xref: /openbmc/linux/kernel/time/tick-sched.c (revision b2d9323d)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	cpu_clear(cpu, nohz_cpu_mask);
137 	now = ktime_get();
138 
139 	local_irq_save(flags);
140 	tick_do_update_jiffies64(now);
141 	local_irq_restore(flags);
142 }
143 
144 /**
145  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
146  *
147  * When the next event is more than a tick into the future, stop the idle tick
148  * Called either from the idle loop or from irq_exit() when an idle period was
149  * just interrupted by an interrupt which did not cause a reschedule.
150  */
151 void tick_nohz_stop_sched_tick(void)
152 {
153 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
154 	struct tick_sched *ts;
155 	ktime_t last_update, expires, now, delta;
156 	int cpu;
157 
158 	local_irq_save(flags);
159 
160 	cpu = smp_processor_id();
161 	ts = &per_cpu(tick_cpu_sched, cpu);
162 
163 	/*
164 	 * If this cpu is offline and it is the one which updates
165 	 * jiffies, then give up the assignment and let it be taken by
166 	 * the cpu which runs the tick timer next. If we don't drop
167 	 * this here the jiffies might be stale and do_timer() never
168 	 * invoked.
169 	 */
170 	if (unlikely(!cpu_online(cpu))) {
171 		if (cpu == tick_do_timer_cpu)
172 			tick_do_timer_cpu = -1;
173 	}
174 
175 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
176 		goto end;
177 
178 	if (need_resched())
179 		goto end;
180 
181 	cpu = smp_processor_id();
182 	if (unlikely(local_softirq_pending())) {
183 		static int ratelimit;
184 
185 		if (ratelimit < 10) {
186 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
187 			       local_softirq_pending());
188 			ratelimit++;
189 		}
190 	}
191 
192 	now = ktime_get();
193 	/*
194 	 * When called from irq_exit we need to account the idle sleep time
195 	 * correctly.
196 	 */
197 	if (ts->tick_stopped) {
198 		delta = ktime_sub(now, ts->idle_entrytime);
199 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
200 	}
201 
202 	ts->idle_entrytime = now;
203 	ts->idle_calls++;
204 
205 	/* Read jiffies and the time when jiffies were updated last */
206 	do {
207 		seq = read_seqbegin(&xtime_lock);
208 		last_update = last_jiffies_update;
209 		last_jiffies = jiffies;
210 	} while (read_seqretry(&xtime_lock, seq));
211 
212 	/* Get the next timer wheel timer */
213 	next_jiffies = get_next_timer_interrupt(last_jiffies);
214 	delta_jiffies = next_jiffies - last_jiffies;
215 
216 	if (rcu_needs_cpu(cpu))
217 		delta_jiffies = 1;
218 	/*
219 	 * Do not stop the tick, if we are only one off
220 	 * or if the cpu is required for rcu
221 	 */
222 	if (!ts->tick_stopped && delta_jiffies == 1)
223 		goto out;
224 
225 	/* Schedule the tick, if we are at least one jiffie off */
226 	if ((long)delta_jiffies >= 1) {
227 
228 		if (delta_jiffies > 1)
229 			cpu_set(cpu, nohz_cpu_mask);
230 		/*
231 		 * nohz_stop_sched_tick can be called several times before
232 		 * the nohz_restart_sched_tick is called. This happens when
233 		 * interrupts arrive which do not cause a reschedule. In the
234 		 * first call we save the current tick time, so we can restart
235 		 * the scheduler tick in nohz_restart_sched_tick.
236 		 */
237 		if (!ts->tick_stopped) {
238 			if (select_nohz_load_balancer(1)) {
239 				/*
240 				 * sched tick not stopped!
241 				 */
242 				cpu_clear(cpu, nohz_cpu_mask);
243 				goto out;
244 			}
245 
246 			ts->idle_tick = ts->sched_timer.expires;
247 			ts->tick_stopped = 1;
248 			ts->idle_jiffies = last_jiffies;
249 		}
250 
251 		/*
252 		 * If this cpu is the one which updates jiffies, then
253 		 * give up the assignment and let it be taken by the
254 		 * cpu which runs the tick timer next, which might be
255 		 * this cpu as well. If we don't drop this here the
256 		 * jiffies might be stale and do_timer() never
257 		 * invoked.
258 		 */
259 		if (cpu == tick_do_timer_cpu)
260 			tick_do_timer_cpu = -1;
261 
262 		ts->idle_sleeps++;
263 
264 		/*
265 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
266 		 * there is no timer pending or at least extremly far
267 		 * into the future (12 days for HZ=1000). In this case
268 		 * we simply stop the tick timer:
269 		 */
270 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
271 			ts->idle_expires.tv64 = KTIME_MAX;
272 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
273 				hrtimer_cancel(&ts->sched_timer);
274 			goto out;
275 		}
276 
277 		/*
278 		 * calculate the expiry time for the next timer wheel
279 		 * timer
280 		 */
281 		expires = ktime_add_ns(last_update, tick_period.tv64 *
282 				       delta_jiffies);
283 		ts->idle_expires = expires;
284 
285 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
286 			hrtimer_start(&ts->sched_timer, expires,
287 				      HRTIMER_MODE_ABS);
288 			/* Check, if the timer was already in the past */
289 			if (hrtimer_active(&ts->sched_timer))
290 				goto out;
291 		} else if(!tick_program_event(expires, 0))
292 				goto out;
293 		/*
294 		 * We are past the event already. So we crossed a
295 		 * jiffie boundary. Update jiffies and raise the
296 		 * softirq.
297 		 */
298 		tick_do_update_jiffies64(ktime_get());
299 		cpu_clear(cpu, nohz_cpu_mask);
300 	}
301 	raise_softirq_irqoff(TIMER_SOFTIRQ);
302 out:
303 	ts->next_jiffies = next_jiffies;
304 	ts->last_jiffies = last_jiffies;
305 end:
306 	local_irq_restore(flags);
307 }
308 
309 /**
310  * nohz_restart_sched_tick - restart the idle tick from the idle task
311  *
312  * Restart the idle tick when the CPU is woken up from idle
313  */
314 void tick_nohz_restart_sched_tick(void)
315 {
316 	int cpu = smp_processor_id();
317 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
318 	unsigned long ticks;
319 	ktime_t now, delta;
320 
321 	if (!ts->tick_stopped)
322 		return;
323 
324 	/* Update jiffies first */
325 	now = ktime_get();
326 
327 	local_irq_disable();
328 	select_nohz_load_balancer(0);
329 	tick_do_update_jiffies64(now);
330 	cpu_clear(cpu, nohz_cpu_mask);
331 
332 	/* Account the idle time */
333 	delta = ktime_sub(now, ts->idle_entrytime);
334 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
335 
336 	/*
337 	 * We stopped the tick in idle. Update process times would miss the
338 	 * time we slept as update_process_times does only a 1 tick
339 	 * accounting. Enforce that this is accounted to idle !
340 	 */
341 	ticks = jiffies - ts->idle_jiffies;
342 	/*
343 	 * We might be one off. Do not randomly account a huge number of ticks!
344 	 */
345 	if (ticks && ticks < LONG_MAX) {
346 		add_preempt_count(HARDIRQ_OFFSET);
347 		account_system_time(current, HARDIRQ_OFFSET,
348 				    jiffies_to_cputime(ticks));
349 		sub_preempt_count(HARDIRQ_OFFSET);
350 	}
351 
352 	/*
353 	 * Cancel the scheduled timer and restore the tick
354 	 */
355 	ts->tick_stopped  = 0;
356 	hrtimer_cancel(&ts->sched_timer);
357 	ts->sched_timer.expires = ts->idle_tick;
358 
359 	while (1) {
360 		/* Forward the time to expire in the future */
361 		hrtimer_forward(&ts->sched_timer, now, tick_period);
362 
363 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
364 			hrtimer_start(&ts->sched_timer,
365 				      ts->sched_timer.expires,
366 				      HRTIMER_MODE_ABS);
367 			/* Check, if the timer was already in the past */
368 			if (hrtimer_active(&ts->sched_timer))
369 				break;
370 		} else {
371 			if (!tick_program_event(ts->sched_timer.expires, 0))
372 				break;
373 		}
374 		/* Update jiffies and reread time */
375 		tick_do_update_jiffies64(now);
376 		now = ktime_get();
377 	}
378 	local_irq_enable();
379 }
380 
381 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
382 {
383 	hrtimer_forward(&ts->sched_timer, now, tick_period);
384 	return tick_program_event(ts->sched_timer.expires, 0);
385 }
386 
387 /*
388  * The nohz low res interrupt handler
389  */
390 static void tick_nohz_handler(struct clock_event_device *dev)
391 {
392 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
393 	struct pt_regs *regs = get_irq_regs();
394 	int cpu = smp_processor_id();
395 	ktime_t now = ktime_get();
396 
397 	dev->next_event.tv64 = KTIME_MAX;
398 
399 	/*
400 	 * Check if the do_timer duty was dropped. We don't care about
401 	 * concurrency: This happens only when the cpu in charge went
402 	 * into a long sleep. If two cpus happen to assign themself to
403 	 * this duty, then the jiffies update is still serialized by
404 	 * xtime_lock.
405 	 */
406 	if (unlikely(tick_do_timer_cpu == -1))
407 		tick_do_timer_cpu = cpu;
408 
409 	/* Check, if the jiffies need an update */
410 	if (tick_do_timer_cpu == cpu)
411 		tick_do_update_jiffies64(now);
412 
413 	/*
414 	 * When we are idle and the tick is stopped, we have to touch
415 	 * the watchdog as we might not schedule for a really long
416 	 * time. This happens on complete idle SMP systems while
417 	 * waiting on the login prompt. We also increment the "start
418 	 * of idle" jiffy stamp so the idle accounting adjustment we
419 	 * do when we go busy again does not account too much ticks.
420 	 */
421 	if (ts->tick_stopped) {
422 		touch_softlockup_watchdog();
423 		ts->idle_jiffies++;
424 	}
425 
426 	update_process_times(user_mode(regs));
427 	profile_tick(CPU_PROFILING);
428 
429 	/* Do not restart, when we are in the idle loop */
430 	if (ts->tick_stopped)
431 		return;
432 
433 	while (tick_nohz_reprogram(ts, now)) {
434 		now = ktime_get();
435 		tick_do_update_jiffies64(now);
436 	}
437 }
438 
439 /**
440  * tick_nohz_switch_to_nohz - switch to nohz mode
441  */
442 static void tick_nohz_switch_to_nohz(void)
443 {
444 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
445 	ktime_t next;
446 
447 	if (!tick_nohz_enabled)
448 		return;
449 
450 	local_irq_disable();
451 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
452 		local_irq_enable();
453 		return;
454 	}
455 
456 	ts->nohz_mode = NOHZ_MODE_LOWRES;
457 
458 	/*
459 	 * Recycle the hrtimer in ts, so we can share the
460 	 * hrtimer_forward with the highres code.
461 	 */
462 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
463 	/* Get the next period */
464 	next = tick_init_jiffy_update();
465 
466 	for (;;) {
467 		ts->sched_timer.expires = next;
468 		if (!tick_program_event(next, 0))
469 			break;
470 		next = ktime_add(next, tick_period);
471 	}
472 	local_irq_enable();
473 
474 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
475 	       smp_processor_id());
476 }
477 
478 #else
479 
480 static inline void tick_nohz_switch_to_nohz(void) { }
481 
482 #endif /* NO_HZ */
483 
484 /*
485  * High resolution timer specific code
486  */
487 #ifdef CONFIG_HIGH_RES_TIMERS
488 /*
489  * We rearm the timer until we get disabled by the idle code
490  * Called with interrupts disabled and timer->base->cpu_base->lock held.
491  */
492 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
493 {
494 	struct tick_sched *ts =
495 		container_of(timer, struct tick_sched, sched_timer);
496 	struct hrtimer_cpu_base *base = timer->base->cpu_base;
497 	struct pt_regs *regs = get_irq_regs();
498 	ktime_t now = ktime_get();
499 	int cpu = smp_processor_id();
500 
501 #ifdef CONFIG_NO_HZ
502 	/*
503 	 * Check if the do_timer duty was dropped. We don't care about
504 	 * concurrency: This happens only when the cpu in charge went
505 	 * into a long sleep. If two cpus happen to assign themself to
506 	 * this duty, then the jiffies update is still serialized by
507 	 * xtime_lock.
508 	 */
509 	if (unlikely(tick_do_timer_cpu == -1))
510 		tick_do_timer_cpu = cpu;
511 #endif
512 
513 	/* Check, if the jiffies need an update */
514 	if (tick_do_timer_cpu == cpu)
515 		tick_do_update_jiffies64(now);
516 
517 	/*
518 	 * Do not call, when we are not in irq context and have
519 	 * no valid regs pointer
520 	 */
521 	if (regs) {
522 		/*
523 		 * When we are idle and the tick is stopped, we have to touch
524 		 * the watchdog as we might not schedule for a really long
525 		 * time. This happens on complete idle SMP systems while
526 		 * waiting on the login prompt. We also increment the "start of
527 		 * idle" jiffy stamp so the idle accounting adjustment we do
528 		 * when we go busy again does not account too much ticks.
529 		 */
530 		if (ts->tick_stopped) {
531 			touch_softlockup_watchdog();
532 			ts->idle_jiffies++;
533 		}
534 		/*
535 		 * update_process_times() might take tasklist_lock, hence
536 		 * drop the base lock. sched-tick hrtimers are per-CPU and
537 		 * never accessible by userspace APIs, so this is safe to do.
538 		 */
539 		spin_unlock(&base->lock);
540 		update_process_times(user_mode(regs));
541 		profile_tick(CPU_PROFILING);
542 		spin_lock(&base->lock);
543 	}
544 
545 	/* Do not restart, when we are in the idle loop */
546 	if (ts->tick_stopped)
547 		return HRTIMER_NORESTART;
548 
549 	hrtimer_forward(timer, now, tick_period);
550 
551 	return HRTIMER_RESTART;
552 }
553 
554 /**
555  * tick_setup_sched_timer - setup the tick emulation timer
556  */
557 void tick_setup_sched_timer(void)
558 {
559 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
560 	ktime_t now = ktime_get();
561 	u64 offset;
562 
563 	/*
564 	 * Emulate tick processing via per-CPU hrtimers:
565 	 */
566 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
567 	ts->sched_timer.function = tick_sched_timer;
568 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
569 
570 	/* Get the next period (per cpu) */
571 	ts->sched_timer.expires = tick_init_jiffy_update();
572 	offset = ktime_to_ns(tick_period) >> 1;
573 	do_div(offset, num_possible_cpus());
574 	offset *= smp_processor_id();
575 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
576 
577 	for (;;) {
578 		hrtimer_forward(&ts->sched_timer, now, tick_period);
579 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
580 			      HRTIMER_MODE_ABS);
581 		/* Check, if the timer was already in the past */
582 		if (hrtimer_active(&ts->sched_timer))
583 			break;
584 		now = ktime_get();
585 	}
586 
587 #ifdef CONFIG_NO_HZ
588 	if (tick_nohz_enabled)
589 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
590 #endif
591 }
592 
593 void tick_cancel_sched_timer(int cpu)
594 {
595 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
596 
597 	if (ts->sched_timer.base)
598 		hrtimer_cancel(&ts->sched_timer);
599 	ts->tick_stopped = 0;
600 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
601 }
602 #endif /* HIGH_RES_TIMERS */
603 
604 /**
605  * Async notification about clocksource changes
606  */
607 void tick_clock_notify(void)
608 {
609 	int cpu;
610 
611 	for_each_possible_cpu(cpu)
612 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
613 }
614 
615 /*
616  * Async notification about clock event changes
617  */
618 void tick_oneshot_notify(void)
619 {
620 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
621 
622 	set_bit(0, &ts->check_clocks);
623 }
624 
625 /**
626  * Check, if a change happened, which makes oneshot possible.
627  *
628  * Called cyclic from the hrtimer softirq (driven by the timer
629  * softirq) allow_nohz signals, that we can switch into low-res nohz
630  * mode, because high resolution timers are disabled (either compile
631  * or runtime).
632  */
633 int tick_check_oneshot_change(int allow_nohz)
634 {
635 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
636 
637 	if (!test_and_clear_bit(0, &ts->check_clocks))
638 		return 0;
639 
640 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
641 		return 0;
642 
643 	if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
644 		return 0;
645 
646 	if (!allow_nohz)
647 		return 1;
648 
649 	tick_nohz_switch_to_nohz();
650 	return 0;
651 }
652