xref: /openbmc/linux/kernel/time/tick-sched.c (revision cb41a290)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 /*
39  * The time, when the last jiffy update happened. Protected by jiffies_lock.
40  */
41 static ktime_t last_jiffies_update;
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 /*
49  * Must be called with interrupts disabled !
50  */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 	unsigned long ticks = 0;
54 	ktime_t delta;
55 
56 	/*
57 	 * Do a quick check without holding jiffies_lock:
58 	 */
59 	delta = ktime_sub(now, last_jiffies_update);
60 	if (delta.tv64 < tick_period.tv64)
61 		return;
62 
63 	/* Reevalute with jiffies_lock held */
64 	write_seqlock(&jiffies_lock);
65 
66 	delta = ktime_sub(now, last_jiffies_update);
67 	if (delta.tv64 >= tick_period.tv64) {
68 
69 		delta = ktime_sub(delta, tick_period);
70 		last_jiffies_update = ktime_add(last_jiffies_update,
71 						tick_period);
72 
73 		/* Slow path for long timeouts */
74 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 			s64 incr = ktime_to_ns(tick_period);
76 
77 			ticks = ktime_divns(delta, incr);
78 
79 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 							   incr * ticks);
81 		}
82 		do_timer(++ticks);
83 
84 		/* Keep the tick_next_period variable up to date */
85 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 	}
87 	write_sequnlock(&jiffies_lock);
88 }
89 
90 /*
91  * Initialize and return retrieve the jiffies update.
92  */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 	ktime_t period;
96 
97 	write_seqlock(&jiffies_lock);
98 	/* Did we start the jiffies update yet ? */
99 	if (last_jiffies_update.tv64 == 0)
100 		last_jiffies_update = tick_next_period;
101 	period = last_jiffies_update;
102 	write_sequnlock(&jiffies_lock);
103 	return period;
104 }
105 
106 
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 	int cpu = smp_processor_id();
110 
111 #ifdef CONFIG_NO_HZ_COMMON
112 	/*
113 	 * Check if the do_timer duty was dropped. We don't care about
114 	 * concurrency: This happens only when the cpu in charge went
115 	 * into a long sleep. If two cpus happen to assign themself to
116 	 * this duty, then the jiffies update is still serialized by
117 	 * jiffies_lock.
118 	 */
119 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 	    && !tick_nohz_full_cpu(cpu))
121 		tick_do_timer_cpu = cpu;
122 #endif
123 
124 	/* Check, if the jiffies need an update */
125 	if (tick_do_timer_cpu == cpu)
126 		tick_do_update_jiffies64(now);
127 }
128 
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 	/*
133 	 * When we are idle and the tick is stopped, we have to touch
134 	 * the watchdog as we might not schedule for a really long
135 	 * time. This happens on complete idle SMP systems while
136 	 * waiting on the login prompt. We also increment the "start of
137 	 * idle" jiffy stamp so the idle accounting adjustment we do
138 	 * when we go busy again does not account too much ticks.
139 	 */
140 	if (ts->tick_stopped) {
141 		touch_softlockup_watchdog();
142 		if (is_idle_task(current))
143 			ts->idle_jiffies++;
144 	}
145 #endif
146 	update_process_times(user_mode(regs));
147 	profile_tick(CPU_PROFILING);
148 }
149 
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153 
154 static bool can_stop_full_tick(void)
155 {
156 	WARN_ON_ONCE(!irqs_disabled());
157 
158 	if (!sched_can_stop_tick()) {
159 		trace_tick_stop(0, "more than 1 task in runqueue\n");
160 		return false;
161 	}
162 
163 	if (!posix_cpu_timers_can_stop_tick(current)) {
164 		trace_tick_stop(0, "posix timers running\n");
165 		return false;
166 	}
167 
168 	if (!perf_event_can_stop_tick()) {
169 		trace_tick_stop(0, "perf events running\n");
170 		return false;
171 	}
172 
173 	/* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 	/*
176 	 * TODO: kick full dynticks CPUs when
177 	 * sched_clock_stable is set.
178 	 */
179 	if (!sched_clock_stable) {
180 		trace_tick_stop(0, "unstable sched clock\n");
181 		return false;
182 	}
183 #endif
184 
185 	return true;
186 }
187 
188 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
189 
190 /*
191  * Re-evaluate the need for the tick on the current CPU
192  * and restart it if necessary.
193  */
194 void tick_nohz_full_check(void)
195 {
196 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
197 
198 	if (tick_nohz_full_cpu(smp_processor_id())) {
199 		if (ts->tick_stopped && !is_idle_task(current)) {
200 			if (!can_stop_full_tick())
201 				tick_nohz_restart_sched_tick(ts, ktime_get());
202 		}
203 	}
204 }
205 
206 static void nohz_full_kick_work_func(struct irq_work *work)
207 {
208 	tick_nohz_full_check();
209 }
210 
211 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
212 	.func = nohz_full_kick_work_func,
213 };
214 
215 /*
216  * Kick the current CPU if it's full dynticks in order to force it to
217  * re-evaluate its dependency on the tick and restart it if necessary.
218  */
219 void tick_nohz_full_kick(void)
220 {
221 	if (tick_nohz_full_cpu(smp_processor_id()))
222 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
223 }
224 
225 static void nohz_full_kick_ipi(void *info)
226 {
227 	tick_nohz_full_check();
228 }
229 
230 /*
231  * Kick all full dynticks CPUs in order to force these to re-evaluate
232  * their dependency on the tick and restart it if necessary.
233  */
234 void tick_nohz_full_kick_all(void)
235 {
236 	if (!have_nohz_full_mask)
237 		return;
238 
239 	preempt_disable();
240 	smp_call_function_many(nohz_full_mask,
241 			       nohz_full_kick_ipi, NULL, false);
242 	preempt_enable();
243 }
244 
245 /*
246  * Re-evaluate the need for the tick as we switch the current task.
247  * It might need the tick due to per task/process properties:
248  * perf events, posix cpu timers, ...
249  */
250 void tick_nohz_task_switch(struct task_struct *tsk)
251 {
252 	unsigned long flags;
253 
254 	if (!tick_nohz_full_cpu(smp_processor_id()))
255 		return;
256 
257 	local_irq_save(flags);
258 
259 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
260 		tick_nohz_full_kick();
261 
262 	local_irq_restore(flags);
263 }
264 
265 int tick_nohz_full_cpu(int cpu)
266 {
267 	if (!have_nohz_full_mask)
268 		return 0;
269 
270 	return cpumask_test_cpu(cpu, nohz_full_mask);
271 }
272 
273 /* Parse the boot-time nohz CPU list from the kernel parameters. */
274 static int __init tick_nohz_full_setup(char *str)
275 {
276 	int cpu;
277 
278 	alloc_bootmem_cpumask_var(&nohz_full_mask);
279 	if (cpulist_parse(str, nohz_full_mask) < 0) {
280 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
281 		return 1;
282 	}
283 
284 	cpu = smp_processor_id();
285 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
286 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
287 		cpumask_clear_cpu(cpu, nohz_full_mask);
288 	}
289 	have_nohz_full_mask = true;
290 
291 	return 1;
292 }
293 __setup("nohz_full=", tick_nohz_full_setup);
294 
295 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
296 						 unsigned long action,
297 						 void *hcpu)
298 {
299 	unsigned int cpu = (unsigned long)hcpu;
300 
301 	switch (action & ~CPU_TASKS_FROZEN) {
302 	case CPU_DOWN_PREPARE:
303 		/*
304 		 * If we handle the timekeeping duty for full dynticks CPUs,
305 		 * we can't safely shutdown that CPU.
306 		 */
307 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
308 			return -EINVAL;
309 		break;
310 	}
311 	return NOTIFY_OK;
312 }
313 
314 /*
315  * Worst case string length in chunks of CPU range seems 2 steps
316  * separations: 0,2,4,6,...
317  * This is NR_CPUS + sizeof('\0')
318  */
319 static char __initdata nohz_full_buf[NR_CPUS + 1];
320 
321 static int tick_nohz_init_all(void)
322 {
323 	int err = -1;
324 
325 #ifdef CONFIG_NO_HZ_FULL_ALL
326 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
327 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
328 		return err;
329 	}
330 	err = 0;
331 	cpumask_setall(nohz_full_mask);
332 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
333 	have_nohz_full_mask = true;
334 #endif
335 	return err;
336 }
337 
338 void __init tick_nohz_init(void)
339 {
340 	int cpu;
341 
342 	if (!have_nohz_full_mask) {
343 		if (tick_nohz_init_all() < 0)
344 			return;
345 	}
346 
347 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
348 
349 	/* Make sure full dynticks CPU are also RCU nocbs */
350 	for_each_cpu(cpu, nohz_full_mask) {
351 		if (!rcu_is_nocb_cpu(cpu)) {
352 			pr_warning("NO_HZ: CPU %d is not RCU nocb: "
353 				   "cleared from nohz_full range", cpu);
354 			cpumask_clear_cpu(cpu, nohz_full_mask);
355 		}
356 	}
357 
358 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
359 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
360 }
361 #else
362 #define have_nohz_full_mask (0)
363 #endif
364 
365 /*
366  * NOHZ - aka dynamic tick functionality
367  */
368 #ifdef CONFIG_NO_HZ_COMMON
369 /*
370  * NO HZ enabled ?
371  */
372 int tick_nohz_enabled __read_mostly  = 1;
373 
374 /*
375  * Enable / Disable tickless mode
376  */
377 static int __init setup_tick_nohz(char *str)
378 {
379 	if (!strcmp(str, "off"))
380 		tick_nohz_enabled = 0;
381 	else if (!strcmp(str, "on"))
382 		tick_nohz_enabled = 1;
383 	else
384 		return 0;
385 	return 1;
386 }
387 
388 __setup("nohz=", setup_tick_nohz);
389 
390 /**
391  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
392  *
393  * Called from interrupt entry when the CPU was idle
394  *
395  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
396  * must be updated. Otherwise an interrupt handler could use a stale jiffy
397  * value. We do this unconditionally on any cpu, as we don't know whether the
398  * cpu, which has the update task assigned is in a long sleep.
399  */
400 static void tick_nohz_update_jiffies(ktime_t now)
401 {
402 	int cpu = smp_processor_id();
403 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
404 	unsigned long flags;
405 
406 	ts->idle_waketime = now;
407 
408 	local_irq_save(flags);
409 	tick_do_update_jiffies64(now);
410 	local_irq_restore(flags);
411 
412 	touch_softlockup_watchdog();
413 }
414 
415 /*
416  * Updates the per cpu time idle statistics counters
417  */
418 static void
419 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
420 {
421 	ktime_t delta;
422 
423 	if (ts->idle_active) {
424 		delta = ktime_sub(now, ts->idle_entrytime);
425 		if (nr_iowait_cpu(cpu) > 0)
426 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
427 		else
428 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
429 		ts->idle_entrytime = now;
430 	}
431 
432 	if (last_update_time)
433 		*last_update_time = ktime_to_us(now);
434 
435 }
436 
437 static void tick_nohz_stop_idle(int cpu, ktime_t now)
438 {
439 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
440 
441 	update_ts_time_stats(cpu, ts, now, NULL);
442 	ts->idle_active = 0;
443 
444 	sched_clock_idle_wakeup_event(0);
445 }
446 
447 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
448 {
449 	ktime_t now = ktime_get();
450 
451 	ts->idle_entrytime = now;
452 	ts->idle_active = 1;
453 	sched_clock_idle_sleep_event();
454 	return now;
455 }
456 
457 /**
458  * get_cpu_idle_time_us - get the total idle time of a cpu
459  * @cpu: CPU number to query
460  * @last_update_time: variable to store update time in. Do not update
461  * counters if NULL.
462  *
463  * Return the cummulative idle time (since boot) for a given
464  * CPU, in microseconds.
465  *
466  * This time is measured via accounting rather than sampling,
467  * and is as accurate as ktime_get() is.
468  *
469  * This function returns -1 if NOHZ is not enabled.
470  */
471 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
472 {
473 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
474 	ktime_t now, idle;
475 
476 	if (!tick_nohz_enabled)
477 		return -1;
478 
479 	now = ktime_get();
480 	if (last_update_time) {
481 		update_ts_time_stats(cpu, ts, now, last_update_time);
482 		idle = ts->idle_sleeptime;
483 	} else {
484 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
485 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
486 
487 			idle = ktime_add(ts->idle_sleeptime, delta);
488 		} else {
489 			idle = ts->idle_sleeptime;
490 		}
491 	}
492 
493 	return ktime_to_us(idle);
494 
495 }
496 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
497 
498 /**
499  * get_cpu_iowait_time_us - get the total iowait time of a cpu
500  * @cpu: CPU number to query
501  * @last_update_time: variable to store update time in. Do not update
502  * counters if NULL.
503  *
504  * Return the cummulative iowait time (since boot) for a given
505  * CPU, in microseconds.
506  *
507  * This time is measured via accounting rather than sampling,
508  * and is as accurate as ktime_get() is.
509  *
510  * This function returns -1 if NOHZ is not enabled.
511  */
512 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
513 {
514 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
515 	ktime_t now, iowait;
516 
517 	if (!tick_nohz_enabled)
518 		return -1;
519 
520 	now = ktime_get();
521 	if (last_update_time) {
522 		update_ts_time_stats(cpu, ts, now, last_update_time);
523 		iowait = ts->iowait_sleeptime;
524 	} else {
525 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
526 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
527 
528 			iowait = ktime_add(ts->iowait_sleeptime, delta);
529 		} else {
530 			iowait = ts->iowait_sleeptime;
531 		}
532 	}
533 
534 	return ktime_to_us(iowait);
535 }
536 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
537 
538 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
539 					 ktime_t now, int cpu)
540 {
541 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
542 	ktime_t last_update, expires, ret = { .tv64 = 0 };
543 	unsigned long rcu_delta_jiffies;
544 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
545 	u64 time_delta;
546 
547 	/* Read jiffies and the time when jiffies were updated last */
548 	do {
549 		seq = read_seqbegin(&jiffies_lock);
550 		last_update = last_jiffies_update;
551 		last_jiffies = jiffies;
552 		time_delta = timekeeping_max_deferment();
553 	} while (read_seqretry(&jiffies_lock, seq));
554 
555 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
556 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
557 		next_jiffies = last_jiffies + 1;
558 		delta_jiffies = 1;
559 	} else {
560 		/* Get the next timer wheel timer */
561 		next_jiffies = get_next_timer_interrupt(last_jiffies);
562 		delta_jiffies = next_jiffies - last_jiffies;
563 		if (rcu_delta_jiffies < delta_jiffies) {
564 			next_jiffies = last_jiffies + rcu_delta_jiffies;
565 			delta_jiffies = rcu_delta_jiffies;
566 		}
567 	}
568 	/*
569 	 * Do not stop the tick, if we are only one off
570 	 * or if the cpu is required for rcu
571 	 */
572 	if (!ts->tick_stopped && delta_jiffies == 1)
573 		goto out;
574 
575 	/* Schedule the tick, if we are at least one jiffie off */
576 	if ((long)delta_jiffies >= 1) {
577 
578 		/*
579 		 * If this cpu is the one which updates jiffies, then
580 		 * give up the assignment and let it be taken by the
581 		 * cpu which runs the tick timer next, which might be
582 		 * this cpu as well. If we don't drop this here the
583 		 * jiffies might be stale and do_timer() never
584 		 * invoked. Keep track of the fact that it was the one
585 		 * which had the do_timer() duty last. If this cpu is
586 		 * the one which had the do_timer() duty last, we
587 		 * limit the sleep time to the timekeeping
588 		 * max_deferement value which we retrieved
589 		 * above. Otherwise we can sleep as long as we want.
590 		 */
591 		if (cpu == tick_do_timer_cpu) {
592 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
593 			ts->do_timer_last = 1;
594 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
595 			time_delta = KTIME_MAX;
596 			ts->do_timer_last = 0;
597 		} else if (!ts->do_timer_last) {
598 			time_delta = KTIME_MAX;
599 		}
600 
601 		/*
602 		 * calculate the expiry time for the next timer wheel
603 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
604 		 * that there is no timer pending or at least extremely
605 		 * far into the future (12 days for HZ=1000). In this
606 		 * case we set the expiry to the end of time.
607 		 */
608 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
609 			/*
610 			 * Calculate the time delta for the next timer event.
611 			 * If the time delta exceeds the maximum time delta
612 			 * permitted by the current clocksource then adjust
613 			 * the time delta accordingly to ensure the
614 			 * clocksource does not wrap.
615 			 */
616 			time_delta = min_t(u64, time_delta,
617 					   tick_period.tv64 * delta_jiffies);
618 		}
619 
620 		if (time_delta < KTIME_MAX)
621 			expires = ktime_add_ns(last_update, time_delta);
622 		else
623 			expires.tv64 = KTIME_MAX;
624 
625 		/* Skip reprogram of event if its not changed */
626 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
627 			goto out;
628 
629 		ret = expires;
630 
631 		/*
632 		 * nohz_stop_sched_tick can be called several times before
633 		 * the nohz_restart_sched_tick is called. This happens when
634 		 * interrupts arrive which do not cause a reschedule. In the
635 		 * first call we save the current tick time, so we can restart
636 		 * the scheduler tick in nohz_restart_sched_tick.
637 		 */
638 		if (!ts->tick_stopped) {
639 			nohz_balance_enter_idle(cpu);
640 			calc_load_enter_idle();
641 
642 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
643 			ts->tick_stopped = 1;
644 			trace_tick_stop(1, " ");
645 		}
646 
647 		/*
648 		 * If the expiration time == KTIME_MAX, then
649 		 * in this case we simply stop the tick timer.
650 		 */
651 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
652 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
653 				hrtimer_cancel(&ts->sched_timer);
654 			goto out;
655 		}
656 
657 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
658 			hrtimer_start(&ts->sched_timer, expires,
659 				      HRTIMER_MODE_ABS_PINNED);
660 			/* Check, if the timer was already in the past */
661 			if (hrtimer_active(&ts->sched_timer))
662 				goto out;
663 		} else if (!tick_program_event(expires, 0))
664 				goto out;
665 		/*
666 		 * We are past the event already. So we crossed a
667 		 * jiffie boundary. Update jiffies and raise the
668 		 * softirq.
669 		 */
670 		tick_do_update_jiffies64(ktime_get());
671 	}
672 	raise_softirq_irqoff(TIMER_SOFTIRQ);
673 out:
674 	ts->next_jiffies = next_jiffies;
675 	ts->last_jiffies = last_jiffies;
676 	ts->sleep_length = ktime_sub(dev->next_event, now);
677 
678 	return ret;
679 }
680 
681 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
682 {
683 #ifdef CONFIG_NO_HZ_FULL
684        int cpu = smp_processor_id();
685 
686        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
687                return;
688 
689        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
690 	       return;
691 
692        if (!can_stop_full_tick())
693                return;
694 
695        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
696 #endif
697 }
698 
699 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
700 {
701 	/*
702 	 * If this cpu is offline and it is the one which updates
703 	 * jiffies, then give up the assignment and let it be taken by
704 	 * the cpu which runs the tick timer next. If we don't drop
705 	 * this here the jiffies might be stale and do_timer() never
706 	 * invoked.
707 	 */
708 	if (unlikely(!cpu_online(cpu))) {
709 		if (cpu == tick_do_timer_cpu)
710 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
711 	}
712 
713 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
714 		return false;
715 
716 	if (need_resched())
717 		return false;
718 
719 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
720 		static int ratelimit;
721 
722 		if (ratelimit < 10 &&
723 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
724 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
725 			       (unsigned int) local_softirq_pending());
726 			ratelimit++;
727 		}
728 		return false;
729 	}
730 
731 	if (have_nohz_full_mask) {
732 		/*
733 		 * Keep the tick alive to guarantee timekeeping progression
734 		 * if there are full dynticks CPUs around
735 		 */
736 		if (tick_do_timer_cpu == cpu)
737 			return false;
738 		/*
739 		 * Boot safety: make sure the timekeeping duty has been
740 		 * assigned before entering dyntick-idle mode,
741 		 */
742 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
743 			return false;
744 	}
745 
746 	return true;
747 }
748 
749 static void __tick_nohz_idle_enter(struct tick_sched *ts)
750 {
751 	ktime_t now, expires;
752 	int cpu = smp_processor_id();
753 
754 	now = tick_nohz_start_idle(cpu, ts);
755 
756 	if (can_stop_idle_tick(cpu, ts)) {
757 		int was_stopped = ts->tick_stopped;
758 
759 		ts->idle_calls++;
760 
761 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
762 		if (expires.tv64 > 0LL) {
763 			ts->idle_sleeps++;
764 			ts->idle_expires = expires;
765 		}
766 
767 		if (!was_stopped && ts->tick_stopped)
768 			ts->idle_jiffies = ts->last_jiffies;
769 	}
770 }
771 
772 /**
773  * tick_nohz_idle_enter - stop the idle tick from the idle task
774  *
775  * When the next event is more than a tick into the future, stop the idle tick
776  * Called when we start the idle loop.
777  *
778  * The arch is responsible of calling:
779  *
780  * - rcu_idle_enter() after its last use of RCU before the CPU is put
781  *  to sleep.
782  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
783  */
784 void tick_nohz_idle_enter(void)
785 {
786 	struct tick_sched *ts;
787 
788 	WARN_ON_ONCE(irqs_disabled());
789 
790 	/*
791  	 * Update the idle state in the scheduler domain hierarchy
792  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
793  	 * State will be updated to busy during the first busy tick after
794  	 * exiting idle.
795  	 */
796 	set_cpu_sd_state_idle();
797 
798 	local_irq_disable();
799 
800 	ts = &__get_cpu_var(tick_cpu_sched);
801 	/*
802 	 * set ts->inidle unconditionally. even if the system did not
803 	 * switch to nohz mode the cpu frequency governers rely on the
804 	 * update of the idle time accounting in tick_nohz_start_idle().
805 	 */
806 	ts->inidle = 1;
807 	__tick_nohz_idle_enter(ts);
808 
809 	local_irq_enable();
810 }
811 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
812 
813 /**
814  * tick_nohz_irq_exit - update next tick event from interrupt exit
815  *
816  * When an interrupt fires while we are idle and it doesn't cause
817  * a reschedule, it may still add, modify or delete a timer, enqueue
818  * an RCU callback, etc...
819  * So we need to re-calculate and reprogram the next tick event.
820  */
821 void tick_nohz_irq_exit(void)
822 {
823 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
824 
825 	if (ts->inidle) {
826 		/* Cancel the timer because CPU already waken up from the C-states*/
827 		menu_hrtimer_cancel();
828 		__tick_nohz_idle_enter(ts);
829 	} else {
830 		tick_nohz_full_stop_tick(ts);
831 	}
832 }
833 
834 /**
835  * tick_nohz_get_sleep_length - return the length of the current sleep
836  *
837  * Called from power state control code with interrupts disabled
838  */
839 ktime_t tick_nohz_get_sleep_length(void)
840 {
841 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
842 
843 	return ts->sleep_length;
844 }
845 
846 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
847 {
848 	hrtimer_cancel(&ts->sched_timer);
849 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
850 
851 	while (1) {
852 		/* Forward the time to expire in the future */
853 		hrtimer_forward(&ts->sched_timer, now, tick_period);
854 
855 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
856 			hrtimer_start_expires(&ts->sched_timer,
857 					      HRTIMER_MODE_ABS_PINNED);
858 			/* Check, if the timer was already in the past */
859 			if (hrtimer_active(&ts->sched_timer))
860 				break;
861 		} else {
862 			if (!tick_program_event(
863 				hrtimer_get_expires(&ts->sched_timer), 0))
864 				break;
865 		}
866 		/* Reread time and update jiffies */
867 		now = ktime_get();
868 		tick_do_update_jiffies64(now);
869 	}
870 }
871 
872 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
873 {
874 	/* Update jiffies first */
875 	tick_do_update_jiffies64(now);
876 	update_cpu_load_nohz();
877 
878 	calc_load_exit_idle();
879 	touch_softlockup_watchdog();
880 	/*
881 	 * Cancel the scheduled timer and restore the tick
882 	 */
883 	ts->tick_stopped  = 0;
884 	ts->idle_exittime = now;
885 
886 	tick_nohz_restart(ts, now);
887 }
888 
889 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
890 {
891 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
892 	unsigned long ticks;
893 
894 	if (vtime_accounting_enabled())
895 		return;
896 	/*
897 	 * We stopped the tick in idle. Update process times would miss the
898 	 * time we slept as update_process_times does only a 1 tick
899 	 * accounting. Enforce that this is accounted to idle !
900 	 */
901 	ticks = jiffies - ts->idle_jiffies;
902 	/*
903 	 * We might be one off. Do not randomly account a huge number of ticks!
904 	 */
905 	if (ticks && ticks < LONG_MAX)
906 		account_idle_ticks(ticks);
907 #endif
908 }
909 
910 /**
911  * tick_nohz_idle_exit - restart the idle tick from the idle task
912  *
913  * Restart the idle tick when the CPU is woken up from idle
914  * This also exit the RCU extended quiescent state. The CPU
915  * can use RCU again after this function is called.
916  */
917 void tick_nohz_idle_exit(void)
918 {
919 	int cpu = smp_processor_id();
920 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
921 	ktime_t now;
922 
923 	local_irq_disable();
924 
925 	WARN_ON_ONCE(!ts->inidle);
926 
927 	ts->inidle = 0;
928 
929 	/* Cancel the timer because CPU already waken up from the C-states*/
930 	menu_hrtimer_cancel();
931 	if (ts->idle_active || ts->tick_stopped)
932 		now = ktime_get();
933 
934 	if (ts->idle_active)
935 		tick_nohz_stop_idle(cpu, now);
936 
937 	if (ts->tick_stopped) {
938 		tick_nohz_restart_sched_tick(ts, now);
939 		tick_nohz_account_idle_ticks(ts);
940 	}
941 
942 	local_irq_enable();
943 }
944 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
945 
946 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
947 {
948 	hrtimer_forward(&ts->sched_timer, now, tick_period);
949 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
950 }
951 
952 /*
953  * The nohz low res interrupt handler
954  */
955 static void tick_nohz_handler(struct clock_event_device *dev)
956 {
957 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
958 	struct pt_regs *regs = get_irq_regs();
959 	ktime_t now = ktime_get();
960 
961 	dev->next_event.tv64 = KTIME_MAX;
962 
963 	tick_sched_do_timer(now);
964 	tick_sched_handle(ts, regs);
965 
966 	while (tick_nohz_reprogram(ts, now)) {
967 		now = ktime_get();
968 		tick_do_update_jiffies64(now);
969 	}
970 }
971 
972 /**
973  * tick_nohz_switch_to_nohz - switch to nohz mode
974  */
975 static void tick_nohz_switch_to_nohz(void)
976 {
977 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
978 	ktime_t next;
979 
980 	if (!tick_nohz_enabled)
981 		return;
982 
983 	local_irq_disable();
984 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
985 		local_irq_enable();
986 		return;
987 	}
988 
989 	ts->nohz_mode = NOHZ_MODE_LOWRES;
990 
991 	/*
992 	 * Recycle the hrtimer in ts, so we can share the
993 	 * hrtimer_forward with the highres code.
994 	 */
995 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
996 	/* Get the next period */
997 	next = tick_init_jiffy_update();
998 
999 	for (;;) {
1000 		hrtimer_set_expires(&ts->sched_timer, next);
1001 		if (!tick_program_event(next, 0))
1002 			break;
1003 		next = ktime_add(next, tick_period);
1004 	}
1005 	local_irq_enable();
1006 }
1007 
1008 /*
1009  * When NOHZ is enabled and the tick is stopped, we need to kick the
1010  * tick timer from irq_enter() so that the jiffies update is kept
1011  * alive during long running softirqs. That's ugly as hell, but
1012  * correctness is key even if we need to fix the offending softirq in
1013  * the first place.
1014  *
1015  * Note, this is different to tick_nohz_restart. We just kick the
1016  * timer and do not touch the other magic bits which need to be done
1017  * when idle is left.
1018  */
1019 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1020 {
1021 #if 0
1022 	/* Switch back to 2.6.27 behaviour */
1023 
1024 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1025 	ktime_t delta;
1026 
1027 	/*
1028 	 * Do not touch the tick device, when the next expiry is either
1029 	 * already reached or less/equal than the tick period.
1030 	 */
1031 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1032 	if (delta.tv64 <= tick_period.tv64)
1033 		return;
1034 
1035 	tick_nohz_restart(ts, now);
1036 #endif
1037 }
1038 
1039 static inline void tick_check_nohz(int cpu)
1040 {
1041 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1042 	ktime_t now;
1043 
1044 	if (!ts->idle_active && !ts->tick_stopped)
1045 		return;
1046 	now = ktime_get();
1047 	if (ts->idle_active)
1048 		tick_nohz_stop_idle(cpu, now);
1049 	if (ts->tick_stopped) {
1050 		tick_nohz_update_jiffies(now);
1051 		tick_nohz_kick_tick(cpu, now);
1052 	}
1053 }
1054 
1055 #else
1056 
1057 static inline void tick_nohz_switch_to_nohz(void) { }
1058 static inline void tick_check_nohz(int cpu) { }
1059 
1060 #endif /* CONFIG_NO_HZ_COMMON */
1061 
1062 /*
1063  * Called from irq_enter to notify about the possible interruption of idle()
1064  */
1065 void tick_check_idle(int cpu)
1066 {
1067 	tick_check_oneshot_broadcast(cpu);
1068 	tick_check_nohz(cpu);
1069 }
1070 
1071 /*
1072  * High resolution timer specific code
1073  */
1074 #ifdef CONFIG_HIGH_RES_TIMERS
1075 /*
1076  * We rearm the timer until we get disabled by the idle code.
1077  * Called with interrupts disabled.
1078  */
1079 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1080 {
1081 	struct tick_sched *ts =
1082 		container_of(timer, struct tick_sched, sched_timer);
1083 	struct pt_regs *regs = get_irq_regs();
1084 	ktime_t now = ktime_get();
1085 
1086 	tick_sched_do_timer(now);
1087 
1088 	/*
1089 	 * Do not call, when we are not in irq context and have
1090 	 * no valid regs pointer
1091 	 */
1092 	if (regs)
1093 		tick_sched_handle(ts, regs);
1094 
1095 	hrtimer_forward(timer, now, tick_period);
1096 
1097 	return HRTIMER_RESTART;
1098 }
1099 
1100 static int sched_skew_tick;
1101 
1102 static int __init skew_tick(char *str)
1103 {
1104 	get_option(&str, &sched_skew_tick);
1105 
1106 	return 0;
1107 }
1108 early_param("skew_tick", skew_tick);
1109 
1110 /**
1111  * tick_setup_sched_timer - setup the tick emulation timer
1112  */
1113 void tick_setup_sched_timer(void)
1114 {
1115 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1116 	ktime_t now = ktime_get();
1117 
1118 	/*
1119 	 * Emulate tick processing via per-CPU hrtimers:
1120 	 */
1121 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1122 	ts->sched_timer.function = tick_sched_timer;
1123 
1124 	/* Get the next period (per cpu) */
1125 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1126 
1127 	/* Offset the tick to avert jiffies_lock contention. */
1128 	if (sched_skew_tick) {
1129 		u64 offset = ktime_to_ns(tick_period) >> 1;
1130 		do_div(offset, num_possible_cpus());
1131 		offset *= smp_processor_id();
1132 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1133 	}
1134 
1135 	for (;;) {
1136 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1137 		hrtimer_start_expires(&ts->sched_timer,
1138 				      HRTIMER_MODE_ABS_PINNED);
1139 		/* Check, if the timer was already in the past */
1140 		if (hrtimer_active(&ts->sched_timer))
1141 			break;
1142 		now = ktime_get();
1143 	}
1144 
1145 #ifdef CONFIG_NO_HZ_COMMON
1146 	if (tick_nohz_enabled)
1147 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1148 #endif
1149 }
1150 #endif /* HIGH_RES_TIMERS */
1151 
1152 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1153 void tick_cancel_sched_timer(int cpu)
1154 {
1155 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1156 
1157 # ifdef CONFIG_HIGH_RES_TIMERS
1158 	if (ts->sched_timer.base)
1159 		hrtimer_cancel(&ts->sched_timer);
1160 # endif
1161 
1162 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
1163 }
1164 #endif
1165 
1166 /**
1167  * Async notification about clocksource changes
1168  */
1169 void tick_clock_notify(void)
1170 {
1171 	int cpu;
1172 
1173 	for_each_possible_cpu(cpu)
1174 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1175 }
1176 
1177 /*
1178  * Async notification about clock event changes
1179  */
1180 void tick_oneshot_notify(void)
1181 {
1182 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1183 
1184 	set_bit(0, &ts->check_clocks);
1185 }
1186 
1187 /**
1188  * Check, if a change happened, which makes oneshot possible.
1189  *
1190  * Called cyclic from the hrtimer softirq (driven by the timer
1191  * softirq) allow_nohz signals, that we can switch into low-res nohz
1192  * mode, because high resolution timers are disabled (either compile
1193  * or runtime).
1194  */
1195 int tick_check_oneshot_change(int allow_nohz)
1196 {
1197 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1198 
1199 	if (!test_and_clear_bit(0, &ts->check_clocks))
1200 		return 0;
1201 
1202 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1203 		return 0;
1204 
1205 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1206 		return 0;
1207 
1208 	if (!allow_nohz)
1209 		return 1;
1210 
1211 	tick_nohz_switch_to_nohz();
1212 	return 0;
1213 }
1214