1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 114 { 115 int cpu = smp_processor_id(); 116 117 #ifdef CONFIG_NO_HZ_COMMON 118 /* 119 * Check if the do_timer duty was dropped. We don't care about 120 * concurrency: This happens only when the CPU in charge went 121 * into a long sleep. If two CPUs happen to assign themselves to 122 * this duty, then the jiffies update is still serialized by 123 * jiffies_lock. 124 * 125 * If nohz_full is enabled, this should not happen because the 126 * tick_do_timer_cpu never relinquishes. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 129 #ifdef CONFIG_NO_HZ_FULL 130 WARN_ON(tick_nohz_full_running); 131 #endif 132 tick_do_timer_cpu = cpu; 133 } 134 #endif 135 136 /* Check, if the jiffies need an update */ 137 if (tick_do_timer_cpu == cpu) 138 tick_do_update_jiffies64(now); 139 140 if (ts->inidle) 141 ts->got_idle_tick = 1; 142 } 143 144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 145 { 146 #ifdef CONFIG_NO_HZ_COMMON 147 /* 148 * When we are idle and the tick is stopped, we have to touch 149 * the watchdog as we might not schedule for a really long 150 * time. This happens on complete idle SMP systems while 151 * waiting on the login prompt. We also increment the "start of 152 * idle" jiffy stamp so the idle accounting adjustment we do 153 * when we go busy again does not account too much ticks. 154 */ 155 if (ts->tick_stopped) { 156 touch_softlockup_watchdog_sched(); 157 if (is_idle_task(current)) 158 ts->idle_jiffies++; 159 /* 160 * In case the current tick fired too early past its expected 161 * expiration, make sure we don't bypass the next clock reprogramming 162 * to the same deadline. 163 */ 164 ts->next_tick = 0; 165 } 166 #endif 167 update_process_times(user_mode(regs)); 168 profile_tick(CPU_PROFILING); 169 } 170 #endif 171 172 #ifdef CONFIG_NO_HZ_FULL 173 cpumask_var_t tick_nohz_full_mask; 174 bool tick_nohz_full_running; 175 static atomic_t tick_dep_mask; 176 177 static bool check_tick_dependency(atomic_t *dep) 178 { 179 int val = atomic_read(dep); 180 181 if (val & TICK_DEP_MASK_POSIX_TIMER) { 182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_PERF_EVENTS) { 187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_SCHED) { 192 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 198 return true; 199 } 200 201 return false; 202 } 203 204 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 205 { 206 lockdep_assert_irqs_disabled(); 207 208 if (unlikely(!cpu_online(cpu))) 209 return false; 210 211 if (check_tick_dependency(&tick_dep_mask)) 212 return false; 213 214 if (check_tick_dependency(&ts->tick_dep_mask)) 215 return false; 216 217 if (check_tick_dependency(¤t->tick_dep_mask)) 218 return false; 219 220 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 221 return false; 222 223 return true; 224 } 225 226 static void nohz_full_kick_func(struct irq_work *work) 227 { 228 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 229 } 230 231 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 232 .func = nohz_full_kick_func, 233 }; 234 235 /* 236 * Kick this CPU if it's full dynticks in order to force it to 237 * re-evaluate its dependency on the tick and restart it if necessary. 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 239 * is NMI safe. 240 */ 241 static void tick_nohz_full_kick(void) 242 { 243 if (!tick_nohz_full_cpu(smp_processor_id())) 244 return; 245 246 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 247 } 248 249 /* 250 * Kick the CPU if it's full dynticks in order to force it to 251 * re-evaluate its dependency on the tick and restart it if necessary. 252 */ 253 void tick_nohz_full_kick_cpu(int cpu) 254 { 255 if (!tick_nohz_full_cpu(cpu)) 256 return; 257 258 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 259 } 260 261 /* 262 * Kick all full dynticks CPUs in order to force these to re-evaluate 263 * their dependency on the tick and restart it if necessary. 264 */ 265 static void tick_nohz_full_kick_all(void) 266 { 267 int cpu; 268 269 if (!tick_nohz_full_running) 270 return; 271 272 preempt_disable(); 273 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 274 tick_nohz_full_kick_cpu(cpu); 275 preempt_enable(); 276 } 277 278 static void tick_nohz_dep_set_all(atomic_t *dep, 279 enum tick_dep_bits bit) 280 { 281 int prev; 282 283 prev = atomic_fetch_or(BIT(bit), dep); 284 if (!prev) 285 tick_nohz_full_kick_all(); 286 } 287 288 /* 289 * Set a global tick dependency. Used by perf events that rely on freq and 290 * by unstable clock. 291 */ 292 void tick_nohz_dep_set(enum tick_dep_bits bit) 293 { 294 tick_nohz_dep_set_all(&tick_dep_mask, bit); 295 } 296 297 void tick_nohz_dep_clear(enum tick_dep_bits bit) 298 { 299 atomic_andnot(BIT(bit), &tick_dep_mask); 300 } 301 302 /* 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 304 * manage events throttling. 305 */ 306 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 307 { 308 int prev; 309 struct tick_sched *ts; 310 311 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 312 313 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 314 if (!prev) { 315 preempt_disable(); 316 /* Perf needs local kick that is NMI safe */ 317 if (cpu == smp_processor_id()) { 318 tick_nohz_full_kick(); 319 } else { 320 /* Remote irq work not NMI-safe */ 321 if (!WARN_ON_ONCE(in_nmi())) 322 tick_nohz_full_kick_cpu(cpu); 323 } 324 preempt_enable(); 325 } 326 } 327 328 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 329 { 330 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 331 332 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 333 } 334 335 /* 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 337 * per task timers. 338 */ 339 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 340 { 341 /* 342 * We could optimize this with just kicking the target running the task 343 * if that noise matters for nohz full users. 344 */ 345 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 346 } 347 348 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 349 { 350 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 351 } 352 353 /* 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 355 * per process timers. 356 */ 357 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 360 } 361 362 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 363 { 364 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 365 } 366 367 /* 368 * Re-evaluate the need for the tick as we switch the current task. 369 * It might need the tick due to per task/process properties: 370 * perf events, posix CPU timers, ... 371 */ 372 void __tick_nohz_task_switch(void) 373 { 374 unsigned long flags; 375 struct tick_sched *ts; 376 377 local_irq_save(flags); 378 379 if (!tick_nohz_full_cpu(smp_processor_id())) 380 goto out; 381 382 ts = this_cpu_ptr(&tick_cpu_sched); 383 384 if (ts->tick_stopped) { 385 if (atomic_read(¤t->tick_dep_mask) || 386 atomic_read(¤t->signal->tick_dep_mask)) 387 tick_nohz_full_kick(); 388 } 389 out: 390 local_irq_restore(flags); 391 } 392 393 /* Get the boot-time nohz CPU list from the kernel parameters. */ 394 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 395 { 396 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 397 cpumask_copy(tick_nohz_full_mask, cpumask); 398 tick_nohz_full_running = true; 399 } 400 401 static int tick_nohz_cpu_down(unsigned int cpu) 402 { 403 /* 404 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 405 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 406 * CPUs. It must remain online when nohz full is enabled. 407 */ 408 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 409 return -EBUSY; 410 return 0; 411 } 412 413 void __init tick_nohz_init(void) 414 { 415 int cpu, ret; 416 417 if (!tick_nohz_full_running) 418 return; 419 420 /* 421 * Full dynticks uses irq work to drive the tick rescheduling on safe 422 * locking contexts. But then we need irq work to raise its own 423 * interrupts to avoid circular dependency on the tick 424 */ 425 if (!arch_irq_work_has_interrupt()) { 426 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 427 cpumask_clear(tick_nohz_full_mask); 428 tick_nohz_full_running = false; 429 return; 430 } 431 432 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 433 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 434 cpu = smp_processor_id(); 435 436 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 437 pr_warn("NO_HZ: Clearing %d from nohz_full range " 438 "for timekeeping\n", cpu); 439 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 440 } 441 } 442 443 for_each_cpu(cpu, tick_nohz_full_mask) 444 context_tracking_cpu_set(cpu); 445 446 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 447 "kernel/nohz:predown", NULL, 448 tick_nohz_cpu_down); 449 WARN_ON(ret < 0); 450 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 451 cpumask_pr_args(tick_nohz_full_mask)); 452 } 453 #endif 454 455 /* 456 * NOHZ - aka dynamic tick functionality 457 */ 458 #ifdef CONFIG_NO_HZ_COMMON 459 /* 460 * NO HZ enabled ? 461 */ 462 bool tick_nohz_enabled __read_mostly = true; 463 unsigned long tick_nohz_active __read_mostly; 464 /* 465 * Enable / Disable tickless mode 466 */ 467 static int __init setup_tick_nohz(char *str) 468 { 469 return (kstrtobool(str, &tick_nohz_enabled) == 0); 470 } 471 472 __setup("nohz=", setup_tick_nohz); 473 474 bool tick_nohz_tick_stopped(void) 475 { 476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 477 478 return ts->tick_stopped; 479 } 480 481 bool tick_nohz_tick_stopped_cpu(int cpu) 482 { 483 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 484 485 return ts->tick_stopped; 486 } 487 488 /** 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 490 * 491 * Called from interrupt entry when the CPU was idle 492 * 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy 495 * value. We do this unconditionally on any CPU, as we don't know whether the 496 * CPU, which has the update task assigned is in a long sleep. 497 */ 498 static void tick_nohz_update_jiffies(ktime_t now) 499 { 500 unsigned long flags; 501 502 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 503 504 local_irq_save(flags); 505 tick_do_update_jiffies64(now); 506 local_irq_restore(flags); 507 508 touch_softlockup_watchdog_sched(); 509 } 510 511 /* 512 * Updates the per-CPU time idle statistics counters 513 */ 514 static void 515 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 516 { 517 ktime_t delta; 518 519 if (ts->idle_active) { 520 delta = ktime_sub(now, ts->idle_entrytime); 521 if (nr_iowait_cpu(cpu) > 0) 522 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 523 else 524 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 525 ts->idle_entrytime = now; 526 } 527 528 if (last_update_time) 529 *last_update_time = ktime_to_us(now); 530 531 } 532 533 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 534 { 535 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 536 ts->idle_active = 0; 537 538 sched_clock_idle_wakeup_event(); 539 } 540 541 static void tick_nohz_start_idle(struct tick_sched *ts) 542 { 543 ts->idle_entrytime = ktime_get(); 544 ts->idle_active = 1; 545 sched_clock_idle_sleep_event(); 546 } 547 548 /** 549 * get_cpu_idle_time_us - get the total idle time of a CPU 550 * @cpu: CPU number to query 551 * @last_update_time: variable to store update time in. Do not update 552 * counters if NULL. 553 * 554 * Return the cumulative idle time (since boot) for a given 555 * CPU, in microseconds. 556 * 557 * This time is measured via accounting rather than sampling, 558 * and is as accurate as ktime_get() is. 559 * 560 * This function returns -1 if NOHZ is not enabled. 561 */ 562 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 563 { 564 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 565 ktime_t now, idle; 566 567 if (!tick_nohz_active) 568 return -1; 569 570 now = ktime_get(); 571 if (last_update_time) { 572 update_ts_time_stats(cpu, ts, now, last_update_time); 573 idle = ts->idle_sleeptime; 574 } else { 575 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 576 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 577 578 idle = ktime_add(ts->idle_sleeptime, delta); 579 } else { 580 idle = ts->idle_sleeptime; 581 } 582 } 583 584 return ktime_to_us(idle); 585 586 } 587 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 588 589 /** 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU 591 * @cpu: CPU number to query 592 * @last_update_time: variable to store update time in. Do not update 593 * counters if NULL. 594 * 595 * Return the cumulative iowait time (since boot) for a given 596 * CPU, in microseconds. 597 * 598 * This time is measured via accounting rather than sampling, 599 * and is as accurate as ktime_get() is. 600 * 601 * This function returns -1 if NOHZ is not enabled. 602 */ 603 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 604 { 605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 606 ktime_t now, iowait; 607 608 if (!tick_nohz_active) 609 return -1; 610 611 now = ktime_get(); 612 if (last_update_time) { 613 update_ts_time_stats(cpu, ts, now, last_update_time); 614 iowait = ts->iowait_sleeptime; 615 } else { 616 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 617 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 618 619 iowait = ktime_add(ts->iowait_sleeptime, delta); 620 } else { 621 iowait = ts->iowait_sleeptime; 622 } 623 } 624 625 return ktime_to_us(iowait); 626 } 627 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 628 629 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 630 { 631 hrtimer_cancel(&ts->sched_timer); 632 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 633 634 /* Forward the time to expire in the future */ 635 hrtimer_forward(&ts->sched_timer, now, tick_period); 636 637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 638 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 639 else 640 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 641 642 /* 643 * Reset to make sure next tick stop doesn't get fooled by past 644 * cached clock deadline. 645 */ 646 ts->next_tick = 0; 647 } 648 649 static inline bool local_timer_softirq_pending(void) 650 { 651 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 652 } 653 654 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 655 { 656 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 657 unsigned long basejiff; 658 unsigned int seq; 659 660 /* Read jiffies and the time when jiffies were updated last */ 661 do { 662 seq = read_seqbegin(&jiffies_lock); 663 basemono = last_jiffies_update; 664 basejiff = jiffies; 665 } while (read_seqretry(&jiffies_lock, seq)); 666 ts->last_jiffies = basejiff; 667 ts->timer_expires_base = basemono; 668 669 /* 670 * Keep the periodic tick, when RCU, architecture or irq_work 671 * requests it. 672 * Aside of that check whether the local timer softirq is 673 * pending. If so its a bad idea to call get_next_timer_interrupt() 674 * because there is an already expired timer, so it will request 675 * immeditate expiry, which rearms the hardware timer with a 676 * minimal delta which brings us back to this place 677 * immediately. Lather, rinse and repeat... 678 */ 679 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 680 irq_work_needs_cpu() || local_timer_softirq_pending()) { 681 next_tick = basemono + TICK_NSEC; 682 } else { 683 /* 684 * Get the next pending timer. If high resolution 685 * timers are enabled this only takes the timer wheel 686 * timers into account. If high resolution timers are 687 * disabled this also looks at the next expiring 688 * hrtimer. 689 */ 690 next_tmr = get_next_timer_interrupt(basejiff, basemono); 691 ts->next_timer = next_tmr; 692 /* Take the next rcu event into account */ 693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 694 } 695 696 /* 697 * If the tick is due in the next period, keep it ticking or 698 * force prod the timer. 699 */ 700 delta = next_tick - basemono; 701 if (delta <= (u64)TICK_NSEC) { 702 /* 703 * Tell the timer code that the base is not idle, i.e. undo 704 * the effect of get_next_timer_interrupt(): 705 */ 706 timer_clear_idle(); 707 /* 708 * We've not stopped the tick yet, and there's a timer in the 709 * next period, so no point in stopping it either, bail. 710 */ 711 if (!ts->tick_stopped) { 712 ts->timer_expires = 0; 713 goto out; 714 } 715 } 716 717 /* 718 * If this CPU is the one which had the do_timer() duty last, we limit 719 * the sleep time to the timekeeping max_deferment value. 720 * Otherwise we can sleep as long as we want. 721 */ 722 delta = timekeeping_max_deferment(); 723 if (cpu != tick_do_timer_cpu && 724 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 725 delta = KTIME_MAX; 726 727 /* Calculate the next expiry time */ 728 if (delta < (KTIME_MAX - basemono)) 729 expires = basemono + delta; 730 else 731 expires = KTIME_MAX; 732 733 ts->timer_expires = min_t(u64, expires, next_tick); 734 735 out: 736 return ts->timer_expires; 737 } 738 739 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 740 { 741 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 742 u64 basemono = ts->timer_expires_base; 743 u64 expires = ts->timer_expires; 744 ktime_t tick = expires; 745 746 /* Make sure we won't be trying to stop it twice in a row. */ 747 ts->timer_expires_base = 0; 748 749 /* 750 * If this CPU is the one which updates jiffies, then give up 751 * the assignment and let it be taken by the CPU which runs 752 * the tick timer next, which might be this CPU as well. If we 753 * don't drop this here the jiffies might be stale and 754 * do_timer() never invoked. Keep track of the fact that it 755 * was the one which had the do_timer() duty last. 756 */ 757 if (cpu == tick_do_timer_cpu) { 758 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 759 ts->do_timer_last = 1; 760 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 761 ts->do_timer_last = 0; 762 } 763 764 /* Skip reprogram of event if its not changed */ 765 if (ts->tick_stopped && (expires == ts->next_tick)) { 766 /* Sanity check: make sure clockevent is actually programmed */ 767 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 768 return; 769 770 WARN_ON_ONCE(1); 771 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 772 basemono, ts->next_tick, dev->next_event, 773 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 774 } 775 776 /* 777 * nohz_stop_sched_tick can be called several times before 778 * the nohz_restart_sched_tick is called. This happens when 779 * interrupts arrive which do not cause a reschedule. In the 780 * first call we save the current tick time, so we can restart 781 * the scheduler tick in nohz_restart_sched_tick. 782 */ 783 if (!ts->tick_stopped) { 784 calc_load_nohz_start(); 785 quiet_vmstat(); 786 787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 788 ts->tick_stopped = 1; 789 trace_tick_stop(1, TICK_DEP_MASK_NONE); 790 } 791 792 ts->next_tick = tick; 793 794 /* 795 * If the expiration time == KTIME_MAX, then we simply stop 796 * the tick timer. 797 */ 798 if (unlikely(expires == KTIME_MAX)) { 799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 800 hrtimer_cancel(&ts->sched_timer); 801 return; 802 } 803 804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 806 } else { 807 hrtimer_set_expires(&ts->sched_timer, tick); 808 tick_program_event(tick, 1); 809 } 810 } 811 812 static void tick_nohz_retain_tick(struct tick_sched *ts) 813 { 814 ts->timer_expires_base = 0; 815 } 816 817 #ifdef CONFIG_NO_HZ_FULL 818 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 819 { 820 if (tick_nohz_next_event(ts, cpu)) 821 tick_nohz_stop_tick(ts, cpu); 822 else 823 tick_nohz_retain_tick(ts); 824 } 825 #endif /* CONFIG_NO_HZ_FULL */ 826 827 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 828 { 829 /* Update jiffies first */ 830 tick_do_update_jiffies64(now); 831 832 /* 833 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 834 * the clock forward checks in the enqueue path: 835 */ 836 timer_clear_idle(); 837 838 calc_load_nohz_stop(); 839 touch_softlockup_watchdog_sched(); 840 /* 841 * Cancel the scheduled timer and restore the tick 842 */ 843 ts->tick_stopped = 0; 844 ts->idle_exittime = now; 845 846 tick_nohz_restart(ts, now); 847 } 848 849 static void tick_nohz_full_update_tick(struct tick_sched *ts) 850 { 851 #ifdef CONFIG_NO_HZ_FULL 852 int cpu = smp_processor_id(); 853 854 if (!tick_nohz_full_cpu(cpu)) 855 return; 856 857 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 858 return; 859 860 if (can_stop_full_tick(cpu, ts)) 861 tick_nohz_stop_sched_tick(ts, cpu); 862 else if (ts->tick_stopped) 863 tick_nohz_restart_sched_tick(ts, ktime_get()); 864 #endif 865 } 866 867 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 868 { 869 /* 870 * If this CPU is offline and it is the one which updates 871 * jiffies, then give up the assignment and let it be taken by 872 * the CPU which runs the tick timer next. If we don't drop 873 * this here the jiffies might be stale and do_timer() never 874 * invoked. 875 */ 876 if (unlikely(!cpu_online(cpu))) { 877 if (cpu == tick_do_timer_cpu) 878 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 879 /* 880 * Make sure the CPU doesn't get fooled by obsolete tick 881 * deadline if it comes back online later. 882 */ 883 ts->next_tick = 0; 884 return false; 885 } 886 887 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 888 return false; 889 890 if (need_resched()) 891 return false; 892 893 if (unlikely(local_softirq_pending())) { 894 static int ratelimit; 895 896 if (ratelimit < 10 && 897 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 898 pr_warn("NOHZ: local_softirq_pending %02x\n", 899 (unsigned int) local_softirq_pending()); 900 ratelimit++; 901 } 902 return false; 903 } 904 905 if (tick_nohz_full_enabled()) { 906 /* 907 * Keep the tick alive to guarantee timekeeping progression 908 * if there are full dynticks CPUs around 909 */ 910 if (tick_do_timer_cpu == cpu) 911 return false; 912 /* 913 * Boot safety: make sure the timekeeping duty has been 914 * assigned before entering dyntick-idle mode, 915 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 916 */ 917 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 918 return false; 919 920 /* Should not happen for nohz-full */ 921 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 922 return false; 923 } 924 925 return true; 926 } 927 928 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 929 { 930 ktime_t expires; 931 int cpu = smp_processor_id(); 932 933 /* 934 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 935 * tick timer expiration time is known already. 936 */ 937 if (ts->timer_expires_base) 938 expires = ts->timer_expires; 939 else if (can_stop_idle_tick(cpu, ts)) 940 expires = tick_nohz_next_event(ts, cpu); 941 else 942 return; 943 944 ts->idle_calls++; 945 946 if (expires > 0LL) { 947 int was_stopped = ts->tick_stopped; 948 949 tick_nohz_stop_tick(ts, cpu); 950 951 ts->idle_sleeps++; 952 ts->idle_expires = expires; 953 954 if (!was_stopped && ts->tick_stopped) { 955 ts->idle_jiffies = ts->last_jiffies; 956 nohz_balance_enter_idle(cpu); 957 } 958 } else { 959 tick_nohz_retain_tick(ts); 960 } 961 } 962 963 /** 964 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 965 * 966 * When the next event is more than a tick into the future, stop the idle tick 967 */ 968 void tick_nohz_idle_stop_tick(void) 969 { 970 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 971 } 972 973 void tick_nohz_idle_retain_tick(void) 974 { 975 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 976 /* 977 * Undo the effect of get_next_timer_interrupt() called from 978 * tick_nohz_next_event(). 979 */ 980 timer_clear_idle(); 981 } 982 983 /** 984 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 985 * 986 * Called when we start the idle loop. 987 */ 988 void tick_nohz_idle_enter(void) 989 { 990 struct tick_sched *ts; 991 992 lockdep_assert_irqs_enabled(); 993 994 local_irq_disable(); 995 996 ts = this_cpu_ptr(&tick_cpu_sched); 997 998 WARN_ON_ONCE(ts->timer_expires_base); 999 1000 ts->inidle = 1; 1001 tick_nohz_start_idle(ts); 1002 1003 local_irq_enable(); 1004 } 1005 1006 /** 1007 * tick_nohz_irq_exit - update next tick event from interrupt exit 1008 * 1009 * When an interrupt fires while we are idle and it doesn't cause 1010 * a reschedule, it may still add, modify or delete a timer, enqueue 1011 * an RCU callback, etc... 1012 * So we need to re-calculate and reprogram the next tick event. 1013 */ 1014 void tick_nohz_irq_exit(void) 1015 { 1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1017 1018 if (ts->inidle) 1019 tick_nohz_start_idle(ts); 1020 else 1021 tick_nohz_full_update_tick(ts); 1022 } 1023 1024 /** 1025 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1026 */ 1027 bool tick_nohz_idle_got_tick(void) 1028 { 1029 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1030 1031 if (ts->got_idle_tick) { 1032 ts->got_idle_tick = 0; 1033 return true; 1034 } 1035 return false; 1036 } 1037 1038 /** 1039 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1040 * or the tick, whatever that expires first. Note that, if the tick has been 1041 * stopped, it returns the next hrtimer. 1042 * 1043 * Called from power state control code with interrupts disabled 1044 */ 1045 ktime_t tick_nohz_get_next_hrtimer(void) 1046 { 1047 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1048 } 1049 1050 /** 1051 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1052 * @delta_next: duration until the next event if the tick cannot be stopped 1053 * 1054 * Called from power state control code with interrupts disabled 1055 */ 1056 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1057 { 1058 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1059 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1060 int cpu = smp_processor_id(); 1061 /* 1062 * The idle entry time is expected to be a sufficient approximation of 1063 * the current time at this point. 1064 */ 1065 ktime_t now = ts->idle_entrytime; 1066 ktime_t next_event; 1067 1068 WARN_ON_ONCE(!ts->inidle); 1069 1070 *delta_next = ktime_sub(dev->next_event, now); 1071 1072 if (!can_stop_idle_tick(cpu, ts)) 1073 return *delta_next; 1074 1075 next_event = tick_nohz_next_event(ts, cpu); 1076 if (!next_event) 1077 return *delta_next; 1078 1079 /* 1080 * If the next highres timer to expire is earlier than next_event, the 1081 * idle governor needs to know that. 1082 */ 1083 next_event = min_t(u64, next_event, 1084 hrtimer_next_event_without(&ts->sched_timer)); 1085 1086 return ktime_sub(next_event, now); 1087 } 1088 1089 /** 1090 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1091 * for a particular CPU. 1092 * 1093 * Called from the schedutil frequency scaling governor in scheduler context. 1094 */ 1095 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1096 { 1097 struct tick_sched *ts = tick_get_tick_sched(cpu); 1098 1099 return ts->idle_calls; 1100 } 1101 1102 /** 1103 * tick_nohz_get_idle_calls - return the current idle calls counter value 1104 * 1105 * Called from the schedutil frequency scaling governor in scheduler context. 1106 */ 1107 unsigned long tick_nohz_get_idle_calls(void) 1108 { 1109 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1110 1111 return ts->idle_calls; 1112 } 1113 1114 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1115 { 1116 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1117 unsigned long ticks; 1118 1119 if (vtime_accounting_cpu_enabled()) 1120 return; 1121 /* 1122 * We stopped the tick in idle. Update process times would miss the 1123 * time we slept as update_process_times does only a 1 tick 1124 * accounting. Enforce that this is accounted to idle ! 1125 */ 1126 ticks = jiffies - ts->idle_jiffies; 1127 /* 1128 * We might be one off. Do not randomly account a huge number of ticks! 1129 */ 1130 if (ticks && ticks < LONG_MAX) 1131 account_idle_ticks(ticks); 1132 #endif 1133 } 1134 1135 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1136 { 1137 tick_nohz_restart_sched_tick(ts, now); 1138 tick_nohz_account_idle_ticks(ts); 1139 } 1140 1141 void tick_nohz_idle_restart_tick(void) 1142 { 1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1144 1145 if (ts->tick_stopped) 1146 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1147 } 1148 1149 /** 1150 * tick_nohz_idle_exit - restart the idle tick from the idle task 1151 * 1152 * Restart the idle tick when the CPU is woken up from idle 1153 * This also exit the RCU extended quiescent state. The CPU 1154 * can use RCU again after this function is called. 1155 */ 1156 void tick_nohz_idle_exit(void) 1157 { 1158 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1159 bool idle_active, tick_stopped; 1160 ktime_t now; 1161 1162 local_irq_disable(); 1163 1164 WARN_ON_ONCE(!ts->inidle); 1165 WARN_ON_ONCE(ts->timer_expires_base); 1166 1167 ts->inidle = 0; 1168 idle_active = ts->idle_active; 1169 tick_stopped = ts->tick_stopped; 1170 1171 if (idle_active || tick_stopped) 1172 now = ktime_get(); 1173 1174 if (idle_active) 1175 tick_nohz_stop_idle(ts, now); 1176 1177 if (tick_stopped) 1178 __tick_nohz_idle_restart_tick(ts, now); 1179 1180 local_irq_enable(); 1181 } 1182 1183 /* 1184 * The nohz low res interrupt handler 1185 */ 1186 static void tick_nohz_handler(struct clock_event_device *dev) 1187 { 1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1189 struct pt_regs *regs = get_irq_regs(); 1190 ktime_t now = ktime_get(); 1191 1192 dev->next_event = KTIME_MAX; 1193 1194 tick_sched_do_timer(ts, now); 1195 tick_sched_handle(ts, regs); 1196 1197 /* No need to reprogram if we are running tickless */ 1198 if (unlikely(ts->tick_stopped)) 1199 return; 1200 1201 hrtimer_forward(&ts->sched_timer, now, tick_period); 1202 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1203 } 1204 1205 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1206 { 1207 if (!tick_nohz_enabled) 1208 return; 1209 ts->nohz_mode = mode; 1210 /* One update is enough */ 1211 if (!test_and_set_bit(0, &tick_nohz_active)) 1212 timers_update_nohz(); 1213 } 1214 1215 /** 1216 * tick_nohz_switch_to_nohz - switch to nohz mode 1217 */ 1218 static void tick_nohz_switch_to_nohz(void) 1219 { 1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1221 ktime_t next; 1222 1223 if (!tick_nohz_enabled) 1224 return; 1225 1226 if (tick_switch_to_oneshot(tick_nohz_handler)) 1227 return; 1228 1229 /* 1230 * Recycle the hrtimer in ts, so we can share the 1231 * hrtimer_forward with the highres code. 1232 */ 1233 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1234 /* Get the next period */ 1235 next = tick_init_jiffy_update(); 1236 1237 hrtimer_set_expires(&ts->sched_timer, next); 1238 hrtimer_forward_now(&ts->sched_timer, tick_period); 1239 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1240 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1241 } 1242 1243 static inline void tick_nohz_irq_enter(void) 1244 { 1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1246 ktime_t now; 1247 1248 if (!ts->idle_active && !ts->tick_stopped) 1249 return; 1250 now = ktime_get(); 1251 if (ts->idle_active) 1252 tick_nohz_stop_idle(ts, now); 1253 if (ts->tick_stopped) 1254 tick_nohz_update_jiffies(now); 1255 } 1256 1257 #else 1258 1259 static inline void tick_nohz_switch_to_nohz(void) { } 1260 static inline void tick_nohz_irq_enter(void) { } 1261 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1262 1263 #endif /* CONFIG_NO_HZ_COMMON */ 1264 1265 /* 1266 * Called from irq_enter to notify about the possible interruption of idle() 1267 */ 1268 void tick_irq_enter(void) 1269 { 1270 tick_check_oneshot_broadcast_this_cpu(); 1271 tick_nohz_irq_enter(); 1272 } 1273 1274 /* 1275 * High resolution timer specific code 1276 */ 1277 #ifdef CONFIG_HIGH_RES_TIMERS 1278 /* 1279 * We rearm the timer until we get disabled by the idle code. 1280 * Called with interrupts disabled. 1281 */ 1282 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1283 { 1284 struct tick_sched *ts = 1285 container_of(timer, struct tick_sched, sched_timer); 1286 struct pt_regs *regs = get_irq_regs(); 1287 ktime_t now = ktime_get(); 1288 1289 tick_sched_do_timer(ts, now); 1290 1291 /* 1292 * Do not call, when we are not in irq context and have 1293 * no valid regs pointer 1294 */ 1295 if (regs) 1296 tick_sched_handle(ts, regs); 1297 else 1298 ts->next_tick = 0; 1299 1300 /* No need to reprogram if we are in idle or full dynticks mode */ 1301 if (unlikely(ts->tick_stopped)) 1302 return HRTIMER_NORESTART; 1303 1304 hrtimer_forward(timer, now, tick_period); 1305 1306 return HRTIMER_RESTART; 1307 } 1308 1309 static int sched_skew_tick; 1310 1311 static int __init skew_tick(char *str) 1312 { 1313 get_option(&str, &sched_skew_tick); 1314 1315 return 0; 1316 } 1317 early_param("skew_tick", skew_tick); 1318 1319 /** 1320 * tick_setup_sched_timer - setup the tick emulation timer 1321 */ 1322 void tick_setup_sched_timer(void) 1323 { 1324 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1325 ktime_t now = ktime_get(); 1326 1327 /* 1328 * Emulate tick processing via per-CPU hrtimers: 1329 */ 1330 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1331 ts->sched_timer.function = tick_sched_timer; 1332 1333 /* Get the next period (per-CPU) */ 1334 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1335 1336 /* Offset the tick to avert jiffies_lock contention. */ 1337 if (sched_skew_tick) { 1338 u64 offset = ktime_to_ns(tick_period) >> 1; 1339 do_div(offset, num_possible_cpus()); 1340 offset *= smp_processor_id(); 1341 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1342 } 1343 1344 hrtimer_forward(&ts->sched_timer, now, tick_period); 1345 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1346 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1347 } 1348 #endif /* HIGH_RES_TIMERS */ 1349 1350 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1351 void tick_cancel_sched_timer(int cpu) 1352 { 1353 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1354 1355 # ifdef CONFIG_HIGH_RES_TIMERS 1356 if (ts->sched_timer.base) 1357 hrtimer_cancel(&ts->sched_timer); 1358 # endif 1359 1360 memset(ts, 0, sizeof(*ts)); 1361 } 1362 #endif 1363 1364 /** 1365 * Async notification about clocksource changes 1366 */ 1367 void tick_clock_notify(void) 1368 { 1369 int cpu; 1370 1371 for_each_possible_cpu(cpu) 1372 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1373 } 1374 1375 /* 1376 * Async notification about clock event changes 1377 */ 1378 void tick_oneshot_notify(void) 1379 { 1380 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1381 1382 set_bit(0, &ts->check_clocks); 1383 } 1384 1385 /** 1386 * Check, if a change happened, which makes oneshot possible. 1387 * 1388 * Called cyclic from the hrtimer softirq (driven by the timer 1389 * softirq) allow_nohz signals, that we can switch into low-res nohz 1390 * mode, because high resolution timers are disabled (either compile 1391 * or runtime). Called with interrupts disabled. 1392 */ 1393 int tick_check_oneshot_change(int allow_nohz) 1394 { 1395 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1396 1397 if (!test_and_clear_bit(0, &ts->check_clocks)) 1398 return 0; 1399 1400 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1401 return 0; 1402 1403 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1404 return 0; 1405 1406 if (!allow_nohz) 1407 return 1; 1408 1409 tick_nohz_switch_to_nohz(); 1410 return 0; 1411 } 1412