1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 #include <linux/context_tracking.h> 27 28 #include <asm/irq_regs.h> 29 30 #include "tick-internal.h" 31 32 #include <trace/events/timer.h> 33 34 /* 35 * Per cpu nohz control structure 36 */ 37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 38 39 /* 40 * The time, when the last jiffy update happened. Protected by jiffies_lock. 41 */ 42 static ktime_t last_jiffies_update; 43 44 struct tick_sched *tick_get_tick_sched(int cpu) 45 { 46 return &per_cpu(tick_cpu_sched, cpu); 47 } 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevalute with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update.tv64 == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the cpu in charge went 120 * into a long sleep. If two cpus happen to assign themself to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 155 #ifdef CONFIG_NO_HZ_FULL 156 cpumask_var_t tick_nohz_full_mask; 157 bool tick_nohz_full_running; 158 159 static bool can_stop_full_tick(void) 160 { 161 WARN_ON_ONCE(!irqs_disabled()); 162 163 if (!sched_can_stop_tick()) { 164 trace_tick_stop(0, "more than 1 task in runqueue\n"); 165 return false; 166 } 167 168 if (!posix_cpu_timers_can_stop_tick(current)) { 169 trace_tick_stop(0, "posix timers running\n"); 170 return false; 171 } 172 173 if (!perf_event_can_stop_tick()) { 174 trace_tick_stop(0, "perf events running\n"); 175 return false; 176 } 177 178 /* sched_clock_tick() needs us? */ 179 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 180 /* 181 * TODO: kick full dynticks CPUs when 182 * sched_clock_stable is set. 183 */ 184 if (!sched_clock_stable()) { 185 trace_tick_stop(0, "unstable sched clock\n"); 186 /* 187 * Don't allow the user to think they can get 188 * full NO_HZ with this machine. 189 */ 190 WARN_ONCE(tick_nohz_full_running, 191 "NO_HZ FULL will not work with unstable sched clock"); 192 return false; 193 } 194 #endif 195 196 return true; 197 } 198 199 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 200 201 /* 202 * Re-evaluate the need for the tick on the current CPU 203 * and restart it if necessary. 204 */ 205 void __tick_nohz_full_check(void) 206 { 207 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 208 209 if (tick_nohz_full_cpu(smp_processor_id())) { 210 if (ts->tick_stopped && !is_idle_task(current)) { 211 if (!can_stop_full_tick()) 212 tick_nohz_restart_sched_tick(ts, ktime_get()); 213 } 214 } 215 } 216 217 static void nohz_full_kick_work_func(struct irq_work *work) 218 { 219 __tick_nohz_full_check(); 220 } 221 222 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 223 .func = nohz_full_kick_work_func, 224 }; 225 226 /* 227 * Kick the current CPU if it's full dynticks in order to force it to 228 * re-evaluate its dependency on the tick and restart it if necessary. 229 */ 230 void tick_nohz_full_kick(void) 231 { 232 if (tick_nohz_full_cpu(smp_processor_id())) 233 irq_work_queue(&__get_cpu_var(nohz_full_kick_work)); 234 } 235 236 static void nohz_full_kick_ipi(void *info) 237 { 238 __tick_nohz_full_check(); 239 } 240 241 /* 242 * Kick all full dynticks CPUs in order to force these to re-evaluate 243 * their dependency on the tick and restart it if necessary. 244 */ 245 void tick_nohz_full_kick_all(void) 246 { 247 if (!tick_nohz_full_running) 248 return; 249 250 preempt_disable(); 251 smp_call_function_many(tick_nohz_full_mask, 252 nohz_full_kick_ipi, NULL, false); 253 tick_nohz_full_kick(); 254 preempt_enable(); 255 } 256 257 /* 258 * Re-evaluate the need for the tick as we switch the current task. 259 * It might need the tick due to per task/process properties: 260 * perf events, posix cpu timers, ... 261 */ 262 void __tick_nohz_task_switch(struct task_struct *tsk) 263 { 264 unsigned long flags; 265 266 local_irq_save(flags); 267 268 if (!tick_nohz_full_cpu(smp_processor_id())) 269 goto out; 270 271 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 272 tick_nohz_full_kick(); 273 274 out: 275 local_irq_restore(flags); 276 } 277 278 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 279 static int __init tick_nohz_full_setup(char *str) 280 { 281 int cpu; 282 283 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 284 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 285 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 286 return 1; 287 } 288 289 cpu = smp_processor_id(); 290 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 291 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 292 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 293 } 294 tick_nohz_full_running = true; 295 296 return 1; 297 } 298 __setup("nohz_full=", tick_nohz_full_setup); 299 300 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 301 unsigned long action, 302 void *hcpu) 303 { 304 unsigned int cpu = (unsigned long)hcpu; 305 306 switch (action & ~CPU_TASKS_FROZEN) { 307 case CPU_DOWN_PREPARE: 308 /* 309 * If we handle the timekeeping duty for full dynticks CPUs, 310 * we can't safely shutdown that CPU. 311 */ 312 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 313 return NOTIFY_BAD; 314 break; 315 } 316 return NOTIFY_OK; 317 } 318 319 /* 320 * Worst case string length in chunks of CPU range seems 2 steps 321 * separations: 0,2,4,6,... 322 * This is NR_CPUS + sizeof('\0') 323 */ 324 static char __initdata nohz_full_buf[NR_CPUS + 1]; 325 326 static int tick_nohz_init_all(void) 327 { 328 int err = -1; 329 330 #ifdef CONFIG_NO_HZ_FULL_ALL 331 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 332 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 333 return err; 334 } 335 err = 0; 336 cpumask_setall(tick_nohz_full_mask); 337 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask); 338 tick_nohz_full_running = true; 339 #endif 340 return err; 341 } 342 343 void __init tick_nohz_init(void) 344 { 345 int cpu; 346 347 if (!tick_nohz_full_running) { 348 if (tick_nohz_init_all() < 0) 349 return; 350 } 351 352 for_each_cpu(cpu, tick_nohz_full_mask) 353 context_tracking_cpu_set(cpu); 354 355 cpu_notifier(tick_nohz_cpu_down_callback, 0); 356 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask); 357 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 358 } 359 #endif 360 361 /* 362 * NOHZ - aka dynamic tick functionality 363 */ 364 #ifdef CONFIG_NO_HZ_COMMON 365 /* 366 * NO HZ enabled ? 367 */ 368 static int tick_nohz_enabled __read_mostly = 1; 369 int tick_nohz_active __read_mostly; 370 /* 371 * Enable / Disable tickless mode 372 */ 373 static int __init setup_tick_nohz(char *str) 374 { 375 if (!strcmp(str, "off")) 376 tick_nohz_enabled = 0; 377 else if (!strcmp(str, "on")) 378 tick_nohz_enabled = 1; 379 else 380 return 0; 381 return 1; 382 } 383 384 __setup("nohz=", setup_tick_nohz); 385 386 /** 387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 388 * 389 * Called from interrupt entry when the CPU was idle 390 * 391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 392 * must be updated. Otherwise an interrupt handler could use a stale jiffy 393 * value. We do this unconditionally on any cpu, as we don't know whether the 394 * cpu, which has the update task assigned is in a long sleep. 395 */ 396 static void tick_nohz_update_jiffies(ktime_t now) 397 { 398 unsigned long flags; 399 400 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 401 402 local_irq_save(flags); 403 tick_do_update_jiffies64(now); 404 local_irq_restore(flags); 405 406 touch_softlockup_watchdog(); 407 } 408 409 /* 410 * Updates the per cpu time idle statistics counters 411 */ 412 static void 413 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 414 { 415 ktime_t delta; 416 417 if (ts->idle_active) { 418 delta = ktime_sub(now, ts->idle_entrytime); 419 if (nr_iowait_cpu(cpu) > 0) 420 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 421 else 422 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 423 ts->idle_entrytime = now; 424 } 425 426 if (last_update_time) 427 *last_update_time = ktime_to_us(now); 428 429 } 430 431 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 432 { 433 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 434 ts->idle_active = 0; 435 436 sched_clock_idle_wakeup_event(0); 437 } 438 439 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 440 { 441 ktime_t now = ktime_get(); 442 443 ts->idle_entrytime = now; 444 ts->idle_active = 1; 445 sched_clock_idle_sleep_event(); 446 return now; 447 } 448 449 /** 450 * get_cpu_idle_time_us - get the total idle time of a cpu 451 * @cpu: CPU number to query 452 * @last_update_time: variable to store update time in. Do not update 453 * counters if NULL. 454 * 455 * Return the cummulative idle time (since boot) for a given 456 * CPU, in microseconds. 457 * 458 * This time is measured via accounting rather than sampling, 459 * and is as accurate as ktime_get() is. 460 * 461 * This function returns -1 if NOHZ is not enabled. 462 */ 463 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 464 { 465 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 466 ktime_t now, idle; 467 468 if (!tick_nohz_active) 469 return -1; 470 471 now = ktime_get(); 472 if (last_update_time) { 473 update_ts_time_stats(cpu, ts, now, last_update_time); 474 idle = ts->idle_sleeptime; 475 } else { 476 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 477 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 478 479 idle = ktime_add(ts->idle_sleeptime, delta); 480 } else { 481 idle = ts->idle_sleeptime; 482 } 483 } 484 485 return ktime_to_us(idle); 486 487 } 488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 489 490 /** 491 * get_cpu_iowait_time_us - get the total iowait time of a cpu 492 * @cpu: CPU number to query 493 * @last_update_time: variable to store update time in. Do not update 494 * counters if NULL. 495 * 496 * Return the cummulative iowait time (since boot) for a given 497 * CPU, in microseconds. 498 * 499 * This time is measured via accounting rather than sampling, 500 * and is as accurate as ktime_get() is. 501 * 502 * This function returns -1 if NOHZ is not enabled. 503 */ 504 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 505 { 506 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 507 ktime_t now, iowait; 508 509 if (!tick_nohz_active) 510 return -1; 511 512 now = ktime_get(); 513 if (last_update_time) { 514 update_ts_time_stats(cpu, ts, now, last_update_time); 515 iowait = ts->iowait_sleeptime; 516 } else { 517 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 518 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 519 520 iowait = ktime_add(ts->iowait_sleeptime, delta); 521 } else { 522 iowait = ts->iowait_sleeptime; 523 } 524 } 525 526 return ktime_to_us(iowait); 527 } 528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 529 530 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 531 ktime_t now, int cpu) 532 { 533 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 534 ktime_t last_update, expires, ret = { .tv64 = 0 }; 535 unsigned long rcu_delta_jiffies; 536 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 537 u64 time_delta; 538 539 time_delta = timekeeping_max_deferment(); 540 541 /* Read jiffies and the time when jiffies were updated last */ 542 do { 543 seq = read_seqbegin(&jiffies_lock); 544 last_update = last_jiffies_update; 545 last_jiffies = jiffies; 546 } while (read_seqretry(&jiffies_lock, seq)); 547 548 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 549 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 550 next_jiffies = last_jiffies + 1; 551 delta_jiffies = 1; 552 } else { 553 /* Get the next timer wheel timer */ 554 next_jiffies = get_next_timer_interrupt(last_jiffies); 555 delta_jiffies = next_jiffies - last_jiffies; 556 if (rcu_delta_jiffies < delta_jiffies) { 557 next_jiffies = last_jiffies + rcu_delta_jiffies; 558 delta_jiffies = rcu_delta_jiffies; 559 } 560 } 561 562 /* 563 * Do not stop the tick, if we are only one off (or less) 564 * or if the cpu is required for RCU: 565 */ 566 if (!ts->tick_stopped && delta_jiffies <= 1) 567 goto out; 568 569 /* Schedule the tick, if we are at least one jiffie off */ 570 if ((long)delta_jiffies >= 1) { 571 572 /* 573 * If this cpu is the one which updates jiffies, then 574 * give up the assignment and let it be taken by the 575 * cpu which runs the tick timer next, which might be 576 * this cpu as well. If we don't drop this here the 577 * jiffies might be stale and do_timer() never 578 * invoked. Keep track of the fact that it was the one 579 * which had the do_timer() duty last. If this cpu is 580 * the one which had the do_timer() duty last, we 581 * limit the sleep time to the timekeeping 582 * max_deferement value which we retrieved 583 * above. Otherwise we can sleep as long as we want. 584 */ 585 if (cpu == tick_do_timer_cpu) { 586 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 587 ts->do_timer_last = 1; 588 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 589 time_delta = KTIME_MAX; 590 ts->do_timer_last = 0; 591 } else if (!ts->do_timer_last) { 592 time_delta = KTIME_MAX; 593 } 594 595 #ifdef CONFIG_NO_HZ_FULL 596 if (!ts->inidle) { 597 time_delta = min(time_delta, 598 scheduler_tick_max_deferment()); 599 } 600 #endif 601 602 /* 603 * calculate the expiry time for the next timer wheel 604 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 605 * that there is no timer pending or at least extremely 606 * far into the future (12 days for HZ=1000). In this 607 * case we set the expiry to the end of time. 608 */ 609 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 610 /* 611 * Calculate the time delta for the next timer event. 612 * If the time delta exceeds the maximum time delta 613 * permitted by the current clocksource then adjust 614 * the time delta accordingly to ensure the 615 * clocksource does not wrap. 616 */ 617 time_delta = min_t(u64, time_delta, 618 tick_period.tv64 * delta_jiffies); 619 } 620 621 if (time_delta < KTIME_MAX) 622 expires = ktime_add_ns(last_update, time_delta); 623 else 624 expires.tv64 = KTIME_MAX; 625 626 /* Skip reprogram of event if its not changed */ 627 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 628 goto out; 629 630 ret = expires; 631 632 /* 633 * nohz_stop_sched_tick can be called several times before 634 * the nohz_restart_sched_tick is called. This happens when 635 * interrupts arrive which do not cause a reschedule. In the 636 * first call we save the current tick time, so we can restart 637 * the scheduler tick in nohz_restart_sched_tick. 638 */ 639 if (!ts->tick_stopped) { 640 nohz_balance_enter_idle(cpu); 641 calc_load_enter_idle(); 642 643 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 644 ts->tick_stopped = 1; 645 trace_tick_stop(1, " "); 646 } 647 648 /* 649 * If the expiration time == KTIME_MAX, then 650 * in this case we simply stop the tick timer. 651 */ 652 if (unlikely(expires.tv64 == KTIME_MAX)) { 653 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 654 hrtimer_cancel(&ts->sched_timer); 655 goto out; 656 } 657 658 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 659 hrtimer_start(&ts->sched_timer, expires, 660 HRTIMER_MODE_ABS_PINNED); 661 /* Check, if the timer was already in the past */ 662 if (hrtimer_active(&ts->sched_timer)) 663 goto out; 664 } else if (!tick_program_event(expires, 0)) 665 goto out; 666 /* 667 * We are past the event already. So we crossed a 668 * jiffie boundary. Update jiffies and raise the 669 * softirq. 670 */ 671 tick_do_update_jiffies64(ktime_get()); 672 } 673 raise_softirq_irqoff(TIMER_SOFTIRQ); 674 out: 675 ts->next_jiffies = next_jiffies; 676 ts->last_jiffies = last_jiffies; 677 ts->sleep_length = ktime_sub(dev->next_event, now); 678 679 return ret; 680 } 681 682 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 683 { 684 #ifdef CONFIG_NO_HZ_FULL 685 int cpu = smp_processor_id(); 686 687 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 688 return; 689 690 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 691 return; 692 693 if (!can_stop_full_tick()) 694 return; 695 696 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 697 #endif 698 } 699 700 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 701 { 702 /* 703 * If this cpu is offline and it is the one which updates 704 * jiffies, then give up the assignment and let it be taken by 705 * the cpu which runs the tick timer next. If we don't drop 706 * this here the jiffies might be stale and do_timer() never 707 * invoked. 708 */ 709 if (unlikely(!cpu_online(cpu))) { 710 if (cpu == tick_do_timer_cpu) 711 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 712 return false; 713 } 714 715 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 716 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; 717 return false; 718 } 719 720 if (need_resched()) 721 return false; 722 723 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 724 static int ratelimit; 725 726 if (ratelimit < 10 && 727 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 728 pr_warn("NOHZ: local_softirq_pending %02x\n", 729 (unsigned int) local_softirq_pending()); 730 ratelimit++; 731 } 732 return false; 733 } 734 735 if (tick_nohz_full_enabled()) { 736 /* 737 * Keep the tick alive to guarantee timekeeping progression 738 * if there are full dynticks CPUs around 739 */ 740 if (tick_do_timer_cpu == cpu) 741 return false; 742 /* 743 * Boot safety: make sure the timekeeping duty has been 744 * assigned before entering dyntick-idle mode, 745 */ 746 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 747 return false; 748 } 749 750 return true; 751 } 752 753 static void __tick_nohz_idle_enter(struct tick_sched *ts) 754 { 755 ktime_t now, expires; 756 int cpu = smp_processor_id(); 757 758 now = tick_nohz_start_idle(ts); 759 760 if (can_stop_idle_tick(cpu, ts)) { 761 int was_stopped = ts->tick_stopped; 762 763 ts->idle_calls++; 764 765 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 766 if (expires.tv64 > 0LL) { 767 ts->idle_sleeps++; 768 ts->idle_expires = expires; 769 } 770 771 if (!was_stopped && ts->tick_stopped) 772 ts->idle_jiffies = ts->last_jiffies; 773 } 774 } 775 776 /** 777 * tick_nohz_idle_enter - stop the idle tick from the idle task 778 * 779 * When the next event is more than a tick into the future, stop the idle tick 780 * Called when we start the idle loop. 781 * 782 * The arch is responsible of calling: 783 * 784 * - rcu_idle_enter() after its last use of RCU before the CPU is put 785 * to sleep. 786 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 787 */ 788 void tick_nohz_idle_enter(void) 789 { 790 struct tick_sched *ts; 791 792 WARN_ON_ONCE(irqs_disabled()); 793 794 /* 795 * Update the idle state in the scheduler domain hierarchy 796 * when tick_nohz_stop_sched_tick() is called from the idle loop. 797 * State will be updated to busy during the first busy tick after 798 * exiting idle. 799 */ 800 set_cpu_sd_state_idle(); 801 802 local_irq_disable(); 803 804 ts = &__get_cpu_var(tick_cpu_sched); 805 ts->inidle = 1; 806 __tick_nohz_idle_enter(ts); 807 808 local_irq_enable(); 809 } 810 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 811 812 /** 813 * tick_nohz_irq_exit - update next tick event from interrupt exit 814 * 815 * When an interrupt fires while we are idle and it doesn't cause 816 * a reschedule, it may still add, modify or delete a timer, enqueue 817 * an RCU callback, etc... 818 * So we need to re-calculate and reprogram the next tick event. 819 */ 820 void tick_nohz_irq_exit(void) 821 { 822 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 823 824 if (ts->inidle) 825 __tick_nohz_idle_enter(ts); 826 else 827 tick_nohz_full_stop_tick(ts); 828 } 829 830 /** 831 * tick_nohz_get_sleep_length - return the length of the current sleep 832 * 833 * Called from power state control code with interrupts disabled 834 */ 835 ktime_t tick_nohz_get_sleep_length(void) 836 { 837 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 838 839 return ts->sleep_length; 840 } 841 842 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 843 { 844 hrtimer_cancel(&ts->sched_timer); 845 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 846 847 while (1) { 848 /* Forward the time to expire in the future */ 849 hrtimer_forward(&ts->sched_timer, now, tick_period); 850 851 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 852 hrtimer_start_expires(&ts->sched_timer, 853 HRTIMER_MODE_ABS_PINNED); 854 /* Check, if the timer was already in the past */ 855 if (hrtimer_active(&ts->sched_timer)) 856 break; 857 } else { 858 if (!tick_program_event( 859 hrtimer_get_expires(&ts->sched_timer), 0)) 860 break; 861 } 862 /* Reread time and update jiffies */ 863 now = ktime_get(); 864 tick_do_update_jiffies64(now); 865 } 866 } 867 868 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 869 { 870 /* Update jiffies first */ 871 tick_do_update_jiffies64(now); 872 update_cpu_load_nohz(); 873 874 calc_load_exit_idle(); 875 touch_softlockup_watchdog(); 876 /* 877 * Cancel the scheduled timer and restore the tick 878 */ 879 ts->tick_stopped = 0; 880 ts->idle_exittime = now; 881 882 tick_nohz_restart(ts, now); 883 } 884 885 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 886 { 887 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 888 unsigned long ticks; 889 890 if (vtime_accounting_enabled()) 891 return; 892 /* 893 * We stopped the tick in idle. Update process times would miss the 894 * time we slept as update_process_times does only a 1 tick 895 * accounting. Enforce that this is accounted to idle ! 896 */ 897 ticks = jiffies - ts->idle_jiffies; 898 /* 899 * We might be one off. Do not randomly account a huge number of ticks! 900 */ 901 if (ticks && ticks < LONG_MAX) 902 account_idle_ticks(ticks); 903 #endif 904 } 905 906 /** 907 * tick_nohz_idle_exit - restart the idle tick from the idle task 908 * 909 * Restart the idle tick when the CPU is woken up from idle 910 * This also exit the RCU extended quiescent state. The CPU 911 * can use RCU again after this function is called. 912 */ 913 void tick_nohz_idle_exit(void) 914 { 915 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 916 ktime_t now; 917 918 local_irq_disable(); 919 920 WARN_ON_ONCE(!ts->inidle); 921 922 ts->inidle = 0; 923 924 if (ts->idle_active || ts->tick_stopped) 925 now = ktime_get(); 926 927 if (ts->idle_active) 928 tick_nohz_stop_idle(ts, now); 929 930 if (ts->tick_stopped) { 931 tick_nohz_restart_sched_tick(ts, now); 932 tick_nohz_account_idle_ticks(ts); 933 } 934 935 local_irq_enable(); 936 } 937 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 938 939 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 940 { 941 hrtimer_forward(&ts->sched_timer, now, tick_period); 942 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 943 } 944 945 /* 946 * The nohz low res interrupt handler 947 */ 948 static void tick_nohz_handler(struct clock_event_device *dev) 949 { 950 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 951 struct pt_regs *regs = get_irq_regs(); 952 ktime_t now = ktime_get(); 953 954 dev->next_event.tv64 = KTIME_MAX; 955 956 tick_sched_do_timer(now); 957 tick_sched_handle(ts, regs); 958 959 while (tick_nohz_reprogram(ts, now)) { 960 now = ktime_get(); 961 tick_do_update_jiffies64(now); 962 } 963 } 964 965 /** 966 * tick_nohz_switch_to_nohz - switch to nohz mode 967 */ 968 static void tick_nohz_switch_to_nohz(void) 969 { 970 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 971 ktime_t next; 972 973 if (!tick_nohz_enabled) 974 return; 975 976 local_irq_disable(); 977 if (tick_switch_to_oneshot(tick_nohz_handler)) { 978 local_irq_enable(); 979 return; 980 } 981 tick_nohz_active = 1; 982 ts->nohz_mode = NOHZ_MODE_LOWRES; 983 984 /* 985 * Recycle the hrtimer in ts, so we can share the 986 * hrtimer_forward with the highres code. 987 */ 988 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 989 /* Get the next period */ 990 next = tick_init_jiffy_update(); 991 992 for (;;) { 993 hrtimer_set_expires(&ts->sched_timer, next); 994 if (!tick_program_event(next, 0)) 995 break; 996 next = ktime_add(next, tick_period); 997 } 998 local_irq_enable(); 999 } 1000 1001 /* 1002 * When NOHZ is enabled and the tick is stopped, we need to kick the 1003 * tick timer from irq_enter() so that the jiffies update is kept 1004 * alive during long running softirqs. That's ugly as hell, but 1005 * correctness is key even if we need to fix the offending softirq in 1006 * the first place. 1007 * 1008 * Note, this is different to tick_nohz_restart. We just kick the 1009 * timer and do not touch the other magic bits which need to be done 1010 * when idle is left. 1011 */ 1012 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now) 1013 { 1014 #if 0 1015 /* Switch back to 2.6.27 behaviour */ 1016 ktime_t delta; 1017 1018 /* 1019 * Do not touch the tick device, when the next expiry is either 1020 * already reached or less/equal than the tick period. 1021 */ 1022 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1023 if (delta.tv64 <= tick_period.tv64) 1024 return; 1025 1026 tick_nohz_restart(ts, now); 1027 #endif 1028 } 1029 1030 static inline void tick_nohz_irq_enter(void) 1031 { 1032 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1033 ktime_t now; 1034 1035 if (!ts->idle_active && !ts->tick_stopped) 1036 return; 1037 now = ktime_get(); 1038 if (ts->idle_active) 1039 tick_nohz_stop_idle(ts, now); 1040 if (ts->tick_stopped) { 1041 tick_nohz_update_jiffies(now); 1042 tick_nohz_kick_tick(ts, now); 1043 } 1044 } 1045 1046 #else 1047 1048 static inline void tick_nohz_switch_to_nohz(void) { } 1049 static inline void tick_nohz_irq_enter(void) { } 1050 1051 #endif /* CONFIG_NO_HZ_COMMON */ 1052 1053 /* 1054 * Called from irq_enter to notify about the possible interruption of idle() 1055 */ 1056 void tick_irq_enter(void) 1057 { 1058 tick_check_oneshot_broadcast_this_cpu(); 1059 tick_nohz_irq_enter(); 1060 } 1061 1062 /* 1063 * High resolution timer specific code 1064 */ 1065 #ifdef CONFIG_HIGH_RES_TIMERS 1066 /* 1067 * We rearm the timer until we get disabled by the idle code. 1068 * Called with interrupts disabled. 1069 */ 1070 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1071 { 1072 struct tick_sched *ts = 1073 container_of(timer, struct tick_sched, sched_timer); 1074 struct pt_regs *regs = get_irq_regs(); 1075 ktime_t now = ktime_get(); 1076 1077 tick_sched_do_timer(now); 1078 1079 /* 1080 * Do not call, when we are not in irq context and have 1081 * no valid regs pointer 1082 */ 1083 if (regs) 1084 tick_sched_handle(ts, regs); 1085 1086 hrtimer_forward(timer, now, tick_period); 1087 1088 return HRTIMER_RESTART; 1089 } 1090 1091 static int sched_skew_tick; 1092 1093 static int __init skew_tick(char *str) 1094 { 1095 get_option(&str, &sched_skew_tick); 1096 1097 return 0; 1098 } 1099 early_param("skew_tick", skew_tick); 1100 1101 /** 1102 * tick_setup_sched_timer - setup the tick emulation timer 1103 */ 1104 void tick_setup_sched_timer(void) 1105 { 1106 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1107 ktime_t now = ktime_get(); 1108 1109 /* 1110 * Emulate tick processing via per-CPU hrtimers: 1111 */ 1112 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1113 ts->sched_timer.function = tick_sched_timer; 1114 1115 /* Get the next period (per cpu) */ 1116 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1117 1118 /* Offset the tick to avert jiffies_lock contention. */ 1119 if (sched_skew_tick) { 1120 u64 offset = ktime_to_ns(tick_period) >> 1; 1121 do_div(offset, num_possible_cpus()); 1122 offset *= smp_processor_id(); 1123 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1124 } 1125 1126 for (;;) { 1127 hrtimer_forward(&ts->sched_timer, now, tick_period); 1128 hrtimer_start_expires(&ts->sched_timer, 1129 HRTIMER_MODE_ABS_PINNED); 1130 /* Check, if the timer was already in the past */ 1131 if (hrtimer_active(&ts->sched_timer)) 1132 break; 1133 now = ktime_get(); 1134 } 1135 1136 #ifdef CONFIG_NO_HZ_COMMON 1137 if (tick_nohz_enabled) { 1138 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1139 tick_nohz_active = 1; 1140 } 1141 #endif 1142 } 1143 #endif /* HIGH_RES_TIMERS */ 1144 1145 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1146 void tick_cancel_sched_timer(int cpu) 1147 { 1148 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1149 1150 # ifdef CONFIG_HIGH_RES_TIMERS 1151 if (ts->sched_timer.base) 1152 hrtimer_cancel(&ts->sched_timer); 1153 # endif 1154 1155 memset(ts, 0, sizeof(*ts)); 1156 } 1157 #endif 1158 1159 /** 1160 * Async notification about clocksource changes 1161 */ 1162 void tick_clock_notify(void) 1163 { 1164 int cpu; 1165 1166 for_each_possible_cpu(cpu) 1167 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1168 } 1169 1170 /* 1171 * Async notification about clock event changes 1172 */ 1173 void tick_oneshot_notify(void) 1174 { 1175 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1176 1177 set_bit(0, &ts->check_clocks); 1178 } 1179 1180 /** 1181 * Check, if a change happened, which makes oneshot possible. 1182 * 1183 * Called cyclic from the hrtimer softirq (driven by the timer 1184 * softirq) allow_nohz signals, that we can switch into low-res nohz 1185 * mode, because high resolution timers are disabled (either compile 1186 * or runtime). 1187 */ 1188 int tick_check_oneshot_change(int allow_nohz) 1189 { 1190 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1191 1192 if (!test_and_clear_bit(0, &ts->check_clocks)) 1193 return 0; 1194 1195 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1196 return 0; 1197 1198 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1199 return 0; 1200 1201 if (!allow_nohz) 1202 return 1; 1203 1204 tick_nohz_switch_to_nohz(); 1205 return 0; 1206 } 1207