xref: /openbmc/linux/kernel/time/tick-sched.c (revision c0f489d2)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick the current CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  */
231 void tick_nohz_full_kick(void)
232 {
233 	if (tick_nohz_full_cpu(smp_processor_id()))
234 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
235 }
236 
237 static void nohz_full_kick_ipi(void *info)
238 {
239 	__tick_nohz_full_check();
240 }
241 
242 /*
243  * Kick all full dynticks CPUs in order to force these to re-evaluate
244  * their dependency on the tick and restart it if necessary.
245  */
246 void tick_nohz_full_kick_all(void)
247 {
248 	if (!tick_nohz_full_running)
249 		return;
250 
251 	preempt_disable();
252 	smp_call_function_many(tick_nohz_full_mask,
253 			       nohz_full_kick_ipi, NULL, false);
254 	tick_nohz_full_kick();
255 	preempt_enable();
256 }
257 
258 /*
259  * Re-evaluate the need for the tick as we switch the current task.
260  * It might need the tick due to per task/process properties:
261  * perf events, posix cpu timers, ...
262  */
263 void __tick_nohz_task_switch(struct task_struct *tsk)
264 {
265 	unsigned long flags;
266 
267 	local_irq_save(flags);
268 
269 	if (!tick_nohz_full_cpu(smp_processor_id()))
270 		goto out;
271 
272 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
273 		tick_nohz_full_kick();
274 
275 out:
276 	local_irq_restore(flags);
277 }
278 
279 /* Parse the boot-time nohz CPU list from the kernel parameters. */
280 static int __init tick_nohz_full_setup(char *str)
281 {
282 	int cpu;
283 
284 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
285 	alloc_bootmem_cpumask_var(&housekeeping_mask);
286 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
287 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
288 		return 1;
289 	}
290 
291 	cpu = smp_processor_id();
292 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
293 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
294 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
295 	}
296 	cpumask_andnot(housekeeping_mask,
297 		       cpu_possible_mask, tick_nohz_full_mask);
298 	tick_nohz_full_running = true;
299 
300 	return 1;
301 }
302 __setup("nohz_full=", tick_nohz_full_setup);
303 
304 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
305 						 unsigned long action,
306 						 void *hcpu)
307 {
308 	unsigned int cpu = (unsigned long)hcpu;
309 
310 	switch (action & ~CPU_TASKS_FROZEN) {
311 	case CPU_DOWN_PREPARE:
312 		/*
313 		 * If we handle the timekeeping duty for full dynticks CPUs,
314 		 * we can't safely shutdown that CPU.
315 		 */
316 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
317 			return NOTIFY_BAD;
318 		break;
319 	}
320 	return NOTIFY_OK;
321 }
322 
323 /*
324  * Worst case string length in chunks of CPU range seems 2 steps
325  * separations: 0,2,4,6,...
326  * This is NR_CPUS + sizeof('\0')
327  */
328 static char __initdata nohz_full_buf[NR_CPUS + 1];
329 
330 static int tick_nohz_init_all(void)
331 {
332 	int err = -1;
333 
334 #ifdef CONFIG_NO_HZ_FULL_ALL
335 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
336 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
337 		return err;
338 	}
339 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
340 		pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n");
341 		return err;
342 	}
343 	err = 0;
344 	cpumask_setall(tick_nohz_full_mask);
345 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
346 	cpumask_clear(housekeeping_mask);
347 	cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
348 	tick_nohz_full_running = true;
349 #endif
350 	return err;
351 }
352 
353 void __init tick_nohz_init(void)
354 {
355 	int cpu;
356 
357 	if (!tick_nohz_full_running) {
358 		if (tick_nohz_init_all() < 0)
359 			return;
360 	}
361 
362 	for_each_cpu(cpu, tick_nohz_full_mask)
363 		context_tracking_cpu_set(cpu);
364 
365 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
366 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
367 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
368 }
369 #endif
370 
371 /*
372  * NOHZ - aka dynamic tick functionality
373  */
374 #ifdef CONFIG_NO_HZ_COMMON
375 /*
376  * NO HZ enabled ?
377  */
378 static int tick_nohz_enabled __read_mostly  = 1;
379 int tick_nohz_active  __read_mostly;
380 /*
381  * Enable / Disable tickless mode
382  */
383 static int __init setup_tick_nohz(char *str)
384 {
385 	if (!strcmp(str, "off"))
386 		tick_nohz_enabled = 0;
387 	else if (!strcmp(str, "on"))
388 		tick_nohz_enabled = 1;
389 	else
390 		return 0;
391 	return 1;
392 }
393 
394 __setup("nohz=", setup_tick_nohz);
395 
396 /**
397  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
398  *
399  * Called from interrupt entry when the CPU was idle
400  *
401  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
402  * must be updated. Otherwise an interrupt handler could use a stale jiffy
403  * value. We do this unconditionally on any cpu, as we don't know whether the
404  * cpu, which has the update task assigned is in a long sleep.
405  */
406 static void tick_nohz_update_jiffies(ktime_t now)
407 {
408 	unsigned long flags;
409 
410 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
411 
412 	local_irq_save(flags);
413 	tick_do_update_jiffies64(now);
414 	local_irq_restore(flags);
415 
416 	touch_softlockup_watchdog();
417 }
418 
419 /*
420  * Updates the per cpu time idle statistics counters
421  */
422 static void
423 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
424 {
425 	ktime_t delta;
426 
427 	if (ts->idle_active) {
428 		delta = ktime_sub(now, ts->idle_entrytime);
429 		if (nr_iowait_cpu(cpu) > 0)
430 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
431 		else
432 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
433 		ts->idle_entrytime = now;
434 	}
435 
436 	if (last_update_time)
437 		*last_update_time = ktime_to_us(now);
438 
439 }
440 
441 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
442 {
443 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
444 	ts->idle_active = 0;
445 
446 	sched_clock_idle_wakeup_event(0);
447 }
448 
449 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
450 {
451 	ktime_t now = ktime_get();
452 
453 	ts->idle_entrytime = now;
454 	ts->idle_active = 1;
455 	sched_clock_idle_sleep_event();
456 	return now;
457 }
458 
459 /**
460  * get_cpu_idle_time_us - get the total idle time of a cpu
461  * @cpu: CPU number to query
462  * @last_update_time: variable to store update time in. Do not update
463  * counters if NULL.
464  *
465  * Return the cummulative idle time (since boot) for a given
466  * CPU, in microseconds.
467  *
468  * This time is measured via accounting rather than sampling,
469  * and is as accurate as ktime_get() is.
470  *
471  * This function returns -1 if NOHZ is not enabled.
472  */
473 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
474 {
475 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
476 	ktime_t now, idle;
477 
478 	if (!tick_nohz_active)
479 		return -1;
480 
481 	now = ktime_get();
482 	if (last_update_time) {
483 		update_ts_time_stats(cpu, ts, now, last_update_time);
484 		idle = ts->idle_sleeptime;
485 	} else {
486 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
487 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
488 
489 			idle = ktime_add(ts->idle_sleeptime, delta);
490 		} else {
491 			idle = ts->idle_sleeptime;
492 		}
493 	}
494 
495 	return ktime_to_us(idle);
496 
497 }
498 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
499 
500 /**
501  * get_cpu_iowait_time_us - get the total iowait time of a cpu
502  * @cpu: CPU number to query
503  * @last_update_time: variable to store update time in. Do not update
504  * counters if NULL.
505  *
506  * Return the cummulative iowait time (since boot) for a given
507  * CPU, in microseconds.
508  *
509  * This time is measured via accounting rather than sampling,
510  * and is as accurate as ktime_get() is.
511  *
512  * This function returns -1 if NOHZ is not enabled.
513  */
514 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
515 {
516 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
517 	ktime_t now, iowait;
518 
519 	if (!tick_nohz_active)
520 		return -1;
521 
522 	now = ktime_get();
523 	if (last_update_time) {
524 		update_ts_time_stats(cpu, ts, now, last_update_time);
525 		iowait = ts->iowait_sleeptime;
526 	} else {
527 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
528 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
529 
530 			iowait = ktime_add(ts->iowait_sleeptime, delta);
531 		} else {
532 			iowait = ts->iowait_sleeptime;
533 		}
534 	}
535 
536 	return ktime_to_us(iowait);
537 }
538 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
539 
540 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
541 					 ktime_t now, int cpu)
542 {
543 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
544 	ktime_t last_update, expires, ret = { .tv64 = 0 };
545 	unsigned long rcu_delta_jiffies;
546 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
547 	u64 time_delta;
548 
549 	time_delta = timekeeping_max_deferment();
550 
551 	/* Read jiffies and the time when jiffies were updated last */
552 	do {
553 		seq = read_seqbegin(&jiffies_lock);
554 		last_update = last_jiffies_update;
555 		last_jiffies = jiffies;
556 	} while (read_seqretry(&jiffies_lock, seq));
557 
558 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
559 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
560 		next_jiffies = last_jiffies + 1;
561 		delta_jiffies = 1;
562 	} else {
563 		/* Get the next timer wheel timer */
564 		next_jiffies = get_next_timer_interrupt(last_jiffies);
565 		delta_jiffies = next_jiffies - last_jiffies;
566 		if (rcu_delta_jiffies < delta_jiffies) {
567 			next_jiffies = last_jiffies + rcu_delta_jiffies;
568 			delta_jiffies = rcu_delta_jiffies;
569 		}
570 	}
571 
572 	/*
573 	 * Do not stop the tick, if we are only one off (or less)
574 	 * or if the cpu is required for RCU:
575 	 */
576 	if (!ts->tick_stopped && delta_jiffies <= 1)
577 		goto out;
578 
579 	/* Schedule the tick, if we are at least one jiffie off */
580 	if ((long)delta_jiffies >= 1) {
581 
582 		/*
583 		 * If this cpu is the one which updates jiffies, then
584 		 * give up the assignment and let it be taken by the
585 		 * cpu which runs the tick timer next, which might be
586 		 * this cpu as well. If we don't drop this here the
587 		 * jiffies might be stale and do_timer() never
588 		 * invoked. Keep track of the fact that it was the one
589 		 * which had the do_timer() duty last. If this cpu is
590 		 * the one which had the do_timer() duty last, we
591 		 * limit the sleep time to the timekeeping
592 		 * max_deferement value which we retrieved
593 		 * above. Otherwise we can sleep as long as we want.
594 		 */
595 		if (cpu == tick_do_timer_cpu) {
596 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
597 			ts->do_timer_last = 1;
598 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
599 			time_delta = KTIME_MAX;
600 			ts->do_timer_last = 0;
601 		} else if (!ts->do_timer_last) {
602 			time_delta = KTIME_MAX;
603 		}
604 
605 #ifdef CONFIG_NO_HZ_FULL
606 		if (!ts->inidle) {
607 			time_delta = min(time_delta,
608 					 scheduler_tick_max_deferment());
609 		}
610 #endif
611 
612 		/*
613 		 * calculate the expiry time for the next timer wheel
614 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
615 		 * that there is no timer pending or at least extremely
616 		 * far into the future (12 days for HZ=1000). In this
617 		 * case we set the expiry to the end of time.
618 		 */
619 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
620 			/*
621 			 * Calculate the time delta for the next timer event.
622 			 * If the time delta exceeds the maximum time delta
623 			 * permitted by the current clocksource then adjust
624 			 * the time delta accordingly to ensure the
625 			 * clocksource does not wrap.
626 			 */
627 			time_delta = min_t(u64, time_delta,
628 					   tick_period.tv64 * delta_jiffies);
629 		}
630 
631 		if (time_delta < KTIME_MAX)
632 			expires = ktime_add_ns(last_update, time_delta);
633 		else
634 			expires.tv64 = KTIME_MAX;
635 
636 		/* Skip reprogram of event if its not changed */
637 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
638 			goto out;
639 
640 		ret = expires;
641 
642 		/*
643 		 * nohz_stop_sched_tick can be called several times before
644 		 * the nohz_restart_sched_tick is called. This happens when
645 		 * interrupts arrive which do not cause a reschedule. In the
646 		 * first call we save the current tick time, so we can restart
647 		 * the scheduler tick in nohz_restart_sched_tick.
648 		 */
649 		if (!ts->tick_stopped) {
650 			nohz_balance_enter_idle(cpu);
651 			calc_load_enter_idle();
652 
653 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
654 			ts->tick_stopped = 1;
655 			trace_tick_stop(1, " ");
656 		}
657 
658 		/*
659 		 * If the expiration time == KTIME_MAX, then
660 		 * in this case we simply stop the tick timer.
661 		 */
662 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
663 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
664 				hrtimer_cancel(&ts->sched_timer);
665 			goto out;
666 		}
667 
668 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
669 			hrtimer_start(&ts->sched_timer, expires,
670 				      HRTIMER_MODE_ABS_PINNED);
671 			/* Check, if the timer was already in the past */
672 			if (hrtimer_active(&ts->sched_timer))
673 				goto out;
674 		} else if (!tick_program_event(expires, 0))
675 				goto out;
676 		/*
677 		 * We are past the event already. So we crossed a
678 		 * jiffie boundary. Update jiffies and raise the
679 		 * softirq.
680 		 */
681 		tick_do_update_jiffies64(ktime_get());
682 	}
683 	raise_softirq_irqoff(TIMER_SOFTIRQ);
684 out:
685 	ts->next_jiffies = next_jiffies;
686 	ts->last_jiffies = last_jiffies;
687 	ts->sleep_length = ktime_sub(dev->next_event, now);
688 
689 	return ret;
690 }
691 
692 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
693 {
694 #ifdef CONFIG_NO_HZ_FULL
695 	int cpu = smp_processor_id();
696 
697 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
698 		return;
699 
700 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
701 		return;
702 
703 	if (!can_stop_full_tick())
704 		return;
705 
706 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
707 #endif
708 }
709 
710 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
711 {
712 	/*
713 	 * If this cpu is offline and it is the one which updates
714 	 * jiffies, then give up the assignment and let it be taken by
715 	 * the cpu which runs the tick timer next. If we don't drop
716 	 * this here the jiffies might be stale and do_timer() never
717 	 * invoked.
718 	 */
719 	if (unlikely(!cpu_online(cpu))) {
720 		if (cpu == tick_do_timer_cpu)
721 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
722 		return false;
723 	}
724 
725 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
726 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
727 		return false;
728 	}
729 
730 	if (need_resched())
731 		return false;
732 
733 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
734 		static int ratelimit;
735 
736 		if (ratelimit < 10 &&
737 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
738 			pr_warn("NOHZ: local_softirq_pending %02x\n",
739 				(unsigned int) local_softirq_pending());
740 			ratelimit++;
741 		}
742 		return false;
743 	}
744 
745 	if (tick_nohz_full_enabled()) {
746 		/*
747 		 * Keep the tick alive to guarantee timekeeping progression
748 		 * if there are full dynticks CPUs around
749 		 */
750 		if (tick_do_timer_cpu == cpu)
751 			return false;
752 		/*
753 		 * Boot safety: make sure the timekeeping duty has been
754 		 * assigned before entering dyntick-idle mode,
755 		 */
756 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
757 			return false;
758 	}
759 
760 	return true;
761 }
762 
763 static void __tick_nohz_idle_enter(struct tick_sched *ts)
764 {
765 	ktime_t now, expires;
766 	int cpu = smp_processor_id();
767 
768 	now = tick_nohz_start_idle(ts);
769 
770 	if (can_stop_idle_tick(cpu, ts)) {
771 		int was_stopped = ts->tick_stopped;
772 
773 		ts->idle_calls++;
774 
775 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
776 		if (expires.tv64 > 0LL) {
777 			ts->idle_sleeps++;
778 			ts->idle_expires = expires;
779 		}
780 
781 		if (!was_stopped && ts->tick_stopped)
782 			ts->idle_jiffies = ts->last_jiffies;
783 	}
784 }
785 
786 /**
787  * tick_nohz_idle_enter - stop the idle tick from the idle task
788  *
789  * When the next event is more than a tick into the future, stop the idle tick
790  * Called when we start the idle loop.
791  *
792  * The arch is responsible of calling:
793  *
794  * - rcu_idle_enter() after its last use of RCU before the CPU is put
795  *  to sleep.
796  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
797  */
798 void tick_nohz_idle_enter(void)
799 {
800 	struct tick_sched *ts;
801 
802 	WARN_ON_ONCE(irqs_disabled());
803 
804 	/*
805  	 * Update the idle state in the scheduler domain hierarchy
806  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
807  	 * State will be updated to busy during the first busy tick after
808  	 * exiting idle.
809  	 */
810 	set_cpu_sd_state_idle();
811 
812 	local_irq_disable();
813 
814 	ts = &__get_cpu_var(tick_cpu_sched);
815 	ts->inidle = 1;
816 	__tick_nohz_idle_enter(ts);
817 
818 	local_irq_enable();
819 }
820 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
821 
822 /**
823  * tick_nohz_irq_exit - update next tick event from interrupt exit
824  *
825  * When an interrupt fires while we are idle and it doesn't cause
826  * a reschedule, it may still add, modify or delete a timer, enqueue
827  * an RCU callback, etc...
828  * So we need to re-calculate and reprogram the next tick event.
829  */
830 void tick_nohz_irq_exit(void)
831 {
832 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
833 
834 	if (ts->inidle)
835 		__tick_nohz_idle_enter(ts);
836 	else
837 		tick_nohz_full_stop_tick(ts);
838 }
839 
840 /**
841  * tick_nohz_get_sleep_length - return the length of the current sleep
842  *
843  * Called from power state control code with interrupts disabled
844  */
845 ktime_t tick_nohz_get_sleep_length(void)
846 {
847 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
848 
849 	return ts->sleep_length;
850 }
851 
852 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
853 {
854 	hrtimer_cancel(&ts->sched_timer);
855 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
856 
857 	while (1) {
858 		/* Forward the time to expire in the future */
859 		hrtimer_forward(&ts->sched_timer, now, tick_period);
860 
861 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
862 			hrtimer_start_expires(&ts->sched_timer,
863 					      HRTIMER_MODE_ABS_PINNED);
864 			/* Check, if the timer was already in the past */
865 			if (hrtimer_active(&ts->sched_timer))
866 				break;
867 		} else {
868 			if (!tick_program_event(
869 				hrtimer_get_expires(&ts->sched_timer), 0))
870 				break;
871 		}
872 		/* Reread time and update jiffies */
873 		now = ktime_get();
874 		tick_do_update_jiffies64(now);
875 	}
876 }
877 
878 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
879 {
880 	/* Update jiffies first */
881 	tick_do_update_jiffies64(now);
882 	update_cpu_load_nohz();
883 
884 	calc_load_exit_idle();
885 	touch_softlockup_watchdog();
886 	/*
887 	 * Cancel the scheduled timer and restore the tick
888 	 */
889 	ts->tick_stopped  = 0;
890 	ts->idle_exittime = now;
891 
892 	tick_nohz_restart(ts, now);
893 }
894 
895 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
896 {
897 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
898 	unsigned long ticks;
899 
900 	if (vtime_accounting_enabled())
901 		return;
902 	/*
903 	 * We stopped the tick in idle. Update process times would miss the
904 	 * time we slept as update_process_times does only a 1 tick
905 	 * accounting. Enforce that this is accounted to idle !
906 	 */
907 	ticks = jiffies - ts->idle_jiffies;
908 	/*
909 	 * We might be one off. Do not randomly account a huge number of ticks!
910 	 */
911 	if (ticks && ticks < LONG_MAX)
912 		account_idle_ticks(ticks);
913 #endif
914 }
915 
916 /**
917  * tick_nohz_idle_exit - restart the idle tick from the idle task
918  *
919  * Restart the idle tick when the CPU is woken up from idle
920  * This also exit the RCU extended quiescent state. The CPU
921  * can use RCU again after this function is called.
922  */
923 void tick_nohz_idle_exit(void)
924 {
925 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
926 	ktime_t now;
927 
928 	local_irq_disable();
929 
930 	WARN_ON_ONCE(!ts->inidle);
931 
932 	ts->inidle = 0;
933 
934 	if (ts->idle_active || ts->tick_stopped)
935 		now = ktime_get();
936 
937 	if (ts->idle_active)
938 		tick_nohz_stop_idle(ts, now);
939 
940 	if (ts->tick_stopped) {
941 		tick_nohz_restart_sched_tick(ts, now);
942 		tick_nohz_account_idle_ticks(ts);
943 	}
944 
945 	local_irq_enable();
946 }
947 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
948 
949 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
950 {
951 	hrtimer_forward(&ts->sched_timer, now, tick_period);
952 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
953 }
954 
955 /*
956  * The nohz low res interrupt handler
957  */
958 static void tick_nohz_handler(struct clock_event_device *dev)
959 {
960 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
961 	struct pt_regs *regs = get_irq_regs();
962 	ktime_t now = ktime_get();
963 
964 	dev->next_event.tv64 = KTIME_MAX;
965 
966 	tick_sched_do_timer(now);
967 	tick_sched_handle(ts, regs);
968 
969 	while (tick_nohz_reprogram(ts, now)) {
970 		now = ktime_get();
971 		tick_do_update_jiffies64(now);
972 	}
973 }
974 
975 /**
976  * tick_nohz_switch_to_nohz - switch to nohz mode
977  */
978 static void tick_nohz_switch_to_nohz(void)
979 {
980 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
981 	ktime_t next;
982 
983 	if (!tick_nohz_enabled)
984 		return;
985 
986 	local_irq_disable();
987 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
988 		local_irq_enable();
989 		return;
990 	}
991 	tick_nohz_active = 1;
992 	ts->nohz_mode = NOHZ_MODE_LOWRES;
993 
994 	/*
995 	 * Recycle the hrtimer in ts, so we can share the
996 	 * hrtimer_forward with the highres code.
997 	 */
998 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
999 	/* Get the next period */
1000 	next = tick_init_jiffy_update();
1001 
1002 	for (;;) {
1003 		hrtimer_set_expires(&ts->sched_timer, next);
1004 		if (!tick_program_event(next, 0))
1005 			break;
1006 		next = ktime_add(next, tick_period);
1007 	}
1008 	local_irq_enable();
1009 }
1010 
1011 /*
1012  * When NOHZ is enabled and the tick is stopped, we need to kick the
1013  * tick timer from irq_enter() so that the jiffies update is kept
1014  * alive during long running softirqs. That's ugly as hell, but
1015  * correctness is key even if we need to fix the offending softirq in
1016  * the first place.
1017  *
1018  * Note, this is different to tick_nohz_restart. We just kick the
1019  * timer and do not touch the other magic bits which need to be done
1020  * when idle is left.
1021  */
1022 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1023 {
1024 #if 0
1025 	/* Switch back to 2.6.27 behaviour */
1026 	ktime_t delta;
1027 
1028 	/*
1029 	 * Do not touch the tick device, when the next expiry is either
1030 	 * already reached or less/equal than the tick period.
1031 	 */
1032 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1033 	if (delta.tv64 <= tick_period.tv64)
1034 		return;
1035 
1036 	tick_nohz_restart(ts, now);
1037 #endif
1038 }
1039 
1040 static inline void tick_nohz_irq_enter(void)
1041 {
1042 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1043 	ktime_t now;
1044 
1045 	if (!ts->idle_active && !ts->tick_stopped)
1046 		return;
1047 	now = ktime_get();
1048 	if (ts->idle_active)
1049 		tick_nohz_stop_idle(ts, now);
1050 	if (ts->tick_stopped) {
1051 		tick_nohz_update_jiffies(now);
1052 		tick_nohz_kick_tick(ts, now);
1053 	}
1054 }
1055 
1056 #else
1057 
1058 static inline void tick_nohz_switch_to_nohz(void) { }
1059 static inline void tick_nohz_irq_enter(void) { }
1060 
1061 #endif /* CONFIG_NO_HZ_COMMON */
1062 
1063 /*
1064  * Called from irq_enter to notify about the possible interruption of idle()
1065  */
1066 void tick_irq_enter(void)
1067 {
1068 	tick_check_oneshot_broadcast_this_cpu();
1069 	tick_nohz_irq_enter();
1070 }
1071 
1072 /*
1073  * High resolution timer specific code
1074  */
1075 #ifdef CONFIG_HIGH_RES_TIMERS
1076 /*
1077  * We rearm the timer until we get disabled by the idle code.
1078  * Called with interrupts disabled.
1079  */
1080 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1081 {
1082 	struct tick_sched *ts =
1083 		container_of(timer, struct tick_sched, sched_timer);
1084 	struct pt_regs *regs = get_irq_regs();
1085 	ktime_t now = ktime_get();
1086 
1087 	tick_sched_do_timer(now);
1088 
1089 	/*
1090 	 * Do not call, when we are not in irq context and have
1091 	 * no valid regs pointer
1092 	 */
1093 	if (regs)
1094 		tick_sched_handle(ts, regs);
1095 
1096 	hrtimer_forward(timer, now, tick_period);
1097 
1098 	return HRTIMER_RESTART;
1099 }
1100 
1101 static int sched_skew_tick;
1102 
1103 static int __init skew_tick(char *str)
1104 {
1105 	get_option(&str, &sched_skew_tick);
1106 
1107 	return 0;
1108 }
1109 early_param("skew_tick", skew_tick);
1110 
1111 /**
1112  * tick_setup_sched_timer - setup the tick emulation timer
1113  */
1114 void tick_setup_sched_timer(void)
1115 {
1116 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1117 	ktime_t now = ktime_get();
1118 
1119 	/*
1120 	 * Emulate tick processing via per-CPU hrtimers:
1121 	 */
1122 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1123 	ts->sched_timer.function = tick_sched_timer;
1124 
1125 	/* Get the next period (per cpu) */
1126 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1127 
1128 	/* Offset the tick to avert jiffies_lock contention. */
1129 	if (sched_skew_tick) {
1130 		u64 offset = ktime_to_ns(tick_period) >> 1;
1131 		do_div(offset, num_possible_cpus());
1132 		offset *= smp_processor_id();
1133 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1134 	}
1135 
1136 	for (;;) {
1137 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1138 		hrtimer_start_expires(&ts->sched_timer,
1139 				      HRTIMER_MODE_ABS_PINNED);
1140 		/* Check, if the timer was already in the past */
1141 		if (hrtimer_active(&ts->sched_timer))
1142 			break;
1143 		now = ktime_get();
1144 	}
1145 
1146 #ifdef CONFIG_NO_HZ_COMMON
1147 	if (tick_nohz_enabled) {
1148 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1149 		tick_nohz_active = 1;
1150 	}
1151 #endif
1152 }
1153 #endif /* HIGH_RES_TIMERS */
1154 
1155 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1156 void tick_cancel_sched_timer(int cpu)
1157 {
1158 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1159 
1160 # ifdef CONFIG_HIGH_RES_TIMERS
1161 	if (ts->sched_timer.base)
1162 		hrtimer_cancel(&ts->sched_timer);
1163 # endif
1164 
1165 	memset(ts, 0, sizeof(*ts));
1166 }
1167 #endif
1168 
1169 /**
1170  * Async notification about clocksource changes
1171  */
1172 void tick_clock_notify(void)
1173 {
1174 	int cpu;
1175 
1176 	for_each_possible_cpu(cpu)
1177 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1178 }
1179 
1180 /*
1181  * Async notification about clock event changes
1182  */
1183 void tick_oneshot_notify(void)
1184 {
1185 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1186 
1187 	set_bit(0, &ts->check_clocks);
1188 }
1189 
1190 /**
1191  * Check, if a change happened, which makes oneshot possible.
1192  *
1193  * Called cyclic from the hrtimer softirq (driven by the timer
1194  * softirq) allow_nohz signals, that we can switch into low-res nohz
1195  * mode, because high resolution timers are disabled (either compile
1196  * or runtime).
1197  */
1198 int tick_check_oneshot_change(int allow_nohz)
1199 {
1200 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1201 
1202 	if (!test_and_clear_bit(0, &ts->check_clocks))
1203 		return 0;
1204 
1205 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1206 		return 0;
1207 
1208 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1209 		return 0;
1210 
1211 	if (!allow_nohz)
1212 		return 1;
1213 
1214 	tick_nohz_switch_to_nohz();
1215 	return 0;
1216 }
1217