xref: /openbmc/linux/kernel/time/tick-sched.c (revision c2cd9d04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 */
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta < tick_period)
64 		return;
65 
66 	/* Reevaluate with jiffies_lock held */
67 	write_seqlock(&jiffies_lock);
68 
69 	delta = ktime_sub(now, last_jiffies_update);
70 	if (delta >= tick_period) {
71 
72 		delta = ktime_sub(delta, tick_period);
73 		last_jiffies_update = ktime_add(last_jiffies_update,
74 						tick_period);
75 
76 		/* Slow path for long timeouts */
77 		if (unlikely(delta >= tick_period)) {
78 			s64 incr = ktime_to_ns(tick_period);
79 
80 			ticks = ktime_divns(delta, incr);
81 
82 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 							   incr * ticks);
84 		}
85 		do_timer(++ticks);
86 
87 		/* Keep the tick_next_period variable up to date */
88 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 	} else {
90 		write_sequnlock(&jiffies_lock);
91 		return;
92 	}
93 	write_sequnlock(&jiffies_lock);
94 	update_wall_time();
95 }
96 
97 /*
98  * Initialize and return retrieve the jiffies update.
99  */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 	ktime_t period;
103 
104 	write_seqlock(&jiffies_lock);
105 	/* Did we start the jiffies update yet ? */
106 	if (last_jiffies_update == 0)
107 		last_jiffies_update = tick_next_period;
108 	period = last_jiffies_update;
109 	write_sequnlock(&jiffies_lock);
110 	return period;
111 }
112 
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the CPU in charge went
121 	 * into a long sleep. If two CPUs happen to assign themselves to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 *
125 	 * If nohz_full is enabled, this should not happen because the
126 	 * tick_do_timer_cpu never relinquishes.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129 #ifdef CONFIG_NO_HZ_FULL
130 		WARN_ON(tick_nohz_full_running);
131 #endif
132 		tick_do_timer_cpu = cpu;
133 	}
134 #endif
135 
136 	/* Check, if the jiffies need an update */
137 	if (tick_do_timer_cpu == cpu)
138 		tick_do_update_jiffies64(now);
139 
140 	if (ts->inidle)
141 		ts->got_idle_tick = 1;
142 }
143 
144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145 {
146 #ifdef CONFIG_NO_HZ_COMMON
147 	/*
148 	 * When we are idle and the tick is stopped, we have to touch
149 	 * the watchdog as we might not schedule for a really long
150 	 * time. This happens on complete idle SMP systems while
151 	 * waiting on the login prompt. We also increment the "start of
152 	 * idle" jiffy stamp so the idle accounting adjustment we do
153 	 * when we go busy again does not account too much ticks.
154 	 */
155 	if (ts->tick_stopped) {
156 		touch_softlockup_watchdog_sched();
157 		if (is_idle_task(current))
158 			ts->idle_jiffies++;
159 		/*
160 		 * In case the current tick fired too early past its expected
161 		 * expiration, make sure we don't bypass the next clock reprogramming
162 		 * to the same deadline.
163 		 */
164 		ts->next_tick = 0;
165 	}
166 #endif
167 	update_process_times(user_mode(regs));
168 	profile_tick(CPU_PROFILING);
169 }
170 #endif
171 
172 #ifdef CONFIG_NO_HZ_FULL
173 cpumask_var_t tick_nohz_full_mask;
174 bool tick_nohz_full_running;
175 static atomic_t tick_dep_mask;
176 
177 static bool check_tick_dependency(atomic_t *dep)
178 {
179 	int val = atomic_read(dep);
180 
181 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
182 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
187 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_SCHED) {
192 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
193 		return true;
194 	}
195 
196 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
197 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
198 		return true;
199 	}
200 
201 	return false;
202 }
203 
204 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
205 {
206 	lockdep_assert_irqs_disabled();
207 
208 	if (unlikely(!cpu_online(cpu)))
209 		return false;
210 
211 	if (check_tick_dependency(&tick_dep_mask))
212 		return false;
213 
214 	if (check_tick_dependency(&ts->tick_dep_mask))
215 		return false;
216 
217 	if (check_tick_dependency(&current->tick_dep_mask))
218 		return false;
219 
220 	if (check_tick_dependency(&current->signal->tick_dep_mask))
221 		return false;
222 
223 	return true;
224 }
225 
226 static void nohz_full_kick_func(struct irq_work *work)
227 {
228 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
229 }
230 
231 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
232 	.func = nohz_full_kick_func,
233 };
234 
235 /*
236  * Kick this CPU if it's full dynticks in order to force it to
237  * re-evaluate its dependency on the tick and restart it if necessary.
238  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
239  * is NMI safe.
240  */
241 static void tick_nohz_full_kick(void)
242 {
243 	if (!tick_nohz_full_cpu(smp_processor_id()))
244 		return;
245 
246 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
247 }
248 
249 /*
250  * Kick the CPU if it's full dynticks in order to force it to
251  * re-evaluate its dependency on the tick and restart it if necessary.
252  */
253 void tick_nohz_full_kick_cpu(int cpu)
254 {
255 	if (!tick_nohz_full_cpu(cpu))
256 		return;
257 
258 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
259 }
260 
261 /*
262  * Kick all full dynticks CPUs in order to force these to re-evaluate
263  * their dependency on the tick and restart it if necessary.
264  */
265 static void tick_nohz_full_kick_all(void)
266 {
267 	int cpu;
268 
269 	if (!tick_nohz_full_running)
270 		return;
271 
272 	preempt_disable();
273 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
274 		tick_nohz_full_kick_cpu(cpu);
275 	preempt_enable();
276 }
277 
278 static void tick_nohz_dep_set_all(atomic_t *dep,
279 				  enum tick_dep_bits bit)
280 {
281 	int prev;
282 
283 	prev = atomic_fetch_or(BIT(bit), dep);
284 	if (!prev)
285 		tick_nohz_full_kick_all();
286 }
287 
288 /*
289  * Set a global tick dependency. Used by perf events that rely on freq and
290  * by unstable clock.
291  */
292 void tick_nohz_dep_set(enum tick_dep_bits bit)
293 {
294 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
295 }
296 
297 void tick_nohz_dep_clear(enum tick_dep_bits bit)
298 {
299 	atomic_andnot(BIT(bit), &tick_dep_mask);
300 }
301 
302 /*
303  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
304  * manage events throttling.
305  */
306 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
307 {
308 	int prev;
309 	struct tick_sched *ts;
310 
311 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
312 
313 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
314 	if (!prev) {
315 		preempt_disable();
316 		/* Perf needs local kick that is NMI safe */
317 		if (cpu == smp_processor_id()) {
318 			tick_nohz_full_kick();
319 		} else {
320 			/* Remote irq work not NMI-safe */
321 			if (!WARN_ON_ONCE(in_nmi()))
322 				tick_nohz_full_kick_cpu(cpu);
323 		}
324 		preempt_enable();
325 	}
326 }
327 
328 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
329 {
330 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331 
332 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
333 }
334 
335 /*
336  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
337  * per task timers.
338  */
339 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
340 {
341 	/*
342 	 * We could optimize this with just kicking the target running the task
343 	 * if that noise matters for nohz full users.
344 	 */
345 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
346 }
347 
348 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
349 {
350 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
351 }
352 
353 /*
354  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
355  * per process timers.
356  */
357 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
360 }
361 
362 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
363 {
364 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
365 }
366 
367 /*
368  * Re-evaluate the need for the tick as we switch the current task.
369  * It might need the tick due to per task/process properties:
370  * perf events, posix CPU timers, ...
371  */
372 void __tick_nohz_task_switch(void)
373 {
374 	unsigned long flags;
375 	struct tick_sched *ts;
376 
377 	local_irq_save(flags);
378 
379 	if (!tick_nohz_full_cpu(smp_processor_id()))
380 		goto out;
381 
382 	ts = this_cpu_ptr(&tick_cpu_sched);
383 
384 	if (ts->tick_stopped) {
385 		if (atomic_read(&current->tick_dep_mask) ||
386 		    atomic_read(&current->signal->tick_dep_mask))
387 			tick_nohz_full_kick();
388 	}
389 out:
390 	local_irq_restore(flags);
391 }
392 
393 /* Get the boot-time nohz CPU list from the kernel parameters. */
394 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
395 {
396 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
397 	cpumask_copy(tick_nohz_full_mask, cpumask);
398 	tick_nohz_full_running = true;
399 }
400 
401 static int tick_nohz_cpu_down(unsigned int cpu)
402 {
403 	/*
404 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
405 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
406 	 * CPUs. It must remain online when nohz full is enabled.
407 	 */
408 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
409 		return -EBUSY;
410 	return 0;
411 }
412 
413 void __init tick_nohz_init(void)
414 {
415 	int cpu, ret;
416 
417 	if (!tick_nohz_full_running)
418 		return;
419 
420 	/*
421 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
422 	 * locking contexts. But then we need irq work to raise its own
423 	 * interrupts to avoid circular dependency on the tick
424 	 */
425 	if (!arch_irq_work_has_interrupt()) {
426 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
427 		cpumask_clear(tick_nohz_full_mask);
428 		tick_nohz_full_running = false;
429 		return;
430 	}
431 
432 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
433 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
434 		cpu = smp_processor_id();
435 
436 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
437 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
438 				"for timekeeping\n", cpu);
439 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
440 		}
441 	}
442 
443 	for_each_cpu(cpu, tick_nohz_full_mask)
444 		context_tracking_cpu_set(cpu);
445 
446 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
447 					"kernel/nohz:predown", NULL,
448 					tick_nohz_cpu_down);
449 	WARN_ON(ret < 0);
450 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
451 		cpumask_pr_args(tick_nohz_full_mask));
452 }
453 #endif
454 
455 /*
456  * NOHZ - aka dynamic tick functionality
457  */
458 #ifdef CONFIG_NO_HZ_COMMON
459 /*
460  * NO HZ enabled ?
461  */
462 bool tick_nohz_enabled __read_mostly  = true;
463 unsigned long tick_nohz_active  __read_mostly;
464 /*
465  * Enable / Disable tickless mode
466  */
467 static int __init setup_tick_nohz(char *str)
468 {
469 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
470 }
471 
472 __setup("nohz=", setup_tick_nohz);
473 
474 bool tick_nohz_tick_stopped(void)
475 {
476 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
477 
478 	return ts->tick_stopped;
479 }
480 
481 bool tick_nohz_tick_stopped_cpu(int cpu)
482 {
483 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
484 
485 	return ts->tick_stopped;
486 }
487 
488 /**
489  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490  *
491  * Called from interrupt entry when the CPU was idle
492  *
493  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
494  * must be updated. Otherwise an interrupt handler could use a stale jiffy
495  * value. We do this unconditionally on any CPU, as we don't know whether the
496  * CPU, which has the update task assigned is in a long sleep.
497  */
498 static void tick_nohz_update_jiffies(ktime_t now)
499 {
500 	unsigned long flags;
501 
502 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
503 
504 	local_irq_save(flags);
505 	tick_do_update_jiffies64(now);
506 	local_irq_restore(flags);
507 
508 	touch_softlockup_watchdog_sched();
509 }
510 
511 /*
512  * Updates the per-CPU time idle statistics counters
513  */
514 static void
515 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
516 {
517 	ktime_t delta;
518 
519 	if (ts->idle_active) {
520 		delta = ktime_sub(now, ts->idle_entrytime);
521 		if (nr_iowait_cpu(cpu) > 0)
522 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
523 		else
524 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
525 		ts->idle_entrytime = now;
526 	}
527 
528 	if (last_update_time)
529 		*last_update_time = ktime_to_us(now);
530 
531 }
532 
533 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
534 {
535 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
536 	ts->idle_active = 0;
537 
538 	sched_clock_idle_wakeup_event();
539 }
540 
541 static void tick_nohz_start_idle(struct tick_sched *ts)
542 {
543 	ts->idle_entrytime = ktime_get();
544 	ts->idle_active = 1;
545 	sched_clock_idle_sleep_event();
546 }
547 
548 /**
549  * get_cpu_idle_time_us - get the total idle time of a CPU
550  * @cpu: CPU number to query
551  * @last_update_time: variable to store update time in. Do not update
552  * counters if NULL.
553  *
554  * Return the cumulative idle time (since boot) for a given
555  * CPU, in microseconds.
556  *
557  * This time is measured via accounting rather than sampling,
558  * and is as accurate as ktime_get() is.
559  *
560  * This function returns -1 if NOHZ is not enabled.
561  */
562 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
563 {
564 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
565 	ktime_t now, idle;
566 
567 	if (!tick_nohz_active)
568 		return -1;
569 
570 	now = ktime_get();
571 	if (last_update_time) {
572 		update_ts_time_stats(cpu, ts, now, last_update_time);
573 		idle = ts->idle_sleeptime;
574 	} else {
575 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
576 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
577 
578 			idle = ktime_add(ts->idle_sleeptime, delta);
579 		} else {
580 			idle = ts->idle_sleeptime;
581 		}
582 	}
583 
584 	return ktime_to_us(idle);
585 
586 }
587 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
588 
589 /**
590  * get_cpu_iowait_time_us - get the total iowait time of a CPU
591  * @cpu: CPU number to query
592  * @last_update_time: variable to store update time in. Do not update
593  * counters if NULL.
594  *
595  * Return the cumulative iowait time (since boot) for a given
596  * CPU, in microseconds.
597  *
598  * This time is measured via accounting rather than sampling,
599  * and is as accurate as ktime_get() is.
600  *
601  * This function returns -1 if NOHZ is not enabled.
602  */
603 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
604 {
605 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
606 	ktime_t now, iowait;
607 
608 	if (!tick_nohz_active)
609 		return -1;
610 
611 	now = ktime_get();
612 	if (last_update_time) {
613 		update_ts_time_stats(cpu, ts, now, last_update_time);
614 		iowait = ts->iowait_sleeptime;
615 	} else {
616 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
617 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
618 
619 			iowait = ktime_add(ts->iowait_sleeptime, delta);
620 		} else {
621 			iowait = ts->iowait_sleeptime;
622 		}
623 	}
624 
625 	return ktime_to_us(iowait);
626 }
627 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
628 
629 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
630 {
631 	hrtimer_cancel(&ts->sched_timer);
632 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
633 
634 	/* Forward the time to expire in the future */
635 	hrtimer_forward(&ts->sched_timer, now, tick_period);
636 
637 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
638 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
639 	else
640 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
641 
642 	/*
643 	 * Reset to make sure next tick stop doesn't get fooled by past
644 	 * cached clock deadline.
645 	 */
646 	ts->next_tick = 0;
647 }
648 
649 static inline bool local_timer_softirq_pending(void)
650 {
651 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
652 }
653 
654 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
655 {
656 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
657 	unsigned long basejiff;
658 	unsigned int seq;
659 
660 	/* Read jiffies and the time when jiffies were updated last */
661 	do {
662 		seq = read_seqbegin(&jiffies_lock);
663 		basemono = last_jiffies_update;
664 		basejiff = jiffies;
665 	} while (read_seqretry(&jiffies_lock, seq));
666 	ts->last_jiffies = basejiff;
667 	ts->timer_expires_base = basemono;
668 
669 	/*
670 	 * Keep the periodic tick, when RCU, architecture or irq_work
671 	 * requests it.
672 	 * Aside of that check whether the local timer softirq is
673 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
674 	 * because there is an already expired timer, so it will request
675 	 * immeditate expiry, which rearms the hardware timer with a
676 	 * minimal delta which brings us back to this place
677 	 * immediately. Lather, rinse and repeat...
678 	 */
679 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
680 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
681 		next_tick = basemono + TICK_NSEC;
682 	} else {
683 		/*
684 		 * Get the next pending timer. If high resolution
685 		 * timers are enabled this only takes the timer wheel
686 		 * timers into account. If high resolution timers are
687 		 * disabled this also looks at the next expiring
688 		 * hrtimer.
689 		 */
690 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 		ts->next_timer = next_tmr;
692 		/* Take the next rcu event into account */
693 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 	}
695 
696 	/*
697 	 * If the tick is due in the next period, keep it ticking or
698 	 * force prod the timer.
699 	 */
700 	delta = next_tick - basemono;
701 	if (delta <= (u64)TICK_NSEC) {
702 		/*
703 		 * Tell the timer code that the base is not idle, i.e. undo
704 		 * the effect of get_next_timer_interrupt():
705 		 */
706 		timer_clear_idle();
707 		/*
708 		 * We've not stopped the tick yet, and there's a timer in the
709 		 * next period, so no point in stopping it either, bail.
710 		 */
711 		if (!ts->tick_stopped) {
712 			ts->timer_expires = 0;
713 			goto out;
714 		}
715 	}
716 
717 	/*
718 	 * If this CPU is the one which had the do_timer() duty last, we limit
719 	 * the sleep time to the timekeeping max_deferment value.
720 	 * Otherwise we can sleep as long as we want.
721 	 */
722 	delta = timekeeping_max_deferment();
723 	if (cpu != tick_do_timer_cpu &&
724 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
725 		delta = KTIME_MAX;
726 
727 	/* Calculate the next expiry time */
728 	if (delta < (KTIME_MAX - basemono))
729 		expires = basemono + delta;
730 	else
731 		expires = KTIME_MAX;
732 
733 	ts->timer_expires = min_t(u64, expires, next_tick);
734 
735 out:
736 	return ts->timer_expires;
737 }
738 
739 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
740 {
741 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
742 	u64 basemono = ts->timer_expires_base;
743 	u64 expires = ts->timer_expires;
744 	ktime_t tick = expires;
745 
746 	/* Make sure we won't be trying to stop it twice in a row. */
747 	ts->timer_expires_base = 0;
748 
749 	/*
750 	 * If this CPU is the one which updates jiffies, then give up
751 	 * the assignment and let it be taken by the CPU which runs
752 	 * the tick timer next, which might be this CPU as well. If we
753 	 * don't drop this here the jiffies might be stale and
754 	 * do_timer() never invoked. Keep track of the fact that it
755 	 * was the one which had the do_timer() duty last.
756 	 */
757 	if (cpu == tick_do_timer_cpu) {
758 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
759 		ts->do_timer_last = 1;
760 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
761 		ts->do_timer_last = 0;
762 	}
763 
764 	/* Skip reprogram of event if its not changed */
765 	if (ts->tick_stopped && (expires == ts->next_tick)) {
766 		/* Sanity check: make sure clockevent is actually programmed */
767 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
768 			return;
769 
770 		WARN_ON_ONCE(1);
771 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
772 			    basemono, ts->next_tick, dev->next_event,
773 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
774 	}
775 
776 	/*
777 	 * nohz_stop_sched_tick can be called several times before
778 	 * the nohz_restart_sched_tick is called. This happens when
779 	 * interrupts arrive which do not cause a reschedule. In the
780 	 * first call we save the current tick time, so we can restart
781 	 * the scheduler tick in nohz_restart_sched_tick.
782 	 */
783 	if (!ts->tick_stopped) {
784 		calc_load_nohz_start();
785 		cpu_load_update_nohz_start();
786 		quiet_vmstat();
787 
788 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
789 		ts->tick_stopped = 1;
790 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
791 	}
792 
793 	ts->next_tick = tick;
794 
795 	/*
796 	 * If the expiration time == KTIME_MAX, then we simply stop
797 	 * the tick timer.
798 	 */
799 	if (unlikely(expires == KTIME_MAX)) {
800 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
801 			hrtimer_cancel(&ts->sched_timer);
802 		return;
803 	}
804 
805 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
806 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
807 	} else {
808 		hrtimer_set_expires(&ts->sched_timer, tick);
809 		tick_program_event(tick, 1);
810 	}
811 }
812 
813 static void tick_nohz_retain_tick(struct tick_sched *ts)
814 {
815 	ts->timer_expires_base = 0;
816 }
817 
818 #ifdef CONFIG_NO_HZ_FULL
819 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
820 {
821 	if (tick_nohz_next_event(ts, cpu))
822 		tick_nohz_stop_tick(ts, cpu);
823 	else
824 		tick_nohz_retain_tick(ts);
825 }
826 #endif /* CONFIG_NO_HZ_FULL */
827 
828 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
829 {
830 	/* Update jiffies first */
831 	tick_do_update_jiffies64(now);
832 	cpu_load_update_nohz_stop();
833 
834 	/*
835 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
836 	 * the clock forward checks in the enqueue path:
837 	 */
838 	timer_clear_idle();
839 
840 	calc_load_nohz_stop();
841 	touch_softlockup_watchdog_sched();
842 	/*
843 	 * Cancel the scheduled timer and restore the tick
844 	 */
845 	ts->tick_stopped  = 0;
846 	ts->idle_exittime = now;
847 
848 	tick_nohz_restart(ts, now);
849 }
850 
851 static void tick_nohz_full_update_tick(struct tick_sched *ts)
852 {
853 #ifdef CONFIG_NO_HZ_FULL
854 	int cpu = smp_processor_id();
855 
856 	if (!tick_nohz_full_cpu(cpu))
857 		return;
858 
859 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
860 		return;
861 
862 	if (can_stop_full_tick(cpu, ts))
863 		tick_nohz_stop_sched_tick(ts, cpu);
864 	else if (ts->tick_stopped)
865 		tick_nohz_restart_sched_tick(ts, ktime_get());
866 #endif
867 }
868 
869 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
870 {
871 	/*
872 	 * If this CPU is offline and it is the one which updates
873 	 * jiffies, then give up the assignment and let it be taken by
874 	 * the CPU which runs the tick timer next. If we don't drop
875 	 * this here the jiffies might be stale and do_timer() never
876 	 * invoked.
877 	 */
878 	if (unlikely(!cpu_online(cpu))) {
879 		if (cpu == tick_do_timer_cpu)
880 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
881 		/*
882 		 * Make sure the CPU doesn't get fooled by obsolete tick
883 		 * deadline if it comes back online later.
884 		 */
885 		ts->next_tick = 0;
886 		return false;
887 	}
888 
889 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
890 		return false;
891 
892 	if (need_resched())
893 		return false;
894 
895 	if (unlikely(local_softirq_pending())) {
896 		static int ratelimit;
897 
898 		if (ratelimit < 10 &&
899 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
900 			pr_warn("NOHZ: local_softirq_pending %02x\n",
901 				(unsigned int) local_softirq_pending());
902 			ratelimit++;
903 		}
904 		return false;
905 	}
906 
907 	if (tick_nohz_full_enabled()) {
908 		/*
909 		 * Keep the tick alive to guarantee timekeeping progression
910 		 * if there are full dynticks CPUs around
911 		 */
912 		if (tick_do_timer_cpu == cpu)
913 			return false;
914 		/*
915 		 * Boot safety: make sure the timekeeping duty has been
916 		 * assigned before entering dyntick-idle mode,
917 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
918 		 */
919 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
920 			return false;
921 
922 		/* Should not happen for nohz-full */
923 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
924 			return false;
925 	}
926 
927 	return true;
928 }
929 
930 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
931 {
932 	ktime_t expires;
933 	int cpu = smp_processor_id();
934 
935 	/*
936 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
937 	 * tick timer expiration time is known already.
938 	 */
939 	if (ts->timer_expires_base)
940 		expires = ts->timer_expires;
941 	else if (can_stop_idle_tick(cpu, ts))
942 		expires = tick_nohz_next_event(ts, cpu);
943 	else
944 		return;
945 
946 	ts->idle_calls++;
947 
948 	if (expires > 0LL) {
949 		int was_stopped = ts->tick_stopped;
950 
951 		tick_nohz_stop_tick(ts, cpu);
952 
953 		ts->idle_sleeps++;
954 		ts->idle_expires = expires;
955 
956 		if (!was_stopped && ts->tick_stopped) {
957 			ts->idle_jiffies = ts->last_jiffies;
958 			nohz_balance_enter_idle(cpu);
959 		}
960 	} else {
961 		tick_nohz_retain_tick(ts);
962 	}
963 }
964 
965 /**
966  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
967  *
968  * When the next event is more than a tick into the future, stop the idle tick
969  */
970 void tick_nohz_idle_stop_tick(void)
971 {
972 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
973 }
974 
975 void tick_nohz_idle_retain_tick(void)
976 {
977 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
978 	/*
979 	 * Undo the effect of get_next_timer_interrupt() called from
980 	 * tick_nohz_next_event().
981 	 */
982 	timer_clear_idle();
983 }
984 
985 /**
986  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
987  *
988  * Called when we start the idle loop.
989  */
990 void tick_nohz_idle_enter(void)
991 {
992 	struct tick_sched *ts;
993 
994 	lockdep_assert_irqs_enabled();
995 
996 	local_irq_disable();
997 
998 	ts = this_cpu_ptr(&tick_cpu_sched);
999 
1000 	WARN_ON_ONCE(ts->timer_expires_base);
1001 
1002 	ts->inidle = 1;
1003 	tick_nohz_start_idle(ts);
1004 
1005 	local_irq_enable();
1006 }
1007 
1008 /**
1009  * tick_nohz_irq_exit - update next tick event from interrupt exit
1010  *
1011  * When an interrupt fires while we are idle and it doesn't cause
1012  * a reschedule, it may still add, modify or delete a timer, enqueue
1013  * an RCU callback, etc...
1014  * So we need to re-calculate and reprogram the next tick event.
1015  */
1016 void tick_nohz_irq_exit(void)
1017 {
1018 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1019 
1020 	if (ts->inidle)
1021 		tick_nohz_start_idle(ts);
1022 	else
1023 		tick_nohz_full_update_tick(ts);
1024 }
1025 
1026 /**
1027  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1028  */
1029 bool tick_nohz_idle_got_tick(void)
1030 {
1031 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1032 
1033 	if (ts->got_idle_tick) {
1034 		ts->got_idle_tick = 0;
1035 		return true;
1036 	}
1037 	return false;
1038 }
1039 
1040 /**
1041  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1042  * or the tick, whatever that expires first. Note that, if the tick has been
1043  * stopped, it returns the next hrtimer.
1044  *
1045  * Called from power state control code with interrupts disabled
1046  */
1047 ktime_t tick_nohz_get_next_hrtimer(void)
1048 {
1049 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1050 }
1051 
1052 /**
1053  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1054  * @delta_next: duration until the next event if the tick cannot be stopped
1055  *
1056  * Called from power state control code with interrupts disabled
1057  */
1058 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1059 {
1060 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1061 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062 	int cpu = smp_processor_id();
1063 	/*
1064 	 * The idle entry time is expected to be a sufficient approximation of
1065 	 * the current time at this point.
1066 	 */
1067 	ktime_t now = ts->idle_entrytime;
1068 	ktime_t next_event;
1069 
1070 	WARN_ON_ONCE(!ts->inidle);
1071 
1072 	*delta_next = ktime_sub(dev->next_event, now);
1073 
1074 	if (!can_stop_idle_tick(cpu, ts))
1075 		return *delta_next;
1076 
1077 	next_event = tick_nohz_next_event(ts, cpu);
1078 	if (!next_event)
1079 		return *delta_next;
1080 
1081 	/*
1082 	 * If the next highres timer to expire is earlier than next_event, the
1083 	 * idle governor needs to know that.
1084 	 */
1085 	next_event = min_t(u64, next_event,
1086 			   hrtimer_next_event_without(&ts->sched_timer));
1087 
1088 	return ktime_sub(next_event, now);
1089 }
1090 
1091 /**
1092  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1093  * for a particular CPU.
1094  *
1095  * Called from the schedutil frequency scaling governor in scheduler context.
1096  */
1097 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1098 {
1099 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1100 
1101 	return ts->idle_calls;
1102 }
1103 
1104 /**
1105  * tick_nohz_get_idle_calls - return the current idle calls counter value
1106  *
1107  * Called from the schedutil frequency scaling governor in scheduler context.
1108  */
1109 unsigned long tick_nohz_get_idle_calls(void)
1110 {
1111 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1112 
1113 	return ts->idle_calls;
1114 }
1115 
1116 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1117 {
1118 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1119 	unsigned long ticks;
1120 
1121 	if (vtime_accounting_cpu_enabled())
1122 		return;
1123 	/*
1124 	 * We stopped the tick in idle. Update process times would miss the
1125 	 * time we slept as update_process_times does only a 1 tick
1126 	 * accounting. Enforce that this is accounted to idle !
1127 	 */
1128 	ticks = jiffies - ts->idle_jiffies;
1129 	/*
1130 	 * We might be one off. Do not randomly account a huge number of ticks!
1131 	 */
1132 	if (ticks && ticks < LONG_MAX)
1133 		account_idle_ticks(ticks);
1134 #endif
1135 }
1136 
1137 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1138 {
1139 	tick_nohz_restart_sched_tick(ts, now);
1140 	tick_nohz_account_idle_ticks(ts);
1141 }
1142 
1143 void tick_nohz_idle_restart_tick(void)
1144 {
1145 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1146 
1147 	if (ts->tick_stopped)
1148 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1149 }
1150 
1151 /**
1152  * tick_nohz_idle_exit - restart the idle tick from the idle task
1153  *
1154  * Restart the idle tick when the CPU is woken up from idle
1155  * This also exit the RCU extended quiescent state. The CPU
1156  * can use RCU again after this function is called.
1157  */
1158 void tick_nohz_idle_exit(void)
1159 {
1160 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1161 	bool idle_active, tick_stopped;
1162 	ktime_t now;
1163 
1164 	local_irq_disable();
1165 
1166 	WARN_ON_ONCE(!ts->inidle);
1167 	WARN_ON_ONCE(ts->timer_expires_base);
1168 
1169 	ts->inidle = 0;
1170 	idle_active = ts->idle_active;
1171 	tick_stopped = ts->tick_stopped;
1172 
1173 	if (idle_active || tick_stopped)
1174 		now = ktime_get();
1175 
1176 	if (idle_active)
1177 		tick_nohz_stop_idle(ts, now);
1178 
1179 	if (tick_stopped)
1180 		__tick_nohz_idle_restart_tick(ts, now);
1181 
1182 	local_irq_enable();
1183 }
1184 
1185 /*
1186  * The nohz low res interrupt handler
1187  */
1188 static void tick_nohz_handler(struct clock_event_device *dev)
1189 {
1190 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191 	struct pt_regs *regs = get_irq_regs();
1192 	ktime_t now = ktime_get();
1193 
1194 	dev->next_event = KTIME_MAX;
1195 
1196 	tick_sched_do_timer(ts, now);
1197 	tick_sched_handle(ts, regs);
1198 
1199 	/* No need to reprogram if we are running tickless  */
1200 	if (unlikely(ts->tick_stopped))
1201 		return;
1202 
1203 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1204 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1205 }
1206 
1207 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1208 {
1209 	if (!tick_nohz_enabled)
1210 		return;
1211 	ts->nohz_mode = mode;
1212 	/* One update is enough */
1213 	if (!test_and_set_bit(0, &tick_nohz_active))
1214 		timers_update_nohz();
1215 }
1216 
1217 /**
1218  * tick_nohz_switch_to_nohz - switch to nohz mode
1219  */
1220 static void tick_nohz_switch_to_nohz(void)
1221 {
1222 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 	ktime_t next;
1224 
1225 	if (!tick_nohz_enabled)
1226 		return;
1227 
1228 	if (tick_switch_to_oneshot(tick_nohz_handler))
1229 		return;
1230 
1231 	/*
1232 	 * Recycle the hrtimer in ts, so we can share the
1233 	 * hrtimer_forward with the highres code.
1234 	 */
1235 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1236 	/* Get the next period */
1237 	next = tick_init_jiffy_update();
1238 
1239 	hrtimer_set_expires(&ts->sched_timer, next);
1240 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1241 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1242 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1243 }
1244 
1245 static inline void tick_nohz_irq_enter(void)
1246 {
1247 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1248 	ktime_t now;
1249 
1250 	if (!ts->idle_active && !ts->tick_stopped)
1251 		return;
1252 	now = ktime_get();
1253 	if (ts->idle_active)
1254 		tick_nohz_stop_idle(ts, now);
1255 	if (ts->tick_stopped)
1256 		tick_nohz_update_jiffies(now);
1257 }
1258 
1259 #else
1260 
1261 static inline void tick_nohz_switch_to_nohz(void) { }
1262 static inline void tick_nohz_irq_enter(void) { }
1263 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1264 
1265 #endif /* CONFIG_NO_HZ_COMMON */
1266 
1267 /*
1268  * Called from irq_enter to notify about the possible interruption of idle()
1269  */
1270 void tick_irq_enter(void)
1271 {
1272 	tick_check_oneshot_broadcast_this_cpu();
1273 	tick_nohz_irq_enter();
1274 }
1275 
1276 /*
1277  * High resolution timer specific code
1278  */
1279 #ifdef CONFIG_HIGH_RES_TIMERS
1280 /*
1281  * We rearm the timer until we get disabled by the idle code.
1282  * Called with interrupts disabled.
1283  */
1284 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1285 {
1286 	struct tick_sched *ts =
1287 		container_of(timer, struct tick_sched, sched_timer);
1288 	struct pt_regs *regs = get_irq_regs();
1289 	ktime_t now = ktime_get();
1290 
1291 	tick_sched_do_timer(ts, now);
1292 
1293 	/*
1294 	 * Do not call, when we are not in irq context and have
1295 	 * no valid regs pointer
1296 	 */
1297 	if (regs)
1298 		tick_sched_handle(ts, regs);
1299 	else
1300 		ts->next_tick = 0;
1301 
1302 	/* No need to reprogram if we are in idle or full dynticks mode */
1303 	if (unlikely(ts->tick_stopped))
1304 		return HRTIMER_NORESTART;
1305 
1306 	hrtimer_forward(timer, now, tick_period);
1307 
1308 	return HRTIMER_RESTART;
1309 }
1310 
1311 static int sched_skew_tick;
1312 
1313 static int __init skew_tick(char *str)
1314 {
1315 	get_option(&str, &sched_skew_tick);
1316 
1317 	return 0;
1318 }
1319 early_param("skew_tick", skew_tick);
1320 
1321 /**
1322  * tick_setup_sched_timer - setup the tick emulation timer
1323  */
1324 void tick_setup_sched_timer(void)
1325 {
1326 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1327 	ktime_t now = ktime_get();
1328 
1329 	/*
1330 	 * Emulate tick processing via per-CPU hrtimers:
1331 	 */
1332 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1333 	ts->sched_timer.function = tick_sched_timer;
1334 
1335 	/* Get the next period (per-CPU) */
1336 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1337 
1338 	/* Offset the tick to avert jiffies_lock contention. */
1339 	if (sched_skew_tick) {
1340 		u64 offset = ktime_to_ns(tick_period) >> 1;
1341 		do_div(offset, num_possible_cpus());
1342 		offset *= smp_processor_id();
1343 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1344 	}
1345 
1346 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1347 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1348 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1349 }
1350 #endif /* HIGH_RES_TIMERS */
1351 
1352 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1353 void tick_cancel_sched_timer(int cpu)
1354 {
1355 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1356 
1357 # ifdef CONFIG_HIGH_RES_TIMERS
1358 	if (ts->sched_timer.base)
1359 		hrtimer_cancel(&ts->sched_timer);
1360 # endif
1361 
1362 	memset(ts, 0, sizeof(*ts));
1363 }
1364 #endif
1365 
1366 /**
1367  * Async notification about clocksource changes
1368  */
1369 void tick_clock_notify(void)
1370 {
1371 	int cpu;
1372 
1373 	for_each_possible_cpu(cpu)
1374 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1375 }
1376 
1377 /*
1378  * Async notification about clock event changes
1379  */
1380 void tick_oneshot_notify(void)
1381 {
1382 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1383 
1384 	set_bit(0, &ts->check_clocks);
1385 }
1386 
1387 /**
1388  * Check, if a change happened, which makes oneshot possible.
1389  *
1390  * Called cyclic from the hrtimer softirq (driven by the timer
1391  * softirq) allow_nohz signals, that we can switch into low-res nohz
1392  * mode, because high resolution timers are disabled (either compile
1393  * or runtime). Called with interrupts disabled.
1394  */
1395 int tick_check_oneshot_change(int allow_nohz)
1396 {
1397 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398 
1399 	if (!test_and_clear_bit(0, &ts->check_clocks))
1400 		return 0;
1401 
1402 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1403 		return 0;
1404 
1405 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1406 		return 0;
1407 
1408 	if (!allow_nohz)
1409 		return 1;
1410 
1411 	tick_nohz_switch_to_nohz();
1412 	return 0;
1413 }
1414