1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 #include <linux/context_tracking.h> 27 28 #include <asm/irq_regs.h> 29 30 #include "tick-internal.h" 31 32 #include <trace/events/timer.h> 33 34 /* 35 * Per cpu nohz control structure 36 */ 37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 38 39 /* 40 * The time, when the last jiffy update happened. Protected by jiffies_lock. 41 */ 42 static ktime_t last_jiffies_update; 43 44 struct tick_sched *tick_get_tick_sched(int cpu) 45 { 46 return &per_cpu(tick_cpu_sched, cpu); 47 } 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevalute with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } 88 write_sequnlock(&jiffies_lock); 89 } 90 91 /* 92 * Initialize and return retrieve the jiffies update. 93 */ 94 static ktime_t tick_init_jiffy_update(void) 95 { 96 ktime_t period; 97 98 write_seqlock(&jiffies_lock); 99 /* Did we start the jiffies update yet ? */ 100 if (last_jiffies_update.tv64 == 0) 101 last_jiffies_update = tick_next_period; 102 period = last_jiffies_update; 103 write_sequnlock(&jiffies_lock); 104 return period; 105 } 106 107 108 static void tick_sched_do_timer(ktime_t now) 109 { 110 int cpu = smp_processor_id(); 111 112 #ifdef CONFIG_NO_HZ_COMMON 113 /* 114 * Check if the do_timer duty was dropped. We don't care about 115 * concurrency: This happens only when the cpu in charge went 116 * into a long sleep. If two cpus happen to assign themself to 117 * this duty, then the jiffies update is still serialized by 118 * jiffies_lock. 119 */ 120 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 121 && !tick_nohz_full_cpu(cpu)) 122 tick_do_timer_cpu = cpu; 123 #endif 124 125 /* Check, if the jiffies need an update */ 126 if (tick_do_timer_cpu == cpu) 127 tick_do_update_jiffies64(now); 128 } 129 130 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 131 { 132 #ifdef CONFIG_NO_HZ_COMMON 133 /* 134 * When we are idle and the tick is stopped, we have to touch 135 * the watchdog as we might not schedule for a really long 136 * time. This happens on complete idle SMP systems while 137 * waiting on the login prompt. We also increment the "start of 138 * idle" jiffy stamp so the idle accounting adjustment we do 139 * when we go busy again does not account too much ticks. 140 */ 141 if (ts->tick_stopped) { 142 touch_softlockup_watchdog(); 143 if (is_idle_task(current)) 144 ts->idle_jiffies++; 145 } 146 #endif 147 update_process_times(user_mode(regs)); 148 profile_tick(CPU_PROFILING); 149 } 150 151 #ifdef CONFIG_NO_HZ_FULL 152 cpumask_var_t tick_nohz_full_mask; 153 bool tick_nohz_full_running; 154 155 static bool can_stop_full_tick(void) 156 { 157 WARN_ON_ONCE(!irqs_disabled()); 158 159 if (!sched_can_stop_tick()) { 160 trace_tick_stop(0, "more than 1 task in runqueue\n"); 161 return false; 162 } 163 164 if (!posix_cpu_timers_can_stop_tick(current)) { 165 trace_tick_stop(0, "posix timers running\n"); 166 return false; 167 } 168 169 if (!perf_event_can_stop_tick()) { 170 trace_tick_stop(0, "perf events running\n"); 171 return false; 172 } 173 174 /* sched_clock_tick() needs us? */ 175 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 176 /* 177 * TODO: kick full dynticks CPUs when 178 * sched_clock_stable is set. 179 */ 180 if (!sched_clock_stable) { 181 trace_tick_stop(0, "unstable sched clock\n"); 182 /* 183 * Don't allow the user to think they can get 184 * full NO_HZ with this machine. 185 */ 186 WARN_ONCE(tick_nohz_full_running, 187 "NO_HZ FULL will not work with unstable sched clock"); 188 return false; 189 } 190 #endif 191 192 return true; 193 } 194 195 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 196 197 /* 198 * Re-evaluate the need for the tick on the current CPU 199 * and restart it if necessary. 200 */ 201 void __tick_nohz_full_check(void) 202 { 203 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 204 205 if (tick_nohz_full_cpu(smp_processor_id())) { 206 if (ts->tick_stopped && !is_idle_task(current)) { 207 if (!can_stop_full_tick()) 208 tick_nohz_restart_sched_tick(ts, ktime_get()); 209 } 210 } 211 } 212 213 static void nohz_full_kick_work_func(struct irq_work *work) 214 { 215 __tick_nohz_full_check(); 216 } 217 218 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 219 .func = nohz_full_kick_work_func, 220 }; 221 222 /* 223 * Kick the current CPU if it's full dynticks in order to force it to 224 * re-evaluate its dependency on the tick and restart it if necessary. 225 */ 226 void tick_nohz_full_kick(void) 227 { 228 if (tick_nohz_full_cpu(smp_processor_id())) 229 irq_work_queue(&__get_cpu_var(nohz_full_kick_work)); 230 } 231 232 static void nohz_full_kick_ipi(void *info) 233 { 234 __tick_nohz_full_check(); 235 } 236 237 /* 238 * Kick all full dynticks CPUs in order to force these to re-evaluate 239 * their dependency on the tick and restart it if necessary. 240 */ 241 void tick_nohz_full_kick_all(void) 242 { 243 if (!tick_nohz_full_running) 244 return; 245 246 preempt_disable(); 247 smp_call_function_many(tick_nohz_full_mask, 248 nohz_full_kick_ipi, NULL, false); 249 tick_nohz_full_kick(); 250 preempt_enable(); 251 } 252 253 /* 254 * Re-evaluate the need for the tick as we switch the current task. 255 * It might need the tick due to per task/process properties: 256 * perf events, posix cpu timers, ... 257 */ 258 void __tick_nohz_task_switch(struct task_struct *tsk) 259 { 260 unsigned long flags; 261 262 local_irq_save(flags); 263 264 if (!tick_nohz_full_cpu(smp_processor_id())) 265 goto out; 266 267 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 268 tick_nohz_full_kick(); 269 270 out: 271 local_irq_restore(flags); 272 } 273 274 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 275 static int __init tick_nohz_full_setup(char *str) 276 { 277 int cpu; 278 279 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 280 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 281 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 282 return 1; 283 } 284 285 cpu = smp_processor_id(); 286 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 287 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 288 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 289 } 290 tick_nohz_full_running = true; 291 292 return 1; 293 } 294 __setup("nohz_full=", tick_nohz_full_setup); 295 296 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 297 unsigned long action, 298 void *hcpu) 299 { 300 unsigned int cpu = (unsigned long)hcpu; 301 302 switch (action & ~CPU_TASKS_FROZEN) { 303 case CPU_DOWN_PREPARE: 304 /* 305 * If we handle the timekeeping duty for full dynticks CPUs, 306 * we can't safely shutdown that CPU. 307 */ 308 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 309 return NOTIFY_BAD; 310 break; 311 } 312 return NOTIFY_OK; 313 } 314 315 /* 316 * Worst case string length in chunks of CPU range seems 2 steps 317 * separations: 0,2,4,6,... 318 * This is NR_CPUS + sizeof('\0') 319 */ 320 static char __initdata nohz_full_buf[NR_CPUS + 1]; 321 322 static int tick_nohz_init_all(void) 323 { 324 int err = -1; 325 326 #ifdef CONFIG_NO_HZ_FULL_ALL 327 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 328 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 329 return err; 330 } 331 err = 0; 332 cpumask_setall(tick_nohz_full_mask); 333 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask); 334 tick_nohz_full_running = true; 335 #endif 336 return err; 337 } 338 339 void __init tick_nohz_init(void) 340 { 341 int cpu; 342 343 if (!tick_nohz_full_running) { 344 if (tick_nohz_init_all() < 0) 345 return; 346 } 347 348 for_each_cpu(cpu, tick_nohz_full_mask) 349 context_tracking_cpu_set(cpu); 350 351 cpu_notifier(tick_nohz_cpu_down_callback, 0); 352 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask); 353 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 354 } 355 #endif 356 357 /* 358 * NOHZ - aka dynamic tick functionality 359 */ 360 #ifdef CONFIG_NO_HZ_COMMON 361 /* 362 * NO HZ enabled ? 363 */ 364 int tick_nohz_enabled __read_mostly = 1; 365 366 /* 367 * Enable / Disable tickless mode 368 */ 369 static int __init setup_tick_nohz(char *str) 370 { 371 if (!strcmp(str, "off")) 372 tick_nohz_enabled = 0; 373 else if (!strcmp(str, "on")) 374 tick_nohz_enabled = 1; 375 else 376 return 0; 377 return 1; 378 } 379 380 __setup("nohz=", setup_tick_nohz); 381 382 /** 383 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 384 * 385 * Called from interrupt entry when the CPU was idle 386 * 387 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 388 * must be updated. Otherwise an interrupt handler could use a stale jiffy 389 * value. We do this unconditionally on any cpu, as we don't know whether the 390 * cpu, which has the update task assigned is in a long sleep. 391 */ 392 static void tick_nohz_update_jiffies(ktime_t now) 393 { 394 int cpu = smp_processor_id(); 395 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 396 unsigned long flags; 397 398 ts->idle_waketime = now; 399 400 local_irq_save(flags); 401 tick_do_update_jiffies64(now); 402 local_irq_restore(flags); 403 404 touch_softlockup_watchdog(); 405 } 406 407 /* 408 * Updates the per cpu time idle statistics counters 409 */ 410 static void 411 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 412 { 413 ktime_t delta; 414 415 if (ts->idle_active) { 416 delta = ktime_sub(now, ts->idle_entrytime); 417 if (nr_iowait_cpu(cpu) > 0) 418 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 419 else 420 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 421 ts->idle_entrytime = now; 422 } 423 424 if (last_update_time) 425 *last_update_time = ktime_to_us(now); 426 427 } 428 429 static void tick_nohz_stop_idle(int cpu, ktime_t now) 430 { 431 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 432 433 update_ts_time_stats(cpu, ts, now, NULL); 434 ts->idle_active = 0; 435 436 sched_clock_idle_wakeup_event(0); 437 } 438 439 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 440 { 441 ktime_t now = ktime_get(); 442 443 ts->idle_entrytime = now; 444 ts->idle_active = 1; 445 sched_clock_idle_sleep_event(); 446 return now; 447 } 448 449 /** 450 * get_cpu_idle_time_us - get the total idle time of a cpu 451 * @cpu: CPU number to query 452 * @last_update_time: variable to store update time in. Do not update 453 * counters if NULL. 454 * 455 * Return the cummulative idle time (since boot) for a given 456 * CPU, in microseconds. 457 * 458 * This time is measured via accounting rather than sampling, 459 * and is as accurate as ktime_get() is. 460 * 461 * This function returns -1 if NOHZ is not enabled. 462 */ 463 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 464 { 465 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 466 ktime_t now, idle; 467 468 if (!tick_nohz_enabled) 469 return -1; 470 471 now = ktime_get(); 472 if (last_update_time) { 473 update_ts_time_stats(cpu, ts, now, last_update_time); 474 idle = ts->idle_sleeptime; 475 } else { 476 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 477 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 478 479 idle = ktime_add(ts->idle_sleeptime, delta); 480 } else { 481 idle = ts->idle_sleeptime; 482 } 483 } 484 485 return ktime_to_us(idle); 486 487 } 488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 489 490 /** 491 * get_cpu_iowait_time_us - get the total iowait time of a cpu 492 * @cpu: CPU number to query 493 * @last_update_time: variable to store update time in. Do not update 494 * counters if NULL. 495 * 496 * Return the cummulative iowait time (since boot) for a given 497 * CPU, in microseconds. 498 * 499 * This time is measured via accounting rather than sampling, 500 * and is as accurate as ktime_get() is. 501 * 502 * This function returns -1 if NOHZ is not enabled. 503 */ 504 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 505 { 506 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 507 ktime_t now, iowait; 508 509 if (!tick_nohz_enabled) 510 return -1; 511 512 now = ktime_get(); 513 if (last_update_time) { 514 update_ts_time_stats(cpu, ts, now, last_update_time); 515 iowait = ts->iowait_sleeptime; 516 } else { 517 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 518 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 519 520 iowait = ktime_add(ts->iowait_sleeptime, delta); 521 } else { 522 iowait = ts->iowait_sleeptime; 523 } 524 } 525 526 return ktime_to_us(iowait); 527 } 528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 529 530 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 531 ktime_t now, int cpu) 532 { 533 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 534 ktime_t last_update, expires, ret = { .tv64 = 0 }; 535 unsigned long rcu_delta_jiffies; 536 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 537 u64 time_delta; 538 539 /* Read jiffies and the time when jiffies were updated last */ 540 do { 541 seq = read_seqbegin(&jiffies_lock); 542 last_update = last_jiffies_update; 543 last_jiffies = jiffies; 544 time_delta = timekeeping_max_deferment(); 545 } while (read_seqretry(&jiffies_lock, seq)); 546 547 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 548 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 549 next_jiffies = last_jiffies + 1; 550 delta_jiffies = 1; 551 } else { 552 /* Get the next timer wheel timer */ 553 next_jiffies = get_next_timer_interrupt(last_jiffies); 554 delta_jiffies = next_jiffies - last_jiffies; 555 if (rcu_delta_jiffies < delta_jiffies) { 556 next_jiffies = last_jiffies + rcu_delta_jiffies; 557 delta_jiffies = rcu_delta_jiffies; 558 } 559 } 560 561 /* 562 * Do not stop the tick, if we are only one off (or less) 563 * or if the cpu is required for RCU: 564 */ 565 if (!ts->tick_stopped && delta_jiffies <= 1) 566 goto out; 567 568 /* Schedule the tick, if we are at least one jiffie off */ 569 if ((long)delta_jiffies >= 1) { 570 571 /* 572 * If this cpu is the one which updates jiffies, then 573 * give up the assignment and let it be taken by the 574 * cpu which runs the tick timer next, which might be 575 * this cpu as well. If we don't drop this here the 576 * jiffies might be stale and do_timer() never 577 * invoked. Keep track of the fact that it was the one 578 * which had the do_timer() duty last. If this cpu is 579 * the one which had the do_timer() duty last, we 580 * limit the sleep time to the timekeeping 581 * max_deferement value which we retrieved 582 * above. Otherwise we can sleep as long as we want. 583 */ 584 if (cpu == tick_do_timer_cpu) { 585 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 586 ts->do_timer_last = 1; 587 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 588 time_delta = KTIME_MAX; 589 ts->do_timer_last = 0; 590 } else if (!ts->do_timer_last) { 591 time_delta = KTIME_MAX; 592 } 593 594 #ifdef CONFIG_NO_HZ_FULL 595 if (!ts->inidle) { 596 time_delta = min(time_delta, 597 scheduler_tick_max_deferment()); 598 } 599 #endif 600 601 /* 602 * calculate the expiry time for the next timer wheel 603 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 604 * that there is no timer pending or at least extremely 605 * far into the future (12 days for HZ=1000). In this 606 * case we set the expiry to the end of time. 607 */ 608 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 609 /* 610 * Calculate the time delta for the next timer event. 611 * If the time delta exceeds the maximum time delta 612 * permitted by the current clocksource then adjust 613 * the time delta accordingly to ensure the 614 * clocksource does not wrap. 615 */ 616 time_delta = min_t(u64, time_delta, 617 tick_period.tv64 * delta_jiffies); 618 } 619 620 if (time_delta < KTIME_MAX) 621 expires = ktime_add_ns(last_update, time_delta); 622 else 623 expires.tv64 = KTIME_MAX; 624 625 /* Skip reprogram of event if its not changed */ 626 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 627 goto out; 628 629 ret = expires; 630 631 /* 632 * nohz_stop_sched_tick can be called several times before 633 * the nohz_restart_sched_tick is called. This happens when 634 * interrupts arrive which do not cause a reschedule. In the 635 * first call we save the current tick time, so we can restart 636 * the scheduler tick in nohz_restart_sched_tick. 637 */ 638 if (!ts->tick_stopped) { 639 nohz_balance_enter_idle(cpu); 640 calc_load_enter_idle(); 641 642 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 643 ts->tick_stopped = 1; 644 trace_tick_stop(1, " "); 645 } 646 647 /* 648 * If the expiration time == KTIME_MAX, then 649 * in this case we simply stop the tick timer. 650 */ 651 if (unlikely(expires.tv64 == KTIME_MAX)) { 652 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 653 hrtimer_cancel(&ts->sched_timer); 654 goto out; 655 } 656 657 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 658 hrtimer_start(&ts->sched_timer, expires, 659 HRTIMER_MODE_ABS_PINNED); 660 /* Check, if the timer was already in the past */ 661 if (hrtimer_active(&ts->sched_timer)) 662 goto out; 663 } else if (!tick_program_event(expires, 0)) 664 goto out; 665 /* 666 * We are past the event already. So we crossed a 667 * jiffie boundary. Update jiffies and raise the 668 * softirq. 669 */ 670 tick_do_update_jiffies64(ktime_get()); 671 } 672 raise_softirq_irqoff(TIMER_SOFTIRQ); 673 out: 674 ts->next_jiffies = next_jiffies; 675 ts->last_jiffies = last_jiffies; 676 ts->sleep_length = ktime_sub(dev->next_event, now); 677 678 return ret; 679 } 680 681 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 682 { 683 #ifdef CONFIG_NO_HZ_FULL 684 int cpu = smp_processor_id(); 685 686 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 687 return; 688 689 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 690 return; 691 692 if (!can_stop_full_tick()) 693 return; 694 695 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 696 #endif 697 } 698 699 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 700 { 701 /* 702 * If this cpu is offline and it is the one which updates 703 * jiffies, then give up the assignment and let it be taken by 704 * the cpu which runs the tick timer next. If we don't drop 705 * this here the jiffies might be stale and do_timer() never 706 * invoked. 707 */ 708 if (unlikely(!cpu_online(cpu))) { 709 if (cpu == tick_do_timer_cpu) 710 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 711 return false; 712 } 713 714 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 715 return false; 716 717 if (need_resched()) 718 return false; 719 720 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 721 static int ratelimit; 722 723 if (ratelimit < 10 && 724 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 725 pr_warn("NOHZ: local_softirq_pending %02x\n", 726 (unsigned int) local_softirq_pending()); 727 ratelimit++; 728 } 729 return false; 730 } 731 732 if (tick_nohz_full_enabled()) { 733 /* 734 * Keep the tick alive to guarantee timekeeping progression 735 * if there are full dynticks CPUs around 736 */ 737 if (tick_do_timer_cpu == cpu) 738 return false; 739 /* 740 * Boot safety: make sure the timekeeping duty has been 741 * assigned before entering dyntick-idle mode, 742 */ 743 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 744 return false; 745 } 746 747 return true; 748 } 749 750 static void __tick_nohz_idle_enter(struct tick_sched *ts) 751 { 752 ktime_t now, expires; 753 int cpu = smp_processor_id(); 754 755 now = tick_nohz_start_idle(cpu, ts); 756 757 if (can_stop_idle_tick(cpu, ts)) { 758 int was_stopped = ts->tick_stopped; 759 760 ts->idle_calls++; 761 762 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 763 if (expires.tv64 > 0LL) { 764 ts->idle_sleeps++; 765 ts->idle_expires = expires; 766 } 767 768 if (!was_stopped && ts->tick_stopped) 769 ts->idle_jiffies = ts->last_jiffies; 770 } 771 } 772 773 /** 774 * tick_nohz_idle_enter - stop the idle tick from the idle task 775 * 776 * When the next event is more than a tick into the future, stop the idle tick 777 * Called when we start the idle loop. 778 * 779 * The arch is responsible of calling: 780 * 781 * - rcu_idle_enter() after its last use of RCU before the CPU is put 782 * to sleep. 783 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 784 */ 785 void tick_nohz_idle_enter(void) 786 { 787 struct tick_sched *ts; 788 789 WARN_ON_ONCE(irqs_disabled()); 790 791 /* 792 * Update the idle state in the scheduler domain hierarchy 793 * when tick_nohz_stop_sched_tick() is called from the idle loop. 794 * State will be updated to busy during the first busy tick after 795 * exiting idle. 796 */ 797 set_cpu_sd_state_idle(); 798 799 local_irq_disable(); 800 801 ts = &__get_cpu_var(tick_cpu_sched); 802 /* 803 * set ts->inidle unconditionally. even if the system did not 804 * switch to nohz mode the cpu frequency governers rely on the 805 * update of the idle time accounting in tick_nohz_start_idle(). 806 */ 807 ts->inidle = 1; 808 __tick_nohz_idle_enter(ts); 809 810 local_irq_enable(); 811 } 812 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 813 814 /** 815 * tick_nohz_irq_exit - update next tick event from interrupt exit 816 * 817 * When an interrupt fires while we are idle and it doesn't cause 818 * a reschedule, it may still add, modify or delete a timer, enqueue 819 * an RCU callback, etc... 820 * So we need to re-calculate and reprogram the next tick event. 821 */ 822 void tick_nohz_irq_exit(void) 823 { 824 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 825 826 if (ts->inidle) 827 __tick_nohz_idle_enter(ts); 828 else 829 tick_nohz_full_stop_tick(ts); 830 } 831 832 /** 833 * tick_nohz_get_sleep_length - return the length of the current sleep 834 * 835 * Called from power state control code with interrupts disabled 836 */ 837 ktime_t tick_nohz_get_sleep_length(void) 838 { 839 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 840 841 return ts->sleep_length; 842 } 843 844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 845 { 846 hrtimer_cancel(&ts->sched_timer); 847 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 848 849 while (1) { 850 /* Forward the time to expire in the future */ 851 hrtimer_forward(&ts->sched_timer, now, tick_period); 852 853 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 854 hrtimer_start_expires(&ts->sched_timer, 855 HRTIMER_MODE_ABS_PINNED); 856 /* Check, if the timer was already in the past */ 857 if (hrtimer_active(&ts->sched_timer)) 858 break; 859 } else { 860 if (!tick_program_event( 861 hrtimer_get_expires(&ts->sched_timer), 0)) 862 break; 863 } 864 /* Reread time and update jiffies */ 865 now = ktime_get(); 866 tick_do_update_jiffies64(now); 867 } 868 } 869 870 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 871 { 872 /* Update jiffies first */ 873 tick_do_update_jiffies64(now); 874 update_cpu_load_nohz(); 875 876 calc_load_exit_idle(); 877 touch_softlockup_watchdog(); 878 /* 879 * Cancel the scheduled timer and restore the tick 880 */ 881 ts->tick_stopped = 0; 882 ts->idle_exittime = now; 883 884 tick_nohz_restart(ts, now); 885 } 886 887 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 888 { 889 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 890 unsigned long ticks; 891 892 if (vtime_accounting_enabled()) 893 return; 894 /* 895 * We stopped the tick in idle. Update process times would miss the 896 * time we slept as update_process_times does only a 1 tick 897 * accounting. Enforce that this is accounted to idle ! 898 */ 899 ticks = jiffies - ts->idle_jiffies; 900 /* 901 * We might be one off. Do not randomly account a huge number of ticks! 902 */ 903 if (ticks && ticks < LONG_MAX) 904 account_idle_ticks(ticks); 905 #endif 906 } 907 908 /** 909 * tick_nohz_idle_exit - restart the idle tick from the idle task 910 * 911 * Restart the idle tick when the CPU is woken up from idle 912 * This also exit the RCU extended quiescent state. The CPU 913 * can use RCU again after this function is called. 914 */ 915 void tick_nohz_idle_exit(void) 916 { 917 int cpu = smp_processor_id(); 918 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 919 ktime_t now; 920 921 local_irq_disable(); 922 923 WARN_ON_ONCE(!ts->inidle); 924 925 ts->inidle = 0; 926 927 if (ts->idle_active || ts->tick_stopped) 928 now = ktime_get(); 929 930 if (ts->idle_active) 931 tick_nohz_stop_idle(cpu, now); 932 933 if (ts->tick_stopped) { 934 tick_nohz_restart_sched_tick(ts, now); 935 tick_nohz_account_idle_ticks(ts); 936 } 937 938 local_irq_enable(); 939 } 940 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 941 942 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 943 { 944 hrtimer_forward(&ts->sched_timer, now, tick_period); 945 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 946 } 947 948 /* 949 * The nohz low res interrupt handler 950 */ 951 static void tick_nohz_handler(struct clock_event_device *dev) 952 { 953 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 954 struct pt_regs *regs = get_irq_regs(); 955 ktime_t now = ktime_get(); 956 957 dev->next_event.tv64 = KTIME_MAX; 958 959 tick_sched_do_timer(now); 960 tick_sched_handle(ts, regs); 961 962 while (tick_nohz_reprogram(ts, now)) { 963 now = ktime_get(); 964 tick_do_update_jiffies64(now); 965 } 966 } 967 968 /** 969 * tick_nohz_switch_to_nohz - switch to nohz mode 970 */ 971 static void tick_nohz_switch_to_nohz(void) 972 { 973 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 974 ktime_t next; 975 976 if (!tick_nohz_enabled) 977 return; 978 979 local_irq_disable(); 980 if (tick_switch_to_oneshot(tick_nohz_handler)) { 981 local_irq_enable(); 982 return; 983 } 984 985 ts->nohz_mode = NOHZ_MODE_LOWRES; 986 987 /* 988 * Recycle the hrtimer in ts, so we can share the 989 * hrtimer_forward with the highres code. 990 */ 991 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 992 /* Get the next period */ 993 next = tick_init_jiffy_update(); 994 995 for (;;) { 996 hrtimer_set_expires(&ts->sched_timer, next); 997 if (!tick_program_event(next, 0)) 998 break; 999 next = ktime_add(next, tick_period); 1000 } 1001 local_irq_enable(); 1002 } 1003 1004 /* 1005 * When NOHZ is enabled and the tick is stopped, we need to kick the 1006 * tick timer from irq_enter() so that the jiffies update is kept 1007 * alive during long running softirqs. That's ugly as hell, but 1008 * correctness is key even if we need to fix the offending softirq in 1009 * the first place. 1010 * 1011 * Note, this is different to tick_nohz_restart. We just kick the 1012 * timer and do not touch the other magic bits which need to be done 1013 * when idle is left. 1014 */ 1015 static void tick_nohz_kick_tick(int cpu, ktime_t now) 1016 { 1017 #if 0 1018 /* Switch back to 2.6.27 behaviour */ 1019 1020 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1021 ktime_t delta; 1022 1023 /* 1024 * Do not touch the tick device, when the next expiry is either 1025 * already reached or less/equal than the tick period. 1026 */ 1027 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1028 if (delta.tv64 <= tick_period.tv64) 1029 return; 1030 1031 tick_nohz_restart(ts, now); 1032 #endif 1033 } 1034 1035 static inline void tick_check_nohz(int cpu) 1036 { 1037 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1038 ktime_t now; 1039 1040 if (!ts->idle_active && !ts->tick_stopped) 1041 return; 1042 now = ktime_get(); 1043 if (ts->idle_active) 1044 tick_nohz_stop_idle(cpu, now); 1045 if (ts->tick_stopped) { 1046 tick_nohz_update_jiffies(now); 1047 tick_nohz_kick_tick(cpu, now); 1048 } 1049 } 1050 1051 #else 1052 1053 static inline void tick_nohz_switch_to_nohz(void) { } 1054 static inline void tick_check_nohz(int cpu) { } 1055 1056 #endif /* CONFIG_NO_HZ_COMMON */ 1057 1058 /* 1059 * Called from irq_enter to notify about the possible interruption of idle() 1060 */ 1061 void tick_check_idle(int cpu) 1062 { 1063 tick_check_oneshot_broadcast(cpu); 1064 tick_check_nohz(cpu); 1065 } 1066 1067 /* 1068 * High resolution timer specific code 1069 */ 1070 #ifdef CONFIG_HIGH_RES_TIMERS 1071 /* 1072 * We rearm the timer until we get disabled by the idle code. 1073 * Called with interrupts disabled. 1074 */ 1075 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1076 { 1077 struct tick_sched *ts = 1078 container_of(timer, struct tick_sched, sched_timer); 1079 struct pt_regs *regs = get_irq_regs(); 1080 ktime_t now = ktime_get(); 1081 1082 tick_sched_do_timer(now); 1083 1084 /* 1085 * Do not call, when we are not in irq context and have 1086 * no valid regs pointer 1087 */ 1088 if (regs) 1089 tick_sched_handle(ts, regs); 1090 1091 hrtimer_forward(timer, now, tick_period); 1092 1093 return HRTIMER_RESTART; 1094 } 1095 1096 static int sched_skew_tick; 1097 1098 static int __init skew_tick(char *str) 1099 { 1100 get_option(&str, &sched_skew_tick); 1101 1102 return 0; 1103 } 1104 early_param("skew_tick", skew_tick); 1105 1106 /** 1107 * tick_setup_sched_timer - setup the tick emulation timer 1108 */ 1109 void tick_setup_sched_timer(void) 1110 { 1111 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1112 ktime_t now = ktime_get(); 1113 1114 /* 1115 * Emulate tick processing via per-CPU hrtimers: 1116 */ 1117 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1118 ts->sched_timer.function = tick_sched_timer; 1119 1120 /* Get the next period (per cpu) */ 1121 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1122 1123 /* Offset the tick to avert jiffies_lock contention. */ 1124 if (sched_skew_tick) { 1125 u64 offset = ktime_to_ns(tick_period) >> 1; 1126 do_div(offset, num_possible_cpus()); 1127 offset *= smp_processor_id(); 1128 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1129 } 1130 1131 for (;;) { 1132 hrtimer_forward(&ts->sched_timer, now, tick_period); 1133 hrtimer_start_expires(&ts->sched_timer, 1134 HRTIMER_MODE_ABS_PINNED); 1135 /* Check, if the timer was already in the past */ 1136 if (hrtimer_active(&ts->sched_timer)) 1137 break; 1138 now = ktime_get(); 1139 } 1140 1141 #ifdef CONFIG_NO_HZ_COMMON 1142 if (tick_nohz_enabled) 1143 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1144 #endif 1145 } 1146 #endif /* HIGH_RES_TIMERS */ 1147 1148 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1149 void tick_cancel_sched_timer(int cpu) 1150 { 1151 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1152 1153 # ifdef CONFIG_HIGH_RES_TIMERS 1154 if (ts->sched_timer.base) 1155 hrtimer_cancel(&ts->sched_timer); 1156 # endif 1157 1158 memset(ts, 0, sizeof(*ts)); 1159 } 1160 #endif 1161 1162 /** 1163 * Async notification about clocksource changes 1164 */ 1165 void tick_clock_notify(void) 1166 { 1167 int cpu; 1168 1169 for_each_possible_cpu(cpu) 1170 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1171 } 1172 1173 /* 1174 * Async notification about clock event changes 1175 */ 1176 void tick_oneshot_notify(void) 1177 { 1178 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1179 1180 set_bit(0, &ts->check_clocks); 1181 } 1182 1183 /** 1184 * Check, if a change happened, which makes oneshot possible. 1185 * 1186 * Called cyclic from the hrtimer softirq (driven by the timer 1187 * softirq) allow_nohz signals, that we can switch into low-res nohz 1188 * mode, because high resolution timers are disabled (either compile 1189 * or runtime). 1190 */ 1191 int tick_check_oneshot_change(int allow_nohz) 1192 { 1193 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1194 1195 if (!test_and_clear_bit(0, &ts->check_clocks)) 1196 return 0; 1197 1198 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1199 return 0; 1200 1201 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1202 return 0; 1203 1204 if (!allow_nohz) 1205 return 1; 1206 1207 tick_nohz_switch_to_nohz(); 1208 return 0; 1209 } 1210