xref: /openbmc/linux/kernel/time/tick-sched.c (revision a7c8655b)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 0;
60 	ktime_t delta;
61 
62 	/*
63 	 * Do a quick check without holding jiffies_lock:
64 	 */
65 	delta = ktime_sub(now, last_jiffies_update);
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		last_jiffies_update = ktime_add(last_jiffies_update,
77 						tick_period);
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 							   incr * ticks);
87 		}
88 		do_timer(++ticks);
89 
90 		/* Keep the tick_next_period variable up to date */
91 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 	} else {
93 		write_sequnlock(&jiffies_lock);
94 		return;
95 	}
96 	write_sequnlock(&jiffies_lock);
97 	update_wall_time();
98 }
99 
100 /*
101  * Initialize and return retrieve the jiffies update.
102  */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 	ktime_t period;
106 
107 	write_seqlock(&jiffies_lock);
108 	/* Did we start the jiffies update yet ? */
109 	if (last_jiffies_update == 0)
110 		last_jiffies_update = tick_next_period;
111 	period = last_jiffies_update;
112 	write_sequnlock(&jiffies_lock);
113 	return period;
114 }
115 
116 
117 static void tick_sched_do_timer(ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 */
129 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130 	    && !tick_nohz_full_cpu(cpu))
131 		tick_do_timer_cpu = cpu;
132 #endif
133 
134 	/* Check, if the jiffies need an update */
135 	if (tick_do_timer_cpu == cpu)
136 		tick_do_update_jiffies64(now);
137 }
138 
139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 {
141 #ifdef CONFIG_NO_HZ_COMMON
142 	/*
143 	 * When we are idle and the tick is stopped, we have to touch
144 	 * the watchdog as we might not schedule for a really long
145 	 * time. This happens on complete idle SMP systems while
146 	 * waiting on the login prompt. We also increment the "start of
147 	 * idle" jiffy stamp so the idle accounting adjustment we do
148 	 * when we go busy again does not account too much ticks.
149 	 */
150 	if (ts->tick_stopped) {
151 		touch_softlockup_watchdog_sched();
152 		if (is_idle_task(current))
153 			ts->idle_jiffies++;
154 		/*
155 		 * In case the current tick fired too early past its expected
156 		 * expiration, make sure we don't bypass the next clock reprogramming
157 		 * to the same deadline.
158 		 */
159 		ts->next_tick = 0;
160 	}
161 #endif
162 	update_process_times(user_mode(regs));
163 	profile_tick(CPU_PROFILING);
164 }
165 #endif
166 
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	lockdep_assert_irqs_disabled();
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	cpumask_copy(tick_nohz_full_mask, cpumask);
393 	tick_nohz_full_running = true;
394 }
395 
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 	/*
399 	 * The boot CPU handles housekeeping duty (unbound timers,
400 	 * workqueues, timekeeping, ...) on behalf of full dynticks
401 	 * CPUs. It must remain online when nohz full is enabled.
402 	 */
403 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 		return -EBUSY;
405 	return 0;
406 }
407 
408 void __init tick_nohz_init(void)
409 {
410 	int cpu, ret;
411 
412 	if (!tick_nohz_full_running)
413 		return;
414 
415 	/*
416 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
417 	 * locking contexts. But then we need irq work to raise its own
418 	 * interrupts to avoid circular dependency on the tick
419 	 */
420 	if (!arch_irq_work_has_interrupt()) {
421 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
422 		cpumask_clear(tick_nohz_full_mask);
423 		tick_nohz_full_running = false;
424 		return;
425 	}
426 
427 	cpu = smp_processor_id();
428 
429 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
430 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
431 			cpu);
432 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
433 	}
434 
435 	for_each_cpu(cpu, tick_nohz_full_mask)
436 		context_tracking_cpu_set(cpu);
437 
438 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
439 					"kernel/nohz:predown", NULL,
440 					tick_nohz_cpu_down);
441 	WARN_ON(ret < 0);
442 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
443 		cpumask_pr_args(tick_nohz_full_mask));
444 }
445 #endif
446 
447 /*
448  * NOHZ - aka dynamic tick functionality
449  */
450 #ifdef CONFIG_NO_HZ_COMMON
451 /*
452  * NO HZ enabled ?
453  */
454 bool tick_nohz_enabled __read_mostly  = true;
455 unsigned long tick_nohz_active  __read_mostly;
456 /*
457  * Enable / Disable tickless mode
458  */
459 static int __init setup_tick_nohz(char *str)
460 {
461 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
462 }
463 
464 __setup("nohz=", setup_tick_nohz);
465 
466 int tick_nohz_tick_stopped(void)
467 {
468 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
469 }
470 
471 /**
472  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
473  *
474  * Called from interrupt entry when the CPU was idle
475  *
476  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
477  * must be updated. Otherwise an interrupt handler could use a stale jiffy
478  * value. We do this unconditionally on any CPU, as we don't know whether the
479  * CPU, which has the update task assigned is in a long sleep.
480  */
481 static void tick_nohz_update_jiffies(ktime_t now)
482 {
483 	unsigned long flags;
484 
485 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
486 
487 	local_irq_save(flags);
488 	tick_do_update_jiffies64(now);
489 	local_irq_restore(flags);
490 
491 	touch_softlockup_watchdog_sched();
492 }
493 
494 /*
495  * Updates the per-CPU time idle statistics counters
496  */
497 static void
498 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
499 {
500 	ktime_t delta;
501 
502 	if (ts->idle_active) {
503 		delta = ktime_sub(now, ts->idle_entrytime);
504 		if (nr_iowait_cpu(cpu) > 0)
505 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
506 		else
507 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
508 		ts->idle_entrytime = now;
509 	}
510 
511 	if (last_update_time)
512 		*last_update_time = ktime_to_us(now);
513 
514 }
515 
516 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
517 {
518 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
519 	ts->idle_active = 0;
520 
521 	sched_clock_idle_wakeup_event();
522 }
523 
524 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
525 {
526 	ktime_t now = ktime_get();
527 
528 	ts->idle_entrytime = now;
529 	ts->idle_active = 1;
530 	sched_clock_idle_sleep_event();
531 	return now;
532 }
533 
534 /**
535  * get_cpu_idle_time_us - get the total idle time of a CPU
536  * @cpu: CPU number to query
537  * @last_update_time: variable to store update time in. Do not update
538  * counters if NULL.
539  *
540  * Return the cumulative idle time (since boot) for a given
541  * CPU, in microseconds.
542  *
543  * This time is measured via accounting rather than sampling,
544  * and is as accurate as ktime_get() is.
545  *
546  * This function returns -1 if NOHZ is not enabled.
547  */
548 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
549 {
550 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
551 	ktime_t now, idle;
552 
553 	if (!tick_nohz_active)
554 		return -1;
555 
556 	now = ktime_get();
557 	if (last_update_time) {
558 		update_ts_time_stats(cpu, ts, now, last_update_time);
559 		idle = ts->idle_sleeptime;
560 	} else {
561 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
562 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
563 
564 			idle = ktime_add(ts->idle_sleeptime, delta);
565 		} else {
566 			idle = ts->idle_sleeptime;
567 		}
568 	}
569 
570 	return ktime_to_us(idle);
571 
572 }
573 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
574 
575 /**
576  * get_cpu_iowait_time_us - get the total iowait time of a CPU
577  * @cpu: CPU number to query
578  * @last_update_time: variable to store update time in. Do not update
579  * counters if NULL.
580  *
581  * Return the cumulative iowait time (since boot) for a given
582  * CPU, in microseconds.
583  *
584  * This time is measured via accounting rather than sampling,
585  * and is as accurate as ktime_get() is.
586  *
587  * This function returns -1 if NOHZ is not enabled.
588  */
589 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
590 {
591 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
592 	ktime_t now, iowait;
593 
594 	if (!tick_nohz_active)
595 		return -1;
596 
597 	now = ktime_get();
598 	if (last_update_time) {
599 		update_ts_time_stats(cpu, ts, now, last_update_time);
600 		iowait = ts->iowait_sleeptime;
601 	} else {
602 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
603 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
604 
605 			iowait = ktime_add(ts->iowait_sleeptime, delta);
606 		} else {
607 			iowait = ts->iowait_sleeptime;
608 		}
609 	}
610 
611 	return ktime_to_us(iowait);
612 }
613 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
614 
615 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
616 {
617 	hrtimer_cancel(&ts->sched_timer);
618 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
619 
620 	/* Forward the time to expire in the future */
621 	hrtimer_forward(&ts->sched_timer, now, tick_period);
622 
623 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
624 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
625 	else
626 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
627 
628 	/*
629 	 * Reset to make sure next tick stop doesn't get fooled by past
630 	 * cached clock deadline.
631 	 */
632 	ts->next_tick = 0;
633 }
634 
635 static inline bool local_timer_softirq_pending(void)
636 {
637 	return local_softirq_pending() & TIMER_SOFTIRQ;
638 }
639 
640 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
641 					 ktime_t now, int cpu)
642 {
643 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
644 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
645 	unsigned long seq, basejiff;
646 	ktime_t	tick;
647 
648 	/* Read jiffies and the time when jiffies were updated last */
649 	do {
650 		seq = read_seqbegin(&jiffies_lock);
651 		basemono = last_jiffies_update;
652 		basejiff = jiffies;
653 	} while (read_seqretry(&jiffies_lock, seq));
654 	ts->last_jiffies = basejiff;
655 
656 	/*
657 	 * Keep the periodic tick, when RCU, architecture or irq_work
658 	 * requests it.
659 	 * Aside of that check whether the local timer softirq is
660 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
661 	 * because there is an already expired timer, so it will request
662 	 * immeditate expiry, which rearms the hardware timer with a
663 	 * minimal delta which brings us back to this place
664 	 * immediately. Lather, rinse and repeat...
665 	 */
666 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
667 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
668 		next_tick = basemono + TICK_NSEC;
669 	} else {
670 		/*
671 		 * Get the next pending timer. If high resolution
672 		 * timers are enabled this only takes the timer wheel
673 		 * timers into account. If high resolution timers are
674 		 * disabled this also looks at the next expiring
675 		 * hrtimer.
676 		 */
677 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
678 		ts->next_timer = next_tmr;
679 		/* Take the next rcu event into account */
680 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
681 	}
682 
683 	/*
684 	 * If the tick is due in the next period, keep it ticking or
685 	 * force prod the timer.
686 	 */
687 	delta = next_tick - basemono;
688 	if (delta <= (u64)TICK_NSEC) {
689 		/*
690 		 * Tell the timer code that the base is not idle, i.e. undo
691 		 * the effect of get_next_timer_interrupt():
692 		 */
693 		timer_clear_idle();
694 		/*
695 		 * We've not stopped the tick yet, and there's a timer in the
696 		 * next period, so no point in stopping it either, bail.
697 		 */
698 		if (!ts->tick_stopped) {
699 			tick = 0;
700 			goto out;
701 		}
702 	}
703 
704 	/*
705 	 * If this CPU is the one which updates jiffies, then give up
706 	 * the assignment and let it be taken by the CPU which runs
707 	 * the tick timer next, which might be this CPU as well. If we
708 	 * don't drop this here the jiffies might be stale and
709 	 * do_timer() never invoked. Keep track of the fact that it
710 	 * was the one which had the do_timer() duty last. If this CPU
711 	 * is the one which had the do_timer() duty last, we limit the
712 	 * sleep time to the timekeeping max_deferment value.
713 	 * Otherwise we can sleep as long as we want.
714 	 */
715 	delta = timekeeping_max_deferment();
716 	if (cpu == tick_do_timer_cpu) {
717 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
718 		ts->do_timer_last = 1;
719 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
720 		delta = KTIME_MAX;
721 		ts->do_timer_last = 0;
722 	} else if (!ts->do_timer_last) {
723 		delta = KTIME_MAX;
724 	}
725 
726 #ifdef CONFIG_NO_HZ_FULL
727 	/* Limit the tick delta to the maximum scheduler deferment */
728 	if (!ts->inidle)
729 		delta = min(delta, scheduler_tick_max_deferment());
730 #endif
731 
732 	/* Calculate the next expiry time */
733 	if (delta < (KTIME_MAX - basemono))
734 		expires = basemono + delta;
735 	else
736 		expires = KTIME_MAX;
737 
738 	expires = min_t(u64, expires, next_tick);
739 	tick = expires;
740 
741 	/* Skip reprogram of event if its not changed */
742 	if (ts->tick_stopped && (expires == ts->next_tick)) {
743 		/* Sanity check: make sure clockevent is actually programmed */
744 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
745 			goto out;
746 
747 		WARN_ON_ONCE(1);
748 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
749 			    basemono, ts->next_tick, dev->next_event,
750 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
751 	}
752 
753 	/*
754 	 * nohz_stop_sched_tick can be called several times before
755 	 * the nohz_restart_sched_tick is called. This happens when
756 	 * interrupts arrive which do not cause a reschedule. In the
757 	 * first call we save the current tick time, so we can restart
758 	 * the scheduler tick in nohz_restart_sched_tick.
759 	 */
760 	if (!ts->tick_stopped) {
761 		calc_load_nohz_start();
762 		cpu_load_update_nohz_start();
763 		quiet_vmstat();
764 
765 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
766 		ts->tick_stopped = 1;
767 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
768 	}
769 
770 	ts->next_tick = tick;
771 
772 	/*
773 	 * If the expiration time == KTIME_MAX, then we simply stop
774 	 * the tick timer.
775 	 */
776 	if (unlikely(expires == KTIME_MAX)) {
777 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
778 			hrtimer_cancel(&ts->sched_timer);
779 		goto out;
780 	}
781 
782 	hrtimer_set_expires(&ts->sched_timer, tick);
783 
784 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
785 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
786 	else
787 		tick_program_event(tick, 1);
788 out:
789 	/*
790 	 * Update the estimated sleep length until the next timer
791 	 * (not only the tick).
792 	 */
793 	ts->sleep_length = ktime_sub(dev->next_event, now);
794 	return tick;
795 }
796 
797 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
798 {
799 	/* Update jiffies first */
800 	tick_do_update_jiffies64(now);
801 	cpu_load_update_nohz_stop();
802 
803 	/*
804 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
805 	 * the clock forward checks in the enqueue path:
806 	 */
807 	timer_clear_idle();
808 
809 	calc_load_nohz_stop();
810 	touch_softlockup_watchdog_sched();
811 	/*
812 	 * Cancel the scheduled timer and restore the tick
813 	 */
814 	ts->tick_stopped  = 0;
815 	ts->idle_exittime = now;
816 
817 	tick_nohz_restart(ts, now);
818 }
819 
820 static void tick_nohz_full_update_tick(struct tick_sched *ts)
821 {
822 #ifdef CONFIG_NO_HZ_FULL
823 	int cpu = smp_processor_id();
824 
825 	if (!tick_nohz_full_cpu(cpu))
826 		return;
827 
828 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
829 		return;
830 
831 	if (can_stop_full_tick(cpu, ts))
832 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
833 	else if (ts->tick_stopped)
834 		tick_nohz_restart_sched_tick(ts, ktime_get());
835 #endif
836 }
837 
838 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
839 {
840 	/*
841 	 * If this CPU is offline and it is the one which updates
842 	 * jiffies, then give up the assignment and let it be taken by
843 	 * the CPU which runs the tick timer next. If we don't drop
844 	 * this here the jiffies might be stale and do_timer() never
845 	 * invoked.
846 	 */
847 	if (unlikely(!cpu_online(cpu))) {
848 		if (cpu == tick_do_timer_cpu)
849 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
850 		/*
851 		 * Make sure the CPU doesn't get fooled by obsolete tick
852 		 * deadline if it comes back online later.
853 		 */
854 		ts->next_tick = 0;
855 		return false;
856 	}
857 
858 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
859 		ts->sleep_length = NSEC_PER_SEC / HZ;
860 		return false;
861 	}
862 
863 	if (need_resched())
864 		return false;
865 
866 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
867 		static int ratelimit;
868 
869 		if (ratelimit < 10 &&
870 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
871 			pr_warn("NOHZ: local_softirq_pending %02x\n",
872 				(unsigned int) local_softirq_pending());
873 			ratelimit++;
874 		}
875 		return false;
876 	}
877 
878 	if (tick_nohz_full_enabled()) {
879 		/*
880 		 * Keep the tick alive to guarantee timekeeping progression
881 		 * if there are full dynticks CPUs around
882 		 */
883 		if (tick_do_timer_cpu == cpu)
884 			return false;
885 		/*
886 		 * Boot safety: make sure the timekeeping duty has been
887 		 * assigned before entering dyntick-idle mode,
888 		 */
889 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
890 			return false;
891 	}
892 
893 	return true;
894 }
895 
896 static void __tick_nohz_idle_enter(struct tick_sched *ts)
897 {
898 	ktime_t now, expires;
899 	int cpu = smp_processor_id();
900 
901 	now = tick_nohz_start_idle(ts);
902 
903 	if (can_stop_idle_tick(cpu, ts)) {
904 		int was_stopped = ts->tick_stopped;
905 
906 		ts->idle_calls++;
907 
908 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
909 		if (expires > 0LL) {
910 			ts->idle_sleeps++;
911 			ts->idle_expires = expires;
912 		}
913 
914 		if (!was_stopped && ts->tick_stopped) {
915 			ts->idle_jiffies = ts->last_jiffies;
916 			nohz_balance_enter_idle(cpu);
917 		}
918 	}
919 }
920 
921 /**
922  * tick_nohz_idle_enter - stop the idle tick from the idle task
923  *
924  * When the next event is more than a tick into the future, stop the idle tick
925  * Called when we start the idle loop.
926  *
927  * The arch is responsible of calling:
928  *
929  * - rcu_idle_enter() after its last use of RCU before the CPU is put
930  *  to sleep.
931  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
932  */
933 void tick_nohz_idle_enter(void)
934 {
935 	struct tick_sched *ts;
936 
937 	lockdep_assert_irqs_enabled();
938 	/*
939 	 * Update the idle state in the scheduler domain hierarchy
940 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
941 	 * State will be updated to busy during the first busy tick after
942 	 * exiting idle.
943 	 */
944 	set_cpu_sd_state_idle();
945 
946 	local_irq_disable();
947 
948 	ts = this_cpu_ptr(&tick_cpu_sched);
949 	ts->inidle = 1;
950 	__tick_nohz_idle_enter(ts);
951 
952 	local_irq_enable();
953 }
954 
955 /**
956  * tick_nohz_irq_exit - update next tick event from interrupt exit
957  *
958  * When an interrupt fires while we are idle and it doesn't cause
959  * a reschedule, it may still add, modify or delete a timer, enqueue
960  * an RCU callback, etc...
961  * So we need to re-calculate and reprogram the next tick event.
962  */
963 void tick_nohz_irq_exit(void)
964 {
965 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
966 
967 	if (ts->inidle)
968 		__tick_nohz_idle_enter(ts);
969 	else
970 		tick_nohz_full_update_tick(ts);
971 }
972 
973 /**
974  * tick_nohz_get_sleep_length - return the length of the current sleep
975  *
976  * Called from power state control code with interrupts disabled
977  */
978 ktime_t tick_nohz_get_sleep_length(void)
979 {
980 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
981 
982 	return ts->sleep_length;
983 }
984 
985 /**
986  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
987  * for a particular CPU.
988  *
989  * Called from the schedutil frequency scaling governor in scheduler context.
990  */
991 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
992 {
993 	struct tick_sched *ts = tick_get_tick_sched(cpu);
994 
995 	return ts->idle_calls;
996 }
997 
998 /**
999  * tick_nohz_get_idle_calls - return the current idle calls counter value
1000  *
1001  * Called from the schedutil frequency scaling governor in scheduler context.
1002  */
1003 unsigned long tick_nohz_get_idle_calls(void)
1004 {
1005 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1006 
1007 	return ts->idle_calls;
1008 }
1009 
1010 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1011 {
1012 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1013 	unsigned long ticks;
1014 
1015 	if (vtime_accounting_cpu_enabled())
1016 		return;
1017 	/*
1018 	 * We stopped the tick in idle. Update process times would miss the
1019 	 * time we slept as update_process_times does only a 1 tick
1020 	 * accounting. Enforce that this is accounted to idle !
1021 	 */
1022 	ticks = jiffies - ts->idle_jiffies;
1023 	/*
1024 	 * We might be one off. Do not randomly account a huge number of ticks!
1025 	 */
1026 	if (ticks && ticks < LONG_MAX)
1027 		account_idle_ticks(ticks);
1028 #endif
1029 }
1030 
1031 /**
1032  * tick_nohz_idle_exit - restart the idle tick from the idle task
1033  *
1034  * Restart the idle tick when the CPU is woken up from idle
1035  * This also exit the RCU extended quiescent state. The CPU
1036  * can use RCU again after this function is called.
1037  */
1038 void tick_nohz_idle_exit(void)
1039 {
1040 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1041 	ktime_t now;
1042 
1043 	local_irq_disable();
1044 
1045 	WARN_ON_ONCE(!ts->inidle);
1046 
1047 	ts->inidle = 0;
1048 
1049 	if (ts->idle_active || ts->tick_stopped)
1050 		now = ktime_get();
1051 
1052 	if (ts->idle_active)
1053 		tick_nohz_stop_idle(ts, now);
1054 
1055 	if (ts->tick_stopped) {
1056 		tick_nohz_restart_sched_tick(ts, now);
1057 		tick_nohz_account_idle_ticks(ts);
1058 	}
1059 
1060 	local_irq_enable();
1061 }
1062 
1063 /*
1064  * The nohz low res interrupt handler
1065  */
1066 static void tick_nohz_handler(struct clock_event_device *dev)
1067 {
1068 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1069 	struct pt_regs *regs = get_irq_regs();
1070 	ktime_t now = ktime_get();
1071 
1072 	dev->next_event = KTIME_MAX;
1073 
1074 	tick_sched_do_timer(now);
1075 	tick_sched_handle(ts, regs);
1076 
1077 	/* No need to reprogram if we are running tickless  */
1078 	if (unlikely(ts->tick_stopped))
1079 		return;
1080 
1081 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1082 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1083 }
1084 
1085 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1086 {
1087 	if (!tick_nohz_enabled)
1088 		return;
1089 	ts->nohz_mode = mode;
1090 	/* One update is enough */
1091 	if (!test_and_set_bit(0, &tick_nohz_active))
1092 		timers_update_nohz();
1093 }
1094 
1095 /**
1096  * tick_nohz_switch_to_nohz - switch to nohz mode
1097  */
1098 static void tick_nohz_switch_to_nohz(void)
1099 {
1100 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1101 	ktime_t next;
1102 
1103 	if (!tick_nohz_enabled)
1104 		return;
1105 
1106 	if (tick_switch_to_oneshot(tick_nohz_handler))
1107 		return;
1108 
1109 	/*
1110 	 * Recycle the hrtimer in ts, so we can share the
1111 	 * hrtimer_forward with the highres code.
1112 	 */
1113 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1114 	/* Get the next period */
1115 	next = tick_init_jiffy_update();
1116 
1117 	hrtimer_set_expires(&ts->sched_timer, next);
1118 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1119 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1120 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1121 }
1122 
1123 static inline void tick_nohz_irq_enter(void)
1124 {
1125 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1126 	ktime_t now;
1127 
1128 	if (!ts->idle_active && !ts->tick_stopped)
1129 		return;
1130 	now = ktime_get();
1131 	if (ts->idle_active)
1132 		tick_nohz_stop_idle(ts, now);
1133 	if (ts->tick_stopped)
1134 		tick_nohz_update_jiffies(now);
1135 }
1136 
1137 #else
1138 
1139 static inline void tick_nohz_switch_to_nohz(void) { }
1140 static inline void tick_nohz_irq_enter(void) { }
1141 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1142 
1143 #endif /* CONFIG_NO_HZ_COMMON */
1144 
1145 /*
1146  * Called from irq_enter to notify about the possible interruption of idle()
1147  */
1148 void tick_irq_enter(void)
1149 {
1150 	tick_check_oneshot_broadcast_this_cpu();
1151 	tick_nohz_irq_enter();
1152 }
1153 
1154 /*
1155  * High resolution timer specific code
1156  */
1157 #ifdef CONFIG_HIGH_RES_TIMERS
1158 /*
1159  * We rearm the timer until we get disabled by the idle code.
1160  * Called with interrupts disabled.
1161  */
1162 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1163 {
1164 	struct tick_sched *ts =
1165 		container_of(timer, struct tick_sched, sched_timer);
1166 	struct pt_regs *regs = get_irq_regs();
1167 	ktime_t now = ktime_get();
1168 
1169 	tick_sched_do_timer(now);
1170 
1171 	/*
1172 	 * Do not call, when we are not in irq context and have
1173 	 * no valid regs pointer
1174 	 */
1175 	if (regs)
1176 		tick_sched_handle(ts, regs);
1177 	else
1178 		ts->next_tick = 0;
1179 
1180 	/* No need to reprogram if we are in idle or full dynticks mode */
1181 	if (unlikely(ts->tick_stopped))
1182 		return HRTIMER_NORESTART;
1183 
1184 	hrtimer_forward(timer, now, tick_period);
1185 
1186 	return HRTIMER_RESTART;
1187 }
1188 
1189 static int sched_skew_tick;
1190 
1191 static int __init skew_tick(char *str)
1192 {
1193 	get_option(&str, &sched_skew_tick);
1194 
1195 	return 0;
1196 }
1197 early_param("skew_tick", skew_tick);
1198 
1199 /**
1200  * tick_setup_sched_timer - setup the tick emulation timer
1201  */
1202 void tick_setup_sched_timer(void)
1203 {
1204 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205 	ktime_t now = ktime_get();
1206 
1207 	/*
1208 	 * Emulate tick processing via per-CPU hrtimers:
1209 	 */
1210 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1211 	ts->sched_timer.function = tick_sched_timer;
1212 
1213 	/* Get the next period (per-CPU) */
1214 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1215 
1216 	/* Offset the tick to avert jiffies_lock contention. */
1217 	if (sched_skew_tick) {
1218 		u64 offset = ktime_to_ns(tick_period) >> 1;
1219 		do_div(offset, num_possible_cpus());
1220 		offset *= smp_processor_id();
1221 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1222 	}
1223 
1224 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1225 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1226 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1227 }
1228 #endif /* HIGH_RES_TIMERS */
1229 
1230 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231 void tick_cancel_sched_timer(int cpu)
1232 {
1233 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1234 
1235 # ifdef CONFIG_HIGH_RES_TIMERS
1236 	if (ts->sched_timer.base)
1237 		hrtimer_cancel(&ts->sched_timer);
1238 # endif
1239 
1240 	memset(ts, 0, sizeof(*ts));
1241 }
1242 #endif
1243 
1244 /**
1245  * Async notification about clocksource changes
1246  */
1247 void tick_clock_notify(void)
1248 {
1249 	int cpu;
1250 
1251 	for_each_possible_cpu(cpu)
1252 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1253 }
1254 
1255 /*
1256  * Async notification about clock event changes
1257  */
1258 void tick_oneshot_notify(void)
1259 {
1260 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261 
1262 	set_bit(0, &ts->check_clocks);
1263 }
1264 
1265 /**
1266  * Check, if a change happened, which makes oneshot possible.
1267  *
1268  * Called cyclic from the hrtimer softirq (driven by the timer
1269  * softirq) allow_nohz signals, that we can switch into low-res nohz
1270  * mode, because high resolution timers are disabled (either compile
1271  * or runtime). Called with interrupts disabled.
1272  */
1273 int tick_check_oneshot_change(int allow_nohz)
1274 {
1275 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276 
1277 	if (!test_and_clear_bit(0, &ts->check_clocks))
1278 		return 0;
1279 
1280 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1281 		return 0;
1282 
1283 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1284 		return 0;
1285 
1286 	if (!allow_nohz)
1287 		return 1;
1288 
1289 	tick_nohz_switch_to_nohz();
1290 	return 0;
1291 }
1292