xref: /openbmc/linux/kernel/time/tick-sched.c (revision b10db7f0)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	touch_softlockup_watchdog();
137 
138 	cpu_clear(cpu, nohz_cpu_mask);
139 	now = ktime_get();
140 
141 	local_irq_save(flags);
142 	tick_do_update_jiffies64(now);
143 	local_irq_restore(flags);
144 }
145 
146 /**
147  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
148  *
149  * When the next event is more than a tick into the future, stop the idle tick
150  * Called either from the idle loop or from irq_exit() when an idle period was
151  * just interrupted by an interrupt which did not cause a reschedule.
152  */
153 void tick_nohz_stop_sched_tick(void)
154 {
155 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
156 	unsigned long rt_jiffies;
157 	struct tick_sched *ts;
158 	ktime_t last_update, expires, now, delta;
159 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
160 	int cpu;
161 
162 	local_irq_save(flags);
163 
164 	cpu = smp_processor_id();
165 	ts = &per_cpu(tick_cpu_sched, cpu);
166 
167 	/*
168 	 * If this cpu is offline and it is the one which updates
169 	 * jiffies, then give up the assignment and let it be taken by
170 	 * the cpu which runs the tick timer next. If we don't drop
171 	 * this here the jiffies might be stale and do_timer() never
172 	 * invoked.
173 	 */
174 	if (unlikely(!cpu_online(cpu))) {
175 		if (cpu == tick_do_timer_cpu)
176 			tick_do_timer_cpu = -1;
177 	}
178 
179 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
180 		goto end;
181 
182 	if (need_resched())
183 		goto end;
184 
185 	cpu = smp_processor_id();
186 	if (unlikely(local_softirq_pending())) {
187 		static int ratelimit;
188 
189 		if (ratelimit < 10) {
190 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
191 			       local_softirq_pending());
192 			ratelimit++;
193 		}
194 	}
195 
196 	now = ktime_get();
197 	/*
198 	 * When called from irq_exit we need to account the idle sleep time
199 	 * correctly.
200 	 */
201 	if (ts->tick_stopped) {
202 		delta = ktime_sub(now, ts->idle_entrytime);
203 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
204 	}
205 
206 	ts->idle_entrytime = now;
207 	ts->idle_calls++;
208 
209 	/* Read jiffies and the time when jiffies were updated last */
210 	do {
211 		seq = read_seqbegin(&xtime_lock);
212 		last_update = last_jiffies_update;
213 		last_jiffies = jiffies;
214 	} while (read_seqretry(&xtime_lock, seq));
215 
216 	/* Get the next timer wheel timer */
217 	next_jiffies = get_next_timer_interrupt(last_jiffies);
218 	delta_jiffies = next_jiffies - last_jiffies;
219 
220 	rt_jiffies = rt_needs_cpu(cpu);
221 	if (rt_jiffies && rt_jiffies < delta_jiffies)
222 		delta_jiffies = rt_jiffies;
223 
224 	if (rcu_needs_cpu(cpu))
225 		delta_jiffies = 1;
226 	/*
227 	 * Do not stop the tick, if we are only one off
228 	 * or if the cpu is required for rcu
229 	 */
230 	if (!ts->tick_stopped && delta_jiffies == 1)
231 		goto out;
232 
233 	/* Schedule the tick, if we are at least one jiffie off */
234 	if ((long)delta_jiffies >= 1) {
235 
236 		if (delta_jiffies > 1)
237 			cpu_set(cpu, nohz_cpu_mask);
238 		/*
239 		 * nohz_stop_sched_tick can be called several times before
240 		 * the nohz_restart_sched_tick is called. This happens when
241 		 * interrupts arrive which do not cause a reschedule. In the
242 		 * first call we save the current tick time, so we can restart
243 		 * the scheduler tick in nohz_restart_sched_tick.
244 		 */
245 		if (!ts->tick_stopped) {
246 			if (select_nohz_load_balancer(1)) {
247 				/*
248 				 * sched tick not stopped!
249 				 */
250 				cpu_clear(cpu, nohz_cpu_mask);
251 				goto out;
252 			}
253 
254 			ts->idle_tick = ts->sched_timer.expires;
255 			ts->tick_stopped = 1;
256 			ts->idle_jiffies = last_jiffies;
257 		}
258 
259 		/*
260 		 * If this cpu is the one which updates jiffies, then
261 		 * give up the assignment and let it be taken by the
262 		 * cpu which runs the tick timer next, which might be
263 		 * this cpu as well. If we don't drop this here the
264 		 * jiffies might be stale and do_timer() never
265 		 * invoked.
266 		 */
267 		if (cpu == tick_do_timer_cpu)
268 			tick_do_timer_cpu = -1;
269 
270 		ts->idle_sleeps++;
271 
272 		/*
273 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
274 		 * there is no timer pending or at least extremly far
275 		 * into the future (12 days for HZ=1000). In this case
276 		 * we simply stop the tick timer:
277 		 */
278 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
279 			ts->idle_expires.tv64 = KTIME_MAX;
280 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
281 				hrtimer_cancel(&ts->sched_timer);
282 			goto out;
283 		}
284 
285 		/*
286 		 * calculate the expiry time for the next timer wheel
287 		 * timer
288 		 */
289 		expires = ktime_add_ns(last_update, tick_period.tv64 *
290 				       delta_jiffies);
291 		ts->idle_expires = expires;
292 
293 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
294 			hrtimer_start(&ts->sched_timer, expires,
295 				      HRTIMER_MODE_ABS);
296 			/* Check, if the timer was already in the past */
297 			if (hrtimer_active(&ts->sched_timer))
298 				goto out;
299 		} else if (!tick_program_event(expires, 0))
300 				goto out;
301 		/*
302 		 * We are past the event already. So we crossed a
303 		 * jiffie boundary. Update jiffies and raise the
304 		 * softirq.
305 		 */
306 		tick_do_update_jiffies64(ktime_get());
307 		cpu_clear(cpu, nohz_cpu_mask);
308 	}
309 	raise_softirq_irqoff(TIMER_SOFTIRQ);
310 out:
311 	ts->next_jiffies = next_jiffies;
312 	ts->last_jiffies = last_jiffies;
313 	ts->sleep_length = ktime_sub(dev->next_event, now);
314 end:
315 	local_irq_restore(flags);
316 }
317 
318 /**
319  * tick_nohz_get_sleep_length - return the length of the current sleep
320  *
321  * Called from power state control code with interrupts disabled
322  */
323 ktime_t tick_nohz_get_sleep_length(void)
324 {
325 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
326 
327 	return ts->sleep_length;
328 }
329 
330 /**
331  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
332  *
333  * Restart the idle tick when the CPU is woken up from idle
334  */
335 void tick_nohz_restart_sched_tick(void)
336 {
337 	int cpu = smp_processor_id();
338 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
339 	unsigned long ticks;
340 	ktime_t now, delta;
341 
342 	if (!ts->tick_stopped)
343 		return;
344 
345 	/* Update jiffies first */
346 	now = ktime_get();
347 
348 	local_irq_disable();
349 	select_nohz_load_balancer(0);
350 	tick_do_update_jiffies64(now);
351 	cpu_clear(cpu, nohz_cpu_mask);
352 
353 	/* Account the idle time */
354 	delta = ktime_sub(now, ts->idle_entrytime);
355 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
356 
357 	/*
358 	 * We stopped the tick in idle. Update process times would miss the
359 	 * time we slept as update_process_times does only a 1 tick
360 	 * accounting. Enforce that this is accounted to idle !
361 	 */
362 	ticks = jiffies - ts->idle_jiffies;
363 	/*
364 	 * We might be one off. Do not randomly account a huge number of ticks!
365 	 */
366 	if (ticks && ticks < LONG_MAX) {
367 		add_preempt_count(HARDIRQ_OFFSET);
368 		account_system_time(current, HARDIRQ_OFFSET,
369 				    jiffies_to_cputime(ticks));
370 		sub_preempt_count(HARDIRQ_OFFSET);
371 	}
372 
373 	/*
374 	 * Cancel the scheduled timer and restore the tick
375 	 */
376 	ts->tick_stopped  = 0;
377 	hrtimer_cancel(&ts->sched_timer);
378 	ts->sched_timer.expires = ts->idle_tick;
379 
380 	while (1) {
381 		/* Forward the time to expire in the future */
382 		hrtimer_forward(&ts->sched_timer, now, tick_period);
383 
384 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
385 			hrtimer_start(&ts->sched_timer,
386 				      ts->sched_timer.expires,
387 				      HRTIMER_MODE_ABS);
388 			/* Check, if the timer was already in the past */
389 			if (hrtimer_active(&ts->sched_timer))
390 				break;
391 		} else {
392 			if (!tick_program_event(ts->sched_timer.expires, 0))
393 				break;
394 		}
395 		/* Update jiffies and reread time */
396 		tick_do_update_jiffies64(now);
397 		now = ktime_get();
398 	}
399 	local_irq_enable();
400 }
401 
402 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
403 {
404 	hrtimer_forward(&ts->sched_timer, now, tick_period);
405 	return tick_program_event(ts->sched_timer.expires, 0);
406 }
407 
408 /*
409  * The nohz low res interrupt handler
410  */
411 static void tick_nohz_handler(struct clock_event_device *dev)
412 {
413 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
414 	struct pt_regs *regs = get_irq_regs();
415 	int cpu = smp_processor_id();
416 	ktime_t now = ktime_get();
417 
418 	dev->next_event.tv64 = KTIME_MAX;
419 
420 	/*
421 	 * Check if the do_timer duty was dropped. We don't care about
422 	 * concurrency: This happens only when the cpu in charge went
423 	 * into a long sleep. If two cpus happen to assign themself to
424 	 * this duty, then the jiffies update is still serialized by
425 	 * xtime_lock.
426 	 */
427 	if (unlikely(tick_do_timer_cpu == -1))
428 		tick_do_timer_cpu = cpu;
429 
430 	/* Check, if the jiffies need an update */
431 	if (tick_do_timer_cpu == cpu)
432 		tick_do_update_jiffies64(now);
433 
434 	/*
435 	 * When we are idle and the tick is stopped, we have to touch
436 	 * the watchdog as we might not schedule for a really long
437 	 * time. This happens on complete idle SMP systems while
438 	 * waiting on the login prompt. We also increment the "start
439 	 * of idle" jiffy stamp so the idle accounting adjustment we
440 	 * do when we go busy again does not account too much ticks.
441 	 */
442 	if (ts->tick_stopped) {
443 		touch_softlockup_watchdog();
444 		ts->idle_jiffies++;
445 	}
446 
447 	update_process_times(user_mode(regs));
448 	profile_tick(CPU_PROFILING);
449 
450 	/* Do not restart, when we are in the idle loop */
451 	if (ts->tick_stopped)
452 		return;
453 
454 	while (tick_nohz_reprogram(ts, now)) {
455 		now = ktime_get();
456 		tick_do_update_jiffies64(now);
457 	}
458 }
459 
460 /**
461  * tick_nohz_switch_to_nohz - switch to nohz mode
462  */
463 static void tick_nohz_switch_to_nohz(void)
464 {
465 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
466 	ktime_t next;
467 
468 	if (!tick_nohz_enabled)
469 		return;
470 
471 	local_irq_disable();
472 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
473 		local_irq_enable();
474 		return;
475 	}
476 
477 	ts->nohz_mode = NOHZ_MODE_LOWRES;
478 
479 	/*
480 	 * Recycle the hrtimer in ts, so we can share the
481 	 * hrtimer_forward with the highres code.
482 	 */
483 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
484 	/* Get the next period */
485 	next = tick_init_jiffy_update();
486 
487 	for (;;) {
488 		ts->sched_timer.expires = next;
489 		if (!tick_program_event(next, 0))
490 			break;
491 		next = ktime_add(next, tick_period);
492 	}
493 	local_irq_enable();
494 
495 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
496 	       smp_processor_id());
497 }
498 
499 #else
500 
501 static inline void tick_nohz_switch_to_nohz(void) { }
502 
503 #endif /* NO_HZ */
504 
505 /*
506  * High resolution timer specific code
507  */
508 #ifdef CONFIG_HIGH_RES_TIMERS
509 /*
510  * We rearm the timer until we get disabled by the idle code.
511  * Called with interrupts disabled and timer->base->cpu_base->lock held.
512  */
513 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
514 {
515 	struct tick_sched *ts =
516 		container_of(timer, struct tick_sched, sched_timer);
517 	struct pt_regs *regs = get_irq_regs();
518 	ktime_t now = ktime_get();
519 	int cpu = smp_processor_id();
520 
521 #ifdef CONFIG_NO_HZ
522 	/*
523 	 * Check if the do_timer duty was dropped. We don't care about
524 	 * concurrency: This happens only when the cpu in charge went
525 	 * into a long sleep. If two cpus happen to assign themself to
526 	 * this duty, then the jiffies update is still serialized by
527 	 * xtime_lock.
528 	 */
529 	if (unlikely(tick_do_timer_cpu == -1))
530 		tick_do_timer_cpu = cpu;
531 #endif
532 
533 	/* Check, if the jiffies need an update */
534 	if (tick_do_timer_cpu == cpu)
535 		tick_do_update_jiffies64(now);
536 
537 	/*
538 	 * Do not call, when we are not in irq context and have
539 	 * no valid regs pointer
540 	 */
541 	if (regs) {
542 		/*
543 		 * When we are idle and the tick is stopped, we have to touch
544 		 * the watchdog as we might not schedule for a really long
545 		 * time. This happens on complete idle SMP systems while
546 		 * waiting on the login prompt. We also increment the "start of
547 		 * idle" jiffy stamp so the idle accounting adjustment we do
548 		 * when we go busy again does not account too much ticks.
549 		 */
550 		if (ts->tick_stopped) {
551 			touch_softlockup_watchdog();
552 			ts->idle_jiffies++;
553 		}
554 		update_process_times(user_mode(regs));
555 		profile_tick(CPU_PROFILING);
556 	}
557 
558 	/* Do not restart, when we are in the idle loop */
559 	if (ts->tick_stopped)
560 		return HRTIMER_NORESTART;
561 
562 	hrtimer_forward(timer, now, tick_period);
563 
564 	return HRTIMER_RESTART;
565 }
566 
567 /**
568  * tick_setup_sched_timer - setup the tick emulation timer
569  */
570 void tick_setup_sched_timer(void)
571 {
572 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
573 	ktime_t now = ktime_get();
574 	u64 offset;
575 
576 	/*
577 	 * Emulate tick processing via per-CPU hrtimers:
578 	 */
579 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
580 	ts->sched_timer.function = tick_sched_timer;
581 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
582 
583 	/* Get the next period (per cpu) */
584 	ts->sched_timer.expires = tick_init_jiffy_update();
585 	offset = ktime_to_ns(tick_period) >> 1;
586 	do_div(offset, num_possible_cpus());
587 	offset *= smp_processor_id();
588 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
589 
590 	for (;;) {
591 		hrtimer_forward(&ts->sched_timer, now, tick_period);
592 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
593 			      HRTIMER_MODE_ABS);
594 		/* Check, if the timer was already in the past */
595 		if (hrtimer_active(&ts->sched_timer))
596 			break;
597 		now = ktime_get();
598 	}
599 
600 #ifdef CONFIG_NO_HZ
601 	if (tick_nohz_enabled)
602 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
603 #endif
604 }
605 
606 void tick_cancel_sched_timer(int cpu)
607 {
608 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
609 
610 	if (ts->sched_timer.base)
611 		hrtimer_cancel(&ts->sched_timer);
612 	ts->tick_stopped = 0;
613 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
614 }
615 #endif /* HIGH_RES_TIMERS */
616 
617 /**
618  * Async notification about clocksource changes
619  */
620 void tick_clock_notify(void)
621 {
622 	int cpu;
623 
624 	for_each_possible_cpu(cpu)
625 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
626 }
627 
628 /*
629  * Async notification about clock event changes
630  */
631 void tick_oneshot_notify(void)
632 {
633 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
634 
635 	set_bit(0, &ts->check_clocks);
636 }
637 
638 /**
639  * Check, if a change happened, which makes oneshot possible.
640  *
641  * Called cyclic from the hrtimer softirq (driven by the timer
642  * softirq) allow_nohz signals, that we can switch into low-res nohz
643  * mode, because high resolution timers are disabled (either compile
644  * or runtime).
645  */
646 int tick_check_oneshot_change(int allow_nohz)
647 {
648 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
649 
650 	if (!test_and_clear_bit(0, &ts->check_clocks))
651 		return 0;
652 
653 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
654 		return 0;
655 
656 	if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
657 		return 0;
658 
659 	if (!allow_nohz)
660 		return 1;
661 
662 	tick_nohz_switch_to_nohz();
663 	return 0;
664 }
665