xref: /openbmc/linux/kernel/time/tick-sched.c (revision c21b37f6)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	cpu_clear(cpu, nohz_cpu_mask);
137 	now = ktime_get();
138 
139 	local_irq_save(flags);
140 	tick_do_update_jiffies64(now);
141 	local_irq_restore(flags);
142 }
143 
144 /**
145  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
146  *
147  * When the next event is more than a tick into the future, stop the idle tick
148  * Called either from the idle loop or from irq_exit() when an idle period was
149  * just interrupted by an interrupt which did not cause a reschedule.
150  */
151 void tick_nohz_stop_sched_tick(void)
152 {
153 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
154 	struct tick_sched *ts;
155 	ktime_t last_update, expires, now, delta;
156 	int cpu;
157 
158 	local_irq_save(flags);
159 
160 	cpu = smp_processor_id();
161 	ts = &per_cpu(tick_cpu_sched, cpu);
162 
163 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
164 		goto end;
165 
166 	if (need_resched())
167 		goto end;
168 
169 	cpu = smp_processor_id();
170 	if (unlikely(local_softirq_pending())) {
171 		static int ratelimit;
172 
173 		if (ratelimit < 10) {
174 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
175 			       local_softirq_pending());
176 			ratelimit++;
177 		}
178 	}
179 
180 	now = ktime_get();
181 	/*
182 	 * When called from irq_exit we need to account the idle sleep time
183 	 * correctly.
184 	 */
185 	if (ts->tick_stopped) {
186 		delta = ktime_sub(now, ts->idle_entrytime);
187 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
188 	}
189 
190 	ts->idle_entrytime = now;
191 	ts->idle_calls++;
192 
193 	/* Read jiffies and the time when jiffies were updated last */
194 	do {
195 		seq = read_seqbegin(&xtime_lock);
196 		last_update = last_jiffies_update;
197 		last_jiffies = jiffies;
198 	} while (read_seqretry(&xtime_lock, seq));
199 
200 	/* Get the next timer wheel timer */
201 	next_jiffies = get_next_timer_interrupt(last_jiffies);
202 	delta_jiffies = next_jiffies - last_jiffies;
203 
204 	if (rcu_needs_cpu(cpu))
205 		delta_jiffies = 1;
206 	/*
207 	 * Do not stop the tick, if we are only one off
208 	 * or if the cpu is required for rcu
209 	 */
210 	if (!ts->tick_stopped && delta_jiffies == 1)
211 		goto out;
212 
213 	/* Schedule the tick, if we are at least one jiffie off */
214 	if ((long)delta_jiffies >= 1) {
215 
216 		if (delta_jiffies > 1)
217 			cpu_set(cpu, nohz_cpu_mask);
218 		/*
219 		 * nohz_stop_sched_tick can be called several times before
220 		 * the nohz_restart_sched_tick is called. This happens when
221 		 * interrupts arrive which do not cause a reschedule. In the
222 		 * first call we save the current tick time, so we can restart
223 		 * the scheduler tick in nohz_restart_sched_tick.
224 		 */
225 		if (!ts->tick_stopped) {
226 			if (select_nohz_load_balancer(1)) {
227 				/*
228 				 * sched tick not stopped!
229 				 */
230 				cpu_clear(cpu, nohz_cpu_mask);
231 				goto out;
232 			}
233 
234 			ts->idle_tick = ts->sched_timer.expires;
235 			ts->tick_stopped = 1;
236 			ts->idle_jiffies = last_jiffies;
237 		}
238 
239 		/*
240 		 * If this cpu is the one which updates jiffies, then
241 		 * give up the assignment and let it be taken by the
242 		 * cpu which runs the tick timer next, which might be
243 		 * this cpu as well. If we don't drop this here the
244 		 * jiffies might be stale and do_timer() never
245 		 * invoked.
246 		 */
247 		if (cpu == tick_do_timer_cpu)
248 			tick_do_timer_cpu = -1;
249 
250 		ts->idle_sleeps++;
251 
252 		/*
253 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
254 		 * there is no timer pending or at least extremly far
255 		 * into the future (12 days for HZ=1000). In this case
256 		 * we simply stop the tick timer:
257 		 */
258 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
259 			ts->idle_expires.tv64 = KTIME_MAX;
260 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
261 				hrtimer_cancel(&ts->sched_timer);
262 			goto out;
263 		}
264 
265 		/*
266 		 * calculate the expiry time for the next timer wheel
267 		 * timer
268 		 */
269 		expires = ktime_add_ns(last_update, tick_period.tv64 *
270 				       delta_jiffies);
271 		ts->idle_expires = expires;
272 
273 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
274 			hrtimer_start(&ts->sched_timer, expires,
275 				      HRTIMER_MODE_ABS);
276 			/* Check, if the timer was already in the past */
277 			if (hrtimer_active(&ts->sched_timer))
278 				goto out;
279 		} else if(!tick_program_event(expires, 0))
280 				goto out;
281 		/*
282 		 * We are past the event already. So we crossed a
283 		 * jiffie boundary. Update jiffies and raise the
284 		 * softirq.
285 		 */
286 		tick_do_update_jiffies64(ktime_get());
287 		cpu_clear(cpu, nohz_cpu_mask);
288 	}
289 	raise_softirq_irqoff(TIMER_SOFTIRQ);
290 out:
291 	ts->next_jiffies = next_jiffies;
292 	ts->last_jiffies = last_jiffies;
293 end:
294 	local_irq_restore(flags);
295 }
296 
297 /**
298  * nohz_restart_sched_tick - restart the idle tick from the idle task
299  *
300  * Restart the idle tick when the CPU is woken up from idle
301  */
302 void tick_nohz_restart_sched_tick(void)
303 {
304 	int cpu = smp_processor_id();
305 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
306 	unsigned long ticks;
307 	ktime_t now, delta;
308 
309 	if (!ts->tick_stopped)
310 		return;
311 
312 	/* Update jiffies first */
313 	now = ktime_get();
314 
315 	local_irq_disable();
316 	select_nohz_load_balancer(0);
317 	tick_do_update_jiffies64(now);
318 	cpu_clear(cpu, nohz_cpu_mask);
319 
320 	/* Account the idle time */
321 	delta = ktime_sub(now, ts->idle_entrytime);
322 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
323 
324 	/*
325 	 * We stopped the tick in idle. Update process times would miss the
326 	 * time we slept as update_process_times does only a 1 tick
327 	 * accounting. Enforce that this is accounted to idle !
328 	 */
329 	ticks = jiffies - ts->idle_jiffies;
330 	/*
331 	 * We might be one off. Do not randomly account a huge number of ticks!
332 	 */
333 	if (ticks && ticks < LONG_MAX) {
334 		add_preempt_count(HARDIRQ_OFFSET);
335 		account_system_time(current, HARDIRQ_OFFSET,
336 				    jiffies_to_cputime(ticks));
337 		sub_preempt_count(HARDIRQ_OFFSET);
338 	}
339 
340 	/*
341 	 * Cancel the scheduled timer and restore the tick
342 	 */
343 	ts->tick_stopped  = 0;
344 	hrtimer_cancel(&ts->sched_timer);
345 	ts->sched_timer.expires = ts->idle_tick;
346 
347 	while (1) {
348 		/* Forward the time to expire in the future */
349 		hrtimer_forward(&ts->sched_timer, now, tick_period);
350 
351 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
352 			hrtimer_start(&ts->sched_timer,
353 				      ts->sched_timer.expires,
354 				      HRTIMER_MODE_ABS);
355 			/* Check, if the timer was already in the past */
356 			if (hrtimer_active(&ts->sched_timer))
357 				break;
358 		} else {
359 			if (!tick_program_event(ts->sched_timer.expires, 0))
360 				break;
361 		}
362 		/* Update jiffies and reread time */
363 		tick_do_update_jiffies64(now);
364 		now = ktime_get();
365 	}
366 	local_irq_enable();
367 }
368 
369 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
370 {
371 	hrtimer_forward(&ts->sched_timer, now, tick_period);
372 	return tick_program_event(ts->sched_timer.expires, 0);
373 }
374 
375 /*
376  * The nohz low res interrupt handler
377  */
378 static void tick_nohz_handler(struct clock_event_device *dev)
379 {
380 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
381 	struct pt_regs *regs = get_irq_regs();
382 	int cpu = smp_processor_id();
383 	ktime_t now = ktime_get();
384 
385 	dev->next_event.tv64 = KTIME_MAX;
386 
387 	/*
388 	 * Check if the do_timer duty was dropped. We don't care about
389 	 * concurrency: This happens only when the cpu in charge went
390 	 * into a long sleep. If two cpus happen to assign themself to
391 	 * this duty, then the jiffies update is still serialized by
392 	 * xtime_lock.
393 	 */
394 	if (unlikely(tick_do_timer_cpu == -1))
395 		tick_do_timer_cpu = cpu;
396 
397 	/* Check, if the jiffies need an update */
398 	if (tick_do_timer_cpu == cpu)
399 		tick_do_update_jiffies64(now);
400 
401 	/*
402 	 * When we are idle and the tick is stopped, we have to touch
403 	 * the watchdog as we might not schedule for a really long
404 	 * time. This happens on complete idle SMP systems while
405 	 * waiting on the login prompt. We also increment the "start
406 	 * of idle" jiffy stamp so the idle accounting adjustment we
407 	 * do when we go busy again does not account too much ticks.
408 	 */
409 	if (ts->tick_stopped) {
410 		touch_softlockup_watchdog();
411 		ts->idle_jiffies++;
412 	}
413 
414 	update_process_times(user_mode(regs));
415 	profile_tick(CPU_PROFILING);
416 
417 	/* Do not restart, when we are in the idle loop */
418 	if (ts->tick_stopped)
419 		return;
420 
421 	while (tick_nohz_reprogram(ts, now)) {
422 		now = ktime_get();
423 		tick_do_update_jiffies64(now);
424 	}
425 }
426 
427 /**
428  * tick_nohz_switch_to_nohz - switch to nohz mode
429  */
430 static void tick_nohz_switch_to_nohz(void)
431 {
432 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
433 	ktime_t next;
434 
435 	if (!tick_nohz_enabled)
436 		return;
437 
438 	local_irq_disable();
439 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
440 		local_irq_enable();
441 		return;
442 	}
443 
444 	ts->nohz_mode = NOHZ_MODE_LOWRES;
445 
446 	/*
447 	 * Recycle the hrtimer in ts, so we can share the
448 	 * hrtimer_forward with the highres code.
449 	 */
450 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
451 	/* Get the next period */
452 	next = tick_init_jiffy_update();
453 
454 	for (;;) {
455 		ts->sched_timer.expires = next;
456 		if (!tick_program_event(next, 0))
457 			break;
458 		next = ktime_add(next, tick_period);
459 	}
460 	local_irq_enable();
461 
462 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
463 	       smp_processor_id());
464 }
465 
466 #else
467 
468 static inline void tick_nohz_switch_to_nohz(void) { }
469 
470 #endif /* NO_HZ */
471 
472 /*
473  * High resolution timer specific code
474  */
475 #ifdef CONFIG_HIGH_RES_TIMERS
476 /*
477  * We rearm the timer until we get disabled by the idle code
478  * Called with interrupts disabled and timer->base->cpu_base->lock held.
479  */
480 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
481 {
482 	struct tick_sched *ts =
483 		container_of(timer, struct tick_sched, sched_timer);
484 	struct hrtimer_cpu_base *base = timer->base->cpu_base;
485 	struct pt_regs *regs = get_irq_regs();
486 	ktime_t now = ktime_get();
487 	int cpu = smp_processor_id();
488 
489 #ifdef CONFIG_NO_HZ
490 	/*
491 	 * Check if the do_timer duty was dropped. We don't care about
492 	 * concurrency: This happens only when the cpu in charge went
493 	 * into a long sleep. If two cpus happen to assign themself to
494 	 * this duty, then the jiffies update is still serialized by
495 	 * xtime_lock.
496 	 */
497 	if (unlikely(tick_do_timer_cpu == -1))
498 		tick_do_timer_cpu = cpu;
499 #endif
500 
501 	/* Check, if the jiffies need an update */
502 	if (tick_do_timer_cpu == cpu)
503 		tick_do_update_jiffies64(now);
504 
505 	/*
506 	 * Do not call, when we are not in irq context and have
507 	 * no valid regs pointer
508 	 */
509 	if (regs) {
510 		/*
511 		 * When we are idle and the tick is stopped, we have to touch
512 		 * the watchdog as we might not schedule for a really long
513 		 * time. This happens on complete idle SMP systems while
514 		 * waiting on the login prompt. We also increment the "start of
515 		 * idle" jiffy stamp so the idle accounting adjustment we do
516 		 * when we go busy again does not account too much ticks.
517 		 */
518 		if (ts->tick_stopped) {
519 			touch_softlockup_watchdog();
520 			ts->idle_jiffies++;
521 		}
522 		/*
523 		 * update_process_times() might take tasklist_lock, hence
524 		 * drop the base lock. sched-tick hrtimers are per-CPU and
525 		 * never accessible by userspace APIs, so this is safe to do.
526 		 */
527 		spin_unlock(&base->lock);
528 		update_process_times(user_mode(regs));
529 		profile_tick(CPU_PROFILING);
530 		spin_lock(&base->lock);
531 	}
532 
533 	/* Do not restart, when we are in the idle loop */
534 	if (ts->tick_stopped)
535 		return HRTIMER_NORESTART;
536 
537 	hrtimer_forward(timer, now, tick_period);
538 
539 	return HRTIMER_RESTART;
540 }
541 
542 /**
543  * tick_setup_sched_timer - setup the tick emulation timer
544  */
545 void tick_setup_sched_timer(void)
546 {
547 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
548 	ktime_t now = ktime_get();
549 	u64 offset;
550 
551 	/*
552 	 * Emulate tick processing via per-CPU hrtimers:
553 	 */
554 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
555 	ts->sched_timer.function = tick_sched_timer;
556 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
557 
558 	/* Get the next period (per cpu) */
559 	ts->sched_timer.expires = tick_init_jiffy_update();
560 	offset = ktime_to_ns(tick_period) >> 1;
561 	do_div(offset, NR_CPUS);
562 	offset *= smp_processor_id();
563 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
564 
565 	for (;;) {
566 		hrtimer_forward(&ts->sched_timer, now, tick_period);
567 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
568 			      HRTIMER_MODE_ABS);
569 		/* Check, if the timer was already in the past */
570 		if (hrtimer_active(&ts->sched_timer))
571 			break;
572 		now = ktime_get();
573 	}
574 
575 #ifdef CONFIG_NO_HZ
576 	if (tick_nohz_enabled)
577 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
578 #endif
579 }
580 
581 void tick_cancel_sched_timer(int cpu)
582 {
583 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
584 
585 	if (ts->sched_timer.base)
586 		hrtimer_cancel(&ts->sched_timer);
587 	ts->tick_stopped = 0;
588 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
589 }
590 #endif /* HIGH_RES_TIMERS */
591 
592 /**
593  * Async notification about clocksource changes
594  */
595 void tick_clock_notify(void)
596 {
597 	int cpu;
598 
599 	for_each_possible_cpu(cpu)
600 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
601 }
602 
603 /*
604  * Async notification about clock event changes
605  */
606 void tick_oneshot_notify(void)
607 {
608 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
609 
610 	set_bit(0, &ts->check_clocks);
611 }
612 
613 /**
614  * Check, if a change happened, which makes oneshot possible.
615  *
616  * Called cyclic from the hrtimer softirq (driven by the timer
617  * softirq) allow_nohz signals, that we can switch into low-res nohz
618  * mode, because high resolution timers are disabled (either compile
619  * or runtime).
620  */
621 int tick_check_oneshot_change(int allow_nohz)
622 {
623 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
624 
625 	if (!test_and_clear_bit(0, &ts->check_clocks))
626 		return 0;
627 
628 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
629 		return 0;
630 
631 	if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
632 		return 0;
633 
634 	if (!allow_nohz)
635 		return 1;
636 
637 	tick_nohz_switch_to_nohz();
638 	return 0;
639 }
640