xref: /openbmc/linux/kernel/time/tick-sched.c (revision b7878300)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static unsigned long tick_dep_mask;
161 
162 static void trace_tick_dependency(unsigned long dep)
163 {
164 	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 		return;
167 	}
168 
169 	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 		return;
172 	}
173 
174 	if (dep & TICK_DEP_MASK_SCHED) {
175 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 		return;
177 	}
178 
179 	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 }
182 
183 static bool can_stop_full_tick(struct tick_sched *ts)
184 {
185 	WARN_ON_ONCE(!irqs_disabled());
186 
187 	if (tick_dep_mask) {
188 		trace_tick_dependency(tick_dep_mask);
189 		return false;
190 	}
191 
192 	if (ts->tick_dep_mask) {
193 		trace_tick_dependency(ts->tick_dep_mask);
194 		return false;
195 	}
196 
197 	if (current->tick_dep_mask) {
198 		trace_tick_dependency(current->tick_dep_mask);
199 		return false;
200 	}
201 
202 	if (current->signal->tick_dep_mask) {
203 		trace_tick_dependency(current->signal->tick_dep_mask);
204 		return false;
205 	}
206 
207 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
208 	/*
209 	 * sched_clock_tick() needs us?
210 	 *
211 	 * TODO: kick full dynticks CPUs when
212 	 * sched_clock_stable is set.
213 	 */
214 	if (!sched_clock_stable()) {
215 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
216 		/*
217 		 * Don't allow the user to think they can get
218 		 * full NO_HZ with this machine.
219 		 */
220 		WARN_ONCE(tick_nohz_full_running,
221 			  "NO_HZ FULL will not work with unstable sched clock");
222 		return false;
223 	}
224 #endif
225 
226 	return true;
227 }
228 
229 static void nohz_full_kick_func(struct irq_work *work)
230 {
231 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
232 }
233 
234 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
235 	.func = nohz_full_kick_func,
236 };
237 
238 /*
239  * Kick this CPU if it's full dynticks in order to force it to
240  * re-evaluate its dependency on the tick and restart it if necessary.
241  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
242  * is NMI safe.
243  */
244 static void tick_nohz_full_kick(void)
245 {
246 	if (!tick_nohz_full_cpu(smp_processor_id()))
247 		return;
248 
249 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
250 }
251 
252 /*
253  * Kick the CPU if it's full dynticks in order to force it to
254  * re-evaluate its dependency on the tick and restart it if necessary.
255  */
256 void tick_nohz_full_kick_cpu(int cpu)
257 {
258 	if (!tick_nohz_full_cpu(cpu))
259 		return;
260 
261 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
262 }
263 
264 /*
265  * Kick all full dynticks CPUs in order to force these to re-evaluate
266  * their dependency on the tick and restart it if necessary.
267  */
268 static void tick_nohz_full_kick_all(void)
269 {
270 	int cpu;
271 
272 	if (!tick_nohz_full_running)
273 		return;
274 
275 	preempt_disable();
276 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
277 		tick_nohz_full_kick_cpu(cpu);
278 	preempt_enable();
279 }
280 
281 static void tick_nohz_dep_set_all(unsigned long *dep,
282 				  enum tick_dep_bits bit)
283 {
284 	unsigned long prev;
285 
286 	prev = fetch_or(dep, BIT_MASK(bit));
287 	if (!prev)
288 		tick_nohz_full_kick_all();
289 }
290 
291 /*
292  * Set a global tick dependency. Used by perf events that rely on freq and
293  * by unstable clock.
294  */
295 void tick_nohz_dep_set(enum tick_dep_bits bit)
296 {
297 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
298 }
299 
300 void tick_nohz_dep_clear(enum tick_dep_bits bit)
301 {
302 	clear_bit(bit, &tick_dep_mask);
303 }
304 
305 /*
306  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
307  * manage events throttling.
308  */
309 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
310 {
311 	unsigned long prev;
312 	struct tick_sched *ts;
313 
314 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
315 
316 	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
317 	if (!prev) {
318 		preempt_disable();
319 		/* Perf needs local kick that is NMI safe */
320 		if (cpu == smp_processor_id()) {
321 			tick_nohz_full_kick();
322 		} else {
323 			/* Remote irq work not NMI-safe */
324 			if (!WARN_ON_ONCE(in_nmi()))
325 				tick_nohz_full_kick_cpu(cpu);
326 		}
327 		preempt_enable();
328 	}
329 }
330 
331 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
332 {
333 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
334 
335 	clear_bit(bit, &ts->tick_dep_mask);
336 }
337 
338 /*
339  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
340  * per task timers.
341  */
342 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
343 {
344 	/*
345 	 * We could optimize this with just kicking the target running the task
346 	 * if that noise matters for nohz full users.
347 	 */
348 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
349 }
350 
351 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
352 {
353 	clear_bit(bit, &tsk->tick_dep_mask);
354 }
355 
356 /*
357  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
358  * per process timers.
359  */
360 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
361 {
362 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
363 }
364 
365 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
366 {
367 	clear_bit(bit, &sig->tick_dep_mask);
368 }
369 
370 /*
371  * Re-evaluate the need for the tick as we switch the current task.
372  * It might need the tick due to per task/process properties:
373  * perf events, posix cpu timers, ...
374  */
375 void __tick_nohz_task_switch(void)
376 {
377 	unsigned long flags;
378 	struct tick_sched *ts;
379 
380 	local_irq_save(flags);
381 
382 	if (!tick_nohz_full_cpu(smp_processor_id()))
383 		goto out;
384 
385 	ts = this_cpu_ptr(&tick_cpu_sched);
386 
387 	if (ts->tick_stopped) {
388 		if (current->tick_dep_mask || current->signal->tick_dep_mask)
389 			tick_nohz_full_kick();
390 	}
391 out:
392 	local_irq_restore(flags);
393 }
394 
395 /* Parse the boot-time nohz CPU list from the kernel parameters. */
396 static int __init tick_nohz_full_setup(char *str)
397 {
398 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
399 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
400 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
401 		free_bootmem_cpumask_var(tick_nohz_full_mask);
402 		return 1;
403 	}
404 	tick_nohz_full_running = true;
405 
406 	return 1;
407 }
408 __setup("nohz_full=", tick_nohz_full_setup);
409 
410 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
411 				       unsigned long action,
412 				       void *hcpu)
413 {
414 	unsigned int cpu = (unsigned long)hcpu;
415 
416 	switch (action & ~CPU_TASKS_FROZEN) {
417 	case CPU_DOWN_PREPARE:
418 		/*
419 		 * The boot CPU handles housekeeping duty (unbound timers,
420 		 * workqueues, timekeeping, ...) on behalf of full dynticks
421 		 * CPUs. It must remain online when nohz full is enabled.
422 		 */
423 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
424 			return NOTIFY_BAD;
425 		break;
426 	}
427 	return NOTIFY_OK;
428 }
429 
430 static int tick_nohz_init_all(void)
431 {
432 	int err = -1;
433 
434 #ifdef CONFIG_NO_HZ_FULL_ALL
435 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
436 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
437 		return err;
438 	}
439 	err = 0;
440 	cpumask_setall(tick_nohz_full_mask);
441 	tick_nohz_full_running = true;
442 #endif
443 	return err;
444 }
445 
446 void __init tick_nohz_init(void)
447 {
448 	int cpu;
449 
450 	if (!tick_nohz_full_running) {
451 		if (tick_nohz_init_all() < 0)
452 			return;
453 	}
454 
455 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
456 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
457 		cpumask_clear(tick_nohz_full_mask);
458 		tick_nohz_full_running = false;
459 		return;
460 	}
461 
462 	/*
463 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
464 	 * locking contexts. But then we need irq work to raise its own
465 	 * interrupts to avoid circular dependency on the tick
466 	 */
467 	if (!arch_irq_work_has_interrupt()) {
468 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
469 			   "support irq work self-IPIs\n");
470 		cpumask_clear(tick_nohz_full_mask);
471 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
472 		tick_nohz_full_running = false;
473 		return;
474 	}
475 
476 	cpu = smp_processor_id();
477 
478 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
479 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
480 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
481 	}
482 
483 	cpumask_andnot(housekeeping_mask,
484 		       cpu_possible_mask, tick_nohz_full_mask);
485 
486 	for_each_cpu(cpu, tick_nohz_full_mask)
487 		context_tracking_cpu_set(cpu);
488 
489 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
490 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
491 		cpumask_pr_args(tick_nohz_full_mask));
492 
493 	/*
494 	 * We need at least one CPU to handle housekeeping work such
495 	 * as timekeeping, unbound timers, workqueues, ...
496 	 */
497 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
498 }
499 #endif
500 
501 /*
502  * NOHZ - aka dynamic tick functionality
503  */
504 #ifdef CONFIG_NO_HZ_COMMON
505 /*
506  * NO HZ enabled ?
507  */
508 int tick_nohz_enabled __read_mostly = 1;
509 unsigned long tick_nohz_active  __read_mostly;
510 /*
511  * Enable / Disable tickless mode
512  */
513 static int __init setup_tick_nohz(char *str)
514 {
515 	if (!strcmp(str, "off"))
516 		tick_nohz_enabled = 0;
517 	else if (!strcmp(str, "on"))
518 		tick_nohz_enabled = 1;
519 	else
520 		return 0;
521 	return 1;
522 }
523 
524 __setup("nohz=", setup_tick_nohz);
525 
526 int tick_nohz_tick_stopped(void)
527 {
528 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
529 }
530 
531 /**
532  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
533  *
534  * Called from interrupt entry when the CPU was idle
535  *
536  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
537  * must be updated. Otherwise an interrupt handler could use a stale jiffy
538  * value. We do this unconditionally on any cpu, as we don't know whether the
539  * cpu, which has the update task assigned is in a long sleep.
540  */
541 static void tick_nohz_update_jiffies(ktime_t now)
542 {
543 	unsigned long flags;
544 
545 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
546 
547 	local_irq_save(flags);
548 	tick_do_update_jiffies64(now);
549 	local_irq_restore(flags);
550 
551 	touch_softlockup_watchdog_sched();
552 }
553 
554 /*
555  * Updates the per cpu time idle statistics counters
556  */
557 static void
558 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
559 {
560 	ktime_t delta;
561 
562 	if (ts->idle_active) {
563 		delta = ktime_sub(now, ts->idle_entrytime);
564 		if (nr_iowait_cpu(cpu) > 0)
565 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
566 		else
567 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
568 		ts->idle_entrytime = now;
569 	}
570 
571 	if (last_update_time)
572 		*last_update_time = ktime_to_us(now);
573 
574 }
575 
576 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
577 {
578 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
579 	ts->idle_active = 0;
580 
581 	sched_clock_idle_wakeup_event(0);
582 }
583 
584 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
585 {
586 	ktime_t now = ktime_get();
587 
588 	ts->idle_entrytime = now;
589 	ts->idle_active = 1;
590 	sched_clock_idle_sleep_event();
591 	return now;
592 }
593 
594 /**
595  * get_cpu_idle_time_us - get the total idle time of a cpu
596  * @cpu: CPU number to query
597  * @last_update_time: variable to store update time in. Do not update
598  * counters if NULL.
599  *
600  * Return the cummulative idle time (since boot) for a given
601  * CPU, in microseconds.
602  *
603  * This time is measured via accounting rather than sampling,
604  * and is as accurate as ktime_get() is.
605  *
606  * This function returns -1 if NOHZ is not enabled.
607  */
608 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
609 {
610 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
611 	ktime_t now, idle;
612 
613 	if (!tick_nohz_active)
614 		return -1;
615 
616 	now = ktime_get();
617 	if (last_update_time) {
618 		update_ts_time_stats(cpu, ts, now, last_update_time);
619 		idle = ts->idle_sleeptime;
620 	} else {
621 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
622 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
623 
624 			idle = ktime_add(ts->idle_sleeptime, delta);
625 		} else {
626 			idle = ts->idle_sleeptime;
627 		}
628 	}
629 
630 	return ktime_to_us(idle);
631 
632 }
633 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
634 
635 /**
636  * get_cpu_iowait_time_us - get the total iowait time of a cpu
637  * @cpu: CPU number to query
638  * @last_update_time: variable to store update time in. Do not update
639  * counters if NULL.
640  *
641  * Return the cummulative iowait time (since boot) for a given
642  * CPU, in microseconds.
643  *
644  * This time is measured via accounting rather than sampling,
645  * and is as accurate as ktime_get() is.
646  *
647  * This function returns -1 if NOHZ is not enabled.
648  */
649 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
650 {
651 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
652 	ktime_t now, iowait;
653 
654 	if (!tick_nohz_active)
655 		return -1;
656 
657 	now = ktime_get();
658 	if (last_update_time) {
659 		update_ts_time_stats(cpu, ts, now, last_update_time);
660 		iowait = ts->iowait_sleeptime;
661 	} else {
662 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
663 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
664 
665 			iowait = ktime_add(ts->iowait_sleeptime, delta);
666 		} else {
667 			iowait = ts->iowait_sleeptime;
668 		}
669 	}
670 
671 	return ktime_to_us(iowait);
672 }
673 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
674 
675 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
676 {
677 	hrtimer_cancel(&ts->sched_timer);
678 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
679 
680 	/* Forward the time to expire in the future */
681 	hrtimer_forward(&ts->sched_timer, now, tick_period);
682 
683 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
684 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
685 	else
686 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
687 }
688 
689 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
690 					 ktime_t now, int cpu)
691 {
692 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
693 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
694 	unsigned long seq, basejiff;
695 	ktime_t	tick;
696 
697 	/* Read jiffies and the time when jiffies were updated last */
698 	do {
699 		seq = read_seqbegin(&jiffies_lock);
700 		basemono = last_jiffies_update.tv64;
701 		basejiff = jiffies;
702 	} while (read_seqretry(&jiffies_lock, seq));
703 	ts->last_jiffies = basejiff;
704 
705 	if (rcu_needs_cpu(basemono, &next_rcu) ||
706 	    arch_needs_cpu() || irq_work_needs_cpu()) {
707 		next_tick = basemono + TICK_NSEC;
708 	} else {
709 		/*
710 		 * Get the next pending timer. If high resolution
711 		 * timers are enabled this only takes the timer wheel
712 		 * timers into account. If high resolution timers are
713 		 * disabled this also looks at the next expiring
714 		 * hrtimer.
715 		 */
716 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
717 		ts->next_timer = next_tmr;
718 		/* Take the next rcu event into account */
719 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
720 	}
721 
722 	/*
723 	 * If the tick is due in the next period, keep it ticking or
724 	 * force prod the timer.
725 	 */
726 	delta = next_tick - basemono;
727 	if (delta <= (u64)TICK_NSEC) {
728 		tick.tv64 = 0;
729 		/*
730 		 * We've not stopped the tick yet, and there's a timer in the
731 		 * next period, so no point in stopping it either, bail.
732 		 */
733 		if (!ts->tick_stopped)
734 			goto out;
735 
736 		/*
737 		 * If, OTOH, we did stop it, but there's a pending (expired)
738 		 * timer reprogram the timer hardware to fire now.
739 		 *
740 		 * We will not restart the tick proper, just prod the timer
741 		 * hardware into firing an interrupt to process the pending
742 		 * timers. Just like tick_irq_exit() will not restart the tick
743 		 * for 'normal' interrupts.
744 		 *
745 		 * Only once we exit the idle loop will we re-enable the tick,
746 		 * see tick_nohz_idle_exit().
747 		 */
748 		if (delta == 0) {
749 			tick_nohz_restart(ts, now);
750 			goto out;
751 		}
752 	}
753 
754 	/*
755 	 * If this cpu is the one which updates jiffies, then give up
756 	 * the assignment and let it be taken by the cpu which runs
757 	 * the tick timer next, which might be this cpu as well. If we
758 	 * don't drop this here the jiffies might be stale and
759 	 * do_timer() never invoked. Keep track of the fact that it
760 	 * was the one which had the do_timer() duty last. If this cpu
761 	 * is the one which had the do_timer() duty last, we limit the
762 	 * sleep time to the timekeeping max_deferement value.
763 	 * Otherwise we can sleep as long as we want.
764 	 */
765 	delta = timekeeping_max_deferment();
766 	if (cpu == tick_do_timer_cpu) {
767 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
768 		ts->do_timer_last = 1;
769 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
770 		delta = KTIME_MAX;
771 		ts->do_timer_last = 0;
772 	} else if (!ts->do_timer_last) {
773 		delta = KTIME_MAX;
774 	}
775 
776 #ifdef CONFIG_NO_HZ_FULL
777 	/* Limit the tick delta to the maximum scheduler deferment */
778 	if (!ts->inidle)
779 		delta = min(delta, scheduler_tick_max_deferment());
780 #endif
781 
782 	/* Calculate the next expiry time */
783 	if (delta < (KTIME_MAX - basemono))
784 		expires = basemono + delta;
785 	else
786 		expires = KTIME_MAX;
787 
788 	expires = min_t(u64, expires, next_tick);
789 	tick.tv64 = expires;
790 
791 	/* Skip reprogram of event if its not changed */
792 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
793 		goto out;
794 
795 	/*
796 	 * nohz_stop_sched_tick can be called several times before
797 	 * the nohz_restart_sched_tick is called. This happens when
798 	 * interrupts arrive which do not cause a reschedule. In the
799 	 * first call we save the current tick time, so we can restart
800 	 * the scheduler tick in nohz_restart_sched_tick.
801 	 */
802 	if (!ts->tick_stopped) {
803 		nohz_balance_enter_idle(cpu);
804 		calc_load_enter_idle();
805 
806 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
807 		ts->tick_stopped = 1;
808 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
809 	}
810 
811 	/*
812 	 * If the expiration time == KTIME_MAX, then we simply stop
813 	 * the tick timer.
814 	 */
815 	if (unlikely(expires == KTIME_MAX)) {
816 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
817 			hrtimer_cancel(&ts->sched_timer);
818 		goto out;
819 	}
820 
821 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
822 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
823 	else
824 		tick_program_event(tick, 1);
825 out:
826 	/* Update the estimated sleep length */
827 	ts->sleep_length = ktime_sub(dev->next_event, now);
828 	return tick;
829 }
830 
831 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
832 {
833 	/* Update jiffies first */
834 	tick_do_update_jiffies64(now);
835 	update_cpu_load_nohz(active);
836 
837 	calc_load_exit_idle();
838 	touch_softlockup_watchdog_sched();
839 	/*
840 	 * Cancel the scheduled timer and restore the tick
841 	 */
842 	ts->tick_stopped  = 0;
843 	ts->idle_exittime = now;
844 
845 	tick_nohz_restart(ts, now);
846 }
847 
848 static void tick_nohz_full_update_tick(struct tick_sched *ts)
849 {
850 #ifdef CONFIG_NO_HZ_FULL
851 	int cpu = smp_processor_id();
852 
853 	if (!tick_nohz_full_cpu(cpu))
854 		return;
855 
856 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
857 		return;
858 
859 	if (can_stop_full_tick(ts))
860 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
861 	else if (ts->tick_stopped)
862 		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
863 #endif
864 }
865 
866 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
867 {
868 	/*
869 	 * If this cpu is offline and it is the one which updates
870 	 * jiffies, then give up the assignment and let it be taken by
871 	 * the cpu which runs the tick timer next. If we don't drop
872 	 * this here the jiffies might be stale and do_timer() never
873 	 * invoked.
874 	 */
875 	if (unlikely(!cpu_online(cpu))) {
876 		if (cpu == tick_do_timer_cpu)
877 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
878 		return false;
879 	}
880 
881 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
882 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
883 		return false;
884 	}
885 
886 	if (need_resched())
887 		return false;
888 
889 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
890 		static int ratelimit;
891 
892 		if (ratelimit < 10 &&
893 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
894 			pr_warn("NOHZ: local_softirq_pending %02x\n",
895 				(unsigned int) local_softirq_pending());
896 			ratelimit++;
897 		}
898 		return false;
899 	}
900 
901 	if (tick_nohz_full_enabled()) {
902 		/*
903 		 * Keep the tick alive to guarantee timekeeping progression
904 		 * if there are full dynticks CPUs around
905 		 */
906 		if (tick_do_timer_cpu == cpu)
907 			return false;
908 		/*
909 		 * Boot safety: make sure the timekeeping duty has been
910 		 * assigned before entering dyntick-idle mode,
911 		 */
912 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
913 			return false;
914 	}
915 
916 	return true;
917 }
918 
919 static void __tick_nohz_idle_enter(struct tick_sched *ts)
920 {
921 	ktime_t now, expires;
922 	int cpu = smp_processor_id();
923 
924 	now = tick_nohz_start_idle(ts);
925 
926 	if (can_stop_idle_tick(cpu, ts)) {
927 		int was_stopped = ts->tick_stopped;
928 
929 		ts->idle_calls++;
930 
931 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
932 		if (expires.tv64 > 0LL) {
933 			ts->idle_sleeps++;
934 			ts->idle_expires = expires;
935 		}
936 
937 		if (!was_stopped && ts->tick_stopped)
938 			ts->idle_jiffies = ts->last_jiffies;
939 	}
940 }
941 
942 /**
943  * tick_nohz_idle_enter - stop the idle tick from the idle task
944  *
945  * When the next event is more than a tick into the future, stop the idle tick
946  * Called when we start the idle loop.
947  *
948  * The arch is responsible of calling:
949  *
950  * - rcu_idle_enter() after its last use of RCU before the CPU is put
951  *  to sleep.
952  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
953  */
954 void tick_nohz_idle_enter(void)
955 {
956 	struct tick_sched *ts;
957 
958 	WARN_ON_ONCE(irqs_disabled());
959 
960 	/*
961  	 * Update the idle state in the scheduler domain hierarchy
962  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
963  	 * State will be updated to busy during the first busy tick after
964  	 * exiting idle.
965  	 */
966 	set_cpu_sd_state_idle();
967 
968 	local_irq_disable();
969 
970 	ts = this_cpu_ptr(&tick_cpu_sched);
971 	ts->inidle = 1;
972 	__tick_nohz_idle_enter(ts);
973 
974 	local_irq_enable();
975 }
976 
977 /**
978  * tick_nohz_irq_exit - update next tick event from interrupt exit
979  *
980  * When an interrupt fires while we are idle and it doesn't cause
981  * a reschedule, it may still add, modify or delete a timer, enqueue
982  * an RCU callback, etc...
983  * So we need to re-calculate and reprogram the next tick event.
984  */
985 void tick_nohz_irq_exit(void)
986 {
987 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
988 
989 	if (ts->inidle)
990 		__tick_nohz_idle_enter(ts);
991 	else
992 		tick_nohz_full_update_tick(ts);
993 }
994 
995 /**
996  * tick_nohz_get_sleep_length - return the length of the current sleep
997  *
998  * Called from power state control code with interrupts disabled
999  */
1000 ktime_t tick_nohz_get_sleep_length(void)
1001 {
1002 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1003 
1004 	return ts->sleep_length;
1005 }
1006 
1007 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1008 {
1009 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1010 	unsigned long ticks;
1011 
1012 	if (vtime_accounting_cpu_enabled())
1013 		return;
1014 	/*
1015 	 * We stopped the tick in idle. Update process times would miss the
1016 	 * time we slept as update_process_times does only a 1 tick
1017 	 * accounting. Enforce that this is accounted to idle !
1018 	 */
1019 	ticks = jiffies - ts->idle_jiffies;
1020 	/*
1021 	 * We might be one off. Do not randomly account a huge number of ticks!
1022 	 */
1023 	if (ticks && ticks < LONG_MAX)
1024 		account_idle_ticks(ticks);
1025 #endif
1026 }
1027 
1028 /**
1029  * tick_nohz_idle_exit - restart the idle tick from the idle task
1030  *
1031  * Restart the idle tick when the CPU is woken up from idle
1032  * This also exit the RCU extended quiescent state. The CPU
1033  * can use RCU again after this function is called.
1034  */
1035 void tick_nohz_idle_exit(void)
1036 {
1037 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1038 	ktime_t now;
1039 
1040 	local_irq_disable();
1041 
1042 	WARN_ON_ONCE(!ts->inidle);
1043 
1044 	ts->inidle = 0;
1045 
1046 	if (ts->idle_active || ts->tick_stopped)
1047 		now = ktime_get();
1048 
1049 	if (ts->idle_active)
1050 		tick_nohz_stop_idle(ts, now);
1051 
1052 	if (ts->tick_stopped) {
1053 		tick_nohz_restart_sched_tick(ts, now, 0);
1054 		tick_nohz_account_idle_ticks(ts);
1055 	}
1056 
1057 	local_irq_enable();
1058 }
1059 
1060 /*
1061  * The nohz low res interrupt handler
1062  */
1063 static void tick_nohz_handler(struct clock_event_device *dev)
1064 {
1065 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1066 	struct pt_regs *regs = get_irq_regs();
1067 	ktime_t now = ktime_get();
1068 
1069 	dev->next_event.tv64 = KTIME_MAX;
1070 
1071 	tick_sched_do_timer(now);
1072 	tick_sched_handle(ts, regs);
1073 
1074 	/* No need to reprogram if we are running tickless  */
1075 	if (unlikely(ts->tick_stopped))
1076 		return;
1077 
1078 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1079 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1080 }
1081 
1082 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1083 {
1084 	if (!tick_nohz_enabled)
1085 		return;
1086 	ts->nohz_mode = mode;
1087 	/* One update is enough */
1088 	if (!test_and_set_bit(0, &tick_nohz_active))
1089 		timers_update_migration(true);
1090 }
1091 
1092 /**
1093  * tick_nohz_switch_to_nohz - switch to nohz mode
1094  */
1095 static void tick_nohz_switch_to_nohz(void)
1096 {
1097 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1098 	ktime_t next;
1099 
1100 	if (!tick_nohz_enabled)
1101 		return;
1102 
1103 	if (tick_switch_to_oneshot(tick_nohz_handler))
1104 		return;
1105 
1106 	/*
1107 	 * Recycle the hrtimer in ts, so we can share the
1108 	 * hrtimer_forward with the highres code.
1109 	 */
1110 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1111 	/* Get the next period */
1112 	next = tick_init_jiffy_update();
1113 
1114 	hrtimer_set_expires(&ts->sched_timer, next);
1115 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1116 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1117 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1118 }
1119 
1120 /*
1121  * When NOHZ is enabled and the tick is stopped, we need to kick the
1122  * tick timer from irq_enter() so that the jiffies update is kept
1123  * alive during long running softirqs. That's ugly as hell, but
1124  * correctness is key even if we need to fix the offending softirq in
1125  * the first place.
1126  *
1127  * Note, this is different to tick_nohz_restart. We just kick the
1128  * timer and do not touch the other magic bits which need to be done
1129  * when idle is left.
1130  */
1131 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1132 {
1133 #if 0
1134 	/* Switch back to 2.6.27 behaviour */
1135 	ktime_t delta;
1136 
1137 	/*
1138 	 * Do not touch the tick device, when the next expiry is either
1139 	 * already reached or less/equal than the tick period.
1140 	 */
1141 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1142 	if (delta.tv64 <= tick_period.tv64)
1143 		return;
1144 
1145 	tick_nohz_restart(ts, now);
1146 #endif
1147 }
1148 
1149 static inline void tick_nohz_irq_enter(void)
1150 {
1151 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1152 	ktime_t now;
1153 
1154 	if (!ts->idle_active && !ts->tick_stopped)
1155 		return;
1156 	now = ktime_get();
1157 	if (ts->idle_active)
1158 		tick_nohz_stop_idle(ts, now);
1159 	if (ts->tick_stopped) {
1160 		tick_nohz_update_jiffies(now);
1161 		tick_nohz_kick_tick(ts, now);
1162 	}
1163 }
1164 
1165 #else
1166 
1167 static inline void tick_nohz_switch_to_nohz(void) { }
1168 static inline void tick_nohz_irq_enter(void) { }
1169 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1170 
1171 #endif /* CONFIG_NO_HZ_COMMON */
1172 
1173 /*
1174  * Called from irq_enter to notify about the possible interruption of idle()
1175  */
1176 void tick_irq_enter(void)
1177 {
1178 	tick_check_oneshot_broadcast_this_cpu();
1179 	tick_nohz_irq_enter();
1180 }
1181 
1182 /*
1183  * High resolution timer specific code
1184  */
1185 #ifdef CONFIG_HIGH_RES_TIMERS
1186 /*
1187  * We rearm the timer until we get disabled by the idle code.
1188  * Called with interrupts disabled.
1189  */
1190 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1191 {
1192 	struct tick_sched *ts =
1193 		container_of(timer, struct tick_sched, sched_timer);
1194 	struct pt_regs *regs = get_irq_regs();
1195 	ktime_t now = ktime_get();
1196 
1197 	tick_sched_do_timer(now);
1198 
1199 	/*
1200 	 * Do not call, when we are not in irq context and have
1201 	 * no valid regs pointer
1202 	 */
1203 	if (regs)
1204 		tick_sched_handle(ts, regs);
1205 
1206 	/* No need to reprogram if we are in idle or full dynticks mode */
1207 	if (unlikely(ts->tick_stopped))
1208 		return HRTIMER_NORESTART;
1209 
1210 	hrtimer_forward(timer, now, tick_period);
1211 
1212 	return HRTIMER_RESTART;
1213 }
1214 
1215 static int sched_skew_tick;
1216 
1217 static int __init skew_tick(char *str)
1218 {
1219 	get_option(&str, &sched_skew_tick);
1220 
1221 	return 0;
1222 }
1223 early_param("skew_tick", skew_tick);
1224 
1225 /**
1226  * tick_setup_sched_timer - setup the tick emulation timer
1227  */
1228 void tick_setup_sched_timer(void)
1229 {
1230 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1231 	ktime_t now = ktime_get();
1232 
1233 	/*
1234 	 * Emulate tick processing via per-CPU hrtimers:
1235 	 */
1236 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1237 	ts->sched_timer.function = tick_sched_timer;
1238 
1239 	/* Get the next period (per cpu) */
1240 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1241 
1242 	/* Offset the tick to avert jiffies_lock contention. */
1243 	if (sched_skew_tick) {
1244 		u64 offset = ktime_to_ns(tick_period) >> 1;
1245 		do_div(offset, num_possible_cpus());
1246 		offset *= smp_processor_id();
1247 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1248 	}
1249 
1250 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1251 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1252 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1253 }
1254 #endif /* HIGH_RES_TIMERS */
1255 
1256 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1257 void tick_cancel_sched_timer(int cpu)
1258 {
1259 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1260 
1261 # ifdef CONFIG_HIGH_RES_TIMERS
1262 	if (ts->sched_timer.base)
1263 		hrtimer_cancel(&ts->sched_timer);
1264 # endif
1265 
1266 	memset(ts, 0, sizeof(*ts));
1267 }
1268 #endif
1269 
1270 /**
1271  * Async notification about clocksource changes
1272  */
1273 void tick_clock_notify(void)
1274 {
1275 	int cpu;
1276 
1277 	for_each_possible_cpu(cpu)
1278 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1279 }
1280 
1281 /*
1282  * Async notification about clock event changes
1283  */
1284 void tick_oneshot_notify(void)
1285 {
1286 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1287 
1288 	set_bit(0, &ts->check_clocks);
1289 }
1290 
1291 /**
1292  * Check, if a change happened, which makes oneshot possible.
1293  *
1294  * Called cyclic from the hrtimer softirq (driven by the timer
1295  * softirq) allow_nohz signals, that we can switch into low-res nohz
1296  * mode, because high resolution timers are disabled (either compile
1297  * or runtime). Called with interrupts disabled.
1298  */
1299 int tick_check_oneshot_change(int allow_nohz)
1300 {
1301 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302 
1303 	if (!test_and_clear_bit(0, &ts->check_clocks))
1304 		return 0;
1305 
1306 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1307 		return 0;
1308 
1309 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1310 		return 0;
1311 
1312 	if (!allow_nohz)
1313 		return 1;
1314 
1315 	tick_nohz_switch_to_nohz();
1316 	return 0;
1317 }
1318