeeping progression
744 		 * if there are full dynticks CPUs around
745 		 */
746 		if (tick_do_timer_cpu == cpu)
747 			return false;
748 		/*
749 		 * Boot safety: make sure the timekeeping duty has been
750 		 * assigned before entering dyntick-idle mode,
751 		 */
752 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
753 			return false;
754 	}
755 
756 	return true;
757 }
758 
759 static void __tick_nohz_idle_enter(struct tick_sched *ts)
760 {
761 	ktime_t now, expires;
762 	int cpu = smp_processor_id();
763 
764 	now = tick_nohz_start_idle(cpu, ts);
765 
766 	if (can_stop_idle_tick(cpu, ts)) {
767 		int was_stopped = ts->tick_stopped;
768 
769 		ts->idle_calls++;
770 
771 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
772 		if (expires.tv64 > 0LL) {
773 			ts->idle_sleeps++;
774 			ts->idle_expires = expires;
775 		}
776 
777 		if (!was_stopped && ts->tick_stopped)
778 			ts->idle_jiffies = ts->last_jiffies;
779 	}
780 }
781 
782 /**
783  * tick_nohz_idle_enter - stop the idle tick from the idle task
784  *
785  * When the next event is more than a tick into the future, stop the idle tick
786  * Called when we start the idle loop.
787  *
788  * The arch is responsible of calling:
789  *
790  * - rcu_idle_enter() after its last use of RCU before the CPU is put
791  *  to sleep.
792  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
793  */
794 void tick_nohz_idle_enter(void)
795 {
796 	struct tick_sched *ts;
797 
798 	WARN_ON_ONCE(irqs_disabled());
799 
800 	/*
801  	 * Update the idle state in the scheduler domain hierarchy
802  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
803  	 * State will be updated to busy during the first busy tick after
804  	 * exiting idle.
805  	 */
806 	set_cpu_sd_state_idle();
807 
808 	local_irq_disable();
809 
810 	ts = &__get_cpu_var(tick_cpu_sched);
811 	/*
812 	 * set ts->inidle unconditionally. even if the system did not
813 	 * switch to nohz mode the cpu frequency governers rely on the
814 	 * update of the idle time accounting in tick_nohz_start_idle().
815 	 */
816 	ts->inidle = 1;
817 	__tick_nohz_idle_enter(ts);
818 
819 	local_irq_enable();
820 }
821 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
822 
823 /**
824  * tick_nohz_irq_exit - update next tick event from interrupt exit
825  *
826  * When an interrupt fires while we are idle and it doesn't cause
827  * a reschedule, it may still add, modify or delete a timer, enqueue
828  * an RCU callback, etc...
829  * So we need to re-calculate and reprogram the next tick event.
830  */
831 void tick_nohz_irq_exit(void)
832 {
833 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
834 
835 	if (ts->inidle) {
836 		/* Cancel the timer because CPU already waken up from the C-states*/
837 		menu_hrtimer_cancel();
838 		__tick_nohz_idle_enter(ts);
839 	} else {
840 		tick_nohz_full_stop_tick(ts);
841 	}
842 }
843 
844 /**
845  * tick_nohz_get_sleep_length - return the length of the current sleep
846  *
847  * Called from power state control code with interrupts disabled
848  */
849 ktime_t tick_nohz_get_sleep_length(void)
850 {
851 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
852 
853 	return ts->sleep_length;
854 }
855 
856 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
857 {
858 	hrtimer_cancel(&ts->sched_timer);
859 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
860 
861 	while (1) {
862 		/* Forward the time to expire in the future */
863 		hrtimer_forward(&ts->sched_timer, now, tick_period);
864 
865 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
866 			hrtimer_start_expires(&ts->sched_timer,
867 					      HRTIMER_MODE_ABS_PINNED);
868 			/* Check, if the timer was already in the past */
869 			if (hrtimer_active(&ts->sched_timer))
870 				break;
871 		} else {
872 			if (!tick_program_event(
873 				hrtimer_get_expires(&ts->sched_timer), 0))
874 				break;
875 		}
876 		/* Reread time and update jiffies */
877 		now = ktime_get();
878 		tick_do_update_jiffies64(now);
879 	}
880 }
881 
882 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
883 {
884 	/* Update jiffies first */
885 	tick_do_update_jiffies64(now);
886 	update_cpu_load_nohz();
887 
888 	calc_load_exit_idle();
889 	touch_softlockup_watchdog();
890 	/*
891 	 * Cancel the scheduled timer and restore the tick
892 	 */
893 	ts->tick_stopped  = 0;
894 	ts->idle_exittime = now;
895 
896 	tick_nohz_restart(ts, now);
897 }
898 
899 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
900 {
901 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
902 	unsigned long ticks;
903 
904 	if (vtime_accounting_enabled())
905 		return;
906 	/*
907 	 * We stopped the tick in idle. Update process times would miss the
908 	 * time we slept as update_process_times does only a 1 tick
909 	 * accounting. Enforce that this is accounted to idle !
910 	 */
911 	ticks = jiffies - ts->idle_jiffies;
912 	/*
913 	 * We might be one off. Do not randomly account a huge number of ticks!
914 	 */
915 	if (ticks && ticks < LONG_MAX)
916 		account_idle_ticks(ticks);
917 #endif
918 }
919 
920 /**
921  * tick_nohz_idle_exit - restart the idle tick from the idle task
922  *
923  * Restart the idle tick when the CPU is woken up from idle
924  * This also exit the RCU extended quiescent state. The CPU
925  * can use RCU again after this function is called.
926  */
927 void tick_nohz_idle_exit(void)
928 {
929 	int cpu = smp_processor_id();
930 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
931 	ktime_t now;
932 
933 	local_irq_disable();
934 
935 	WARN_ON_ONCE(!ts->inidle);
936 
937 	ts->inidle = 0;
938 
939 	/* Cancel the timer because CPU already waken up from the C-states*/
940 	menu_hrtimer_cancel();
941 	if (ts->idle_active || ts->tick_stopped)
942 		now = ktime_get();
943 
944 	if (ts->idle_active)
945 		tick_nohz_stop_idle(cpu, now);
946 
947 	if (ts->tick_stopped) {
948 		tick_nohz_restart_sched_tick(ts, now);
949 		tick_nohz_account_idle_ticks(ts);
950 	}
951 
952 	local_irq_enable();
953 }
954 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
955 
956 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
957 {
958 	hrtimer_forward(&ts->sched_timer, now, tick_period);
959 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
960 }
961 
962 /*
963  * The nohz low res interrupt handler
964  */
965 static void tick_nohz_handler(struct clock_event_device *dev)
966 {
967 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
968 	struct pt_regs *regs = get_irq_regs();
969 	ktime_t now = ktime_get();
970 
971 	dev->next_event.tv64 = KTIME_MAX;
972 
973 	tick_sched_do_timer(now);
974 	tick_sched_handle(ts, regs);
975 
976 	while (tick_nohz_reprogram(ts, now)) {
977 		now = ktime_get();
978 		tick_do_update_jiffies64(now);
979 	}
980 }
981 
982 /**
983  * tick_nohz_switch_to_nohz - switch to nohz mode
984  */
985 static void tick_nohz_switch_to_nohz(void)
986 {
987 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
988 	ktime_t next;
989 
990 	if (!tick_nohz_enabled)
991 		return;
992 
993 	local_irq_disable();
994 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
995 		local_irq_enable();
996 		return;
997 	}
998 
999 	ts->nohz_mode = NOHZ_MODE_LOWRES;
1000 
1001 	/*
1002 	 * Recycle the hrtimer in ts, so we can share the
1003 	 * hrtimer_forward with the highres code.
1004 	 */
1005 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1006 	/* Get the next period */
1007 	next = tick_init_jiffy_update();
1008 
1009 	for (;;) {
1010 		hrtimer_set_expires(&ts->sched_timer, next);
1011 		if (!tick_program_event(next, 0))
1012 			break;
1013 		next = ktime_add(next, tick_period);
1014 	}
1015 	local_irq_enable();
1016 }
1017 
1018 /*
1019  * When NOHZ is enabled and the tick is stopped, we need to kick the
1020  * tick timer from irq_enter() so that the jiffies update is kept
1021  * alive during long running softirqs. That's ugly as hell, but
1022  * correctness is key even if we need to fix the offending softirq in
1023  * the first place.
1024  *
1025  * Note, this is different to tick_nohz_restart. We just kick the
1026  * timer and do not touch the other magic bits which need to be done
1027  * when idle is left.
1028  */
1029 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1030 {
1031 #if 0
1032 	/* Switch back to 2.6.27 behaviour */
1033 
1034 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1035 	ktime_t delta;
1036 
1037 	/*
1038 	 * Do not touch the tick device, when the next expiry is either
1039 	 * already reached or less/equal than the tick period.
1040 	 */
1041 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1042 	if (delta.tv64 <= tick_period.tv64)
1043 		return;
1044 
1045 	tick_nohz_restart(ts, now);
1046 #endif
1047 }
1048 
1049 static inline void tick_check_nohz(int cpu)
1050 {
1051 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1052 	ktime_t now;
1053 
1054 	if (!ts->idle_active && !ts->tick_stopped)
1055 		return;
1056 	now = ktime_get();
1057 	if (ts->idle_active)
1058 		tick_nohz_stop_idle(cpu, now);
1059 	if (ts->tick_stopped) {
1060 		tick_nohz_update_jiffies(now);
1061 		tick_nohz_kick_tick(cpu, now);
1062 	}
1063 }
1064 
1065 #else
1066 
1067 static inline void tick_nohz_switch_to_nohz(void) { }
1068 static inline void tick_check_nohz(int cpu) { }
1069 
1070 #endif /* CONFIG_NO_HZ_COMMON */
1071 
1072 /*
1073  * Called from irq_enter to notify about the possible interruption of idle()
1074  */
1075 void tick_check_idle(int cpu)
1076 {
1077 	tick_check_oneshot_broadcast(cpu);
1078 	tick_check_nohz(cpu);
1079 }
1080 
1081 /*
1082  * High resolution timer specific code
1083  */
1084 #ifdef CONFIG_HIGH_RES_TIMERS
1085 /*
1086  * We rearm the timer until we get disabled by the idle code.
1087  * Called with interrupts disabled.
1088  */
1089 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1090 {
1091 	struct tick_sched *ts =
1092 		container_of(timer, struct tick_sched, sched_timer);
1093 	struct pt_regs *regs = get_irq_regs();
1094 	ktime_t now = ktime_get();
1095 
1096 	tick_sched_do_timer(now);
1097 
1098 	/*
1099 	 * Do not call, when we are not in irq context and have
1100 	 * no valid regs pointer
1101 	 */
1102 	if (regs)
1103 		tick_sched_handle(ts, regs);
1104 
1105 	hrtimer_forward(timer, now, tick_period);
1106 
1107 	return HRTIMER_RESTART;
1108 }
1109 
1110 static int sched_skew_tick;
1111 
1112 static int __init skew_tick(char *str)
1113 {
1114 	get_option(&str, &sched_skew_tick);
1115 
1116 	return 0;
1117 }
1118 early_param("skew_tick", skew_tick);
1119 
1120 /**
1121  * tick_setup_sched_timer - setup the tick emulation timer
1122  */
1123 void tick_setup_sched_timer(void)
1124 {
1125 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1126 	ktime_t now = ktime_get();
1127 
1128 	/*
1129 	 * Emulate tick processing via per-CPU hrtimers:
1130 	 */
1131 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1132 	ts->sched_timer.function = tick_sched_timer;
1133 
1134 	/* Get the next period (per cpu) */
1135 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1136 
1137 	/* Offset the tick to avert jiffies_lock contention. */
1138 	if (sched_skew_tick) {
1139 		u64 offset = ktime_to_ns(tick_period) >> 1;
1140 		do_div(offset, num_possible_cpus());
1141 		offset *= smp_processor_id();
1142 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1143 	}
1144 
1145 	for (;;) {
1146 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1147 		hrtimer_start_expires(&ts->sched_timer,
1148 				      HRTIMER_MODE_ABS_PINNED);
1149 		/* Check, if the timer was already in the past */
1150 		if (hrtimer_active(&ts->sched_timer))
1151 			break;
1152 		now = ktime_get();
1153 	}
1154 
1155 #ifdef CONFIG_NO_HZ_COMMON
1156 	if (tick_nohz_enabled)
1157 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1158 #endif
1159 }
1160 #endif /* HIGH_RES_TIMERS */
1161 
1162 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1163 void tick_cancel_sched_timer(int cpu)
1164 {
1165 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1166 
1167 # ifdef CONFIG_HIGH_RES_TIMERS
1168 	if (ts->sched_timer.base)
1169 		hrtimer_cancel(&ts->sched_timer);
1170 # endif
1171 
1172 	memset(ts, 0, sizeof(*ts));
1173 }
1174 #endif
1175 
1176 /**
1177  * Async notification about clocksource changes
1178  */
1179 void tick_clock_notify(void)
1180 {
1181 	int cpu;
1182 
1183 	for_each_possible_cpu(cpu)
1184 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1185 }
1186 
1187 /*
1188  * Async notification about clock event changes
1189  */
1190 void tick_oneshot_notify(void)
1191 {
1192 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1193 
1194 	set_bit(0, &ts->check_clocks);
1195 }
1196 
1197 /**
1198  * Check, if a change happened, which makes oneshot possible.
1199  *
1200  * Called cyclic from the hrtimer softirq (driven by the timer
1201  * softirq) allow_nohz signals, that we can switch into low-res nohz
1202  * mode, because high resolution timers are disabled (either compile
1203  * or runtime).
1204  */
1205 int tick_check_oneshot_change(int allow_nohz)
1206 {
1207 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1208 
1209 	if (!test_and_clear_bit(0, &ts->check_clocks))
1210 		return 0;
1211 
1212 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1213 		return 0;
1214 
1215 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1216 		return 0;
1217 
1218 	if (!allow_nohz)
1219 		return 1;
1220 
1221 	tick_nohz_switch_to_nohz();
1222 	return 0;
1223 }
1224