1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 114 { 115 int cpu = smp_processor_id(); 116 117 #ifdef CONFIG_NO_HZ_COMMON 118 /* 119 * Check if the do_timer duty was dropped. We don't care about 120 * concurrency: This happens only when the CPU in charge went 121 * into a long sleep. If two CPUs happen to assign themselves to 122 * this duty, then the jiffies update is still serialized by 123 * jiffies_lock. 124 * 125 * If nohz_full is enabled, this should not happen because the 126 * tick_do_timer_cpu never relinquishes. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 129 #ifdef CONFIG_NO_HZ_FULL 130 WARN_ON(tick_nohz_full_running); 131 #endif 132 tick_do_timer_cpu = cpu; 133 } 134 #endif 135 136 /* Check, if the jiffies need an update */ 137 if (tick_do_timer_cpu == cpu) 138 tick_do_update_jiffies64(now); 139 140 if (ts->inidle) 141 ts->got_idle_tick = 1; 142 } 143 144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 145 { 146 #ifdef CONFIG_NO_HZ_COMMON 147 /* 148 * When we are idle and the tick is stopped, we have to touch 149 * the watchdog as we might not schedule for a really long 150 * time. This happens on complete idle SMP systems while 151 * waiting on the login prompt. We also increment the "start of 152 * idle" jiffy stamp so the idle accounting adjustment we do 153 * when we go busy again does not account too much ticks. 154 */ 155 if (ts->tick_stopped) { 156 touch_softlockup_watchdog_sched(); 157 if (is_idle_task(current)) 158 ts->idle_jiffies++; 159 /* 160 * In case the current tick fired too early past its expected 161 * expiration, make sure we don't bypass the next clock reprogramming 162 * to the same deadline. 163 */ 164 ts->next_tick = 0; 165 } 166 #endif 167 update_process_times(user_mode(regs)); 168 profile_tick(CPU_PROFILING); 169 } 170 #endif 171 172 #ifdef CONFIG_NO_HZ_FULL 173 cpumask_var_t tick_nohz_full_mask; 174 bool tick_nohz_full_running; 175 static atomic_t tick_dep_mask; 176 177 static bool check_tick_dependency(atomic_t *dep) 178 { 179 int val = atomic_read(dep); 180 181 if (val & TICK_DEP_MASK_POSIX_TIMER) { 182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_PERF_EVENTS) { 187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_SCHED) { 192 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 198 return true; 199 } 200 201 return false; 202 } 203 204 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 205 { 206 lockdep_assert_irqs_disabled(); 207 208 if (unlikely(!cpu_online(cpu))) 209 return false; 210 211 if (check_tick_dependency(&tick_dep_mask)) 212 return false; 213 214 if (check_tick_dependency(&ts->tick_dep_mask)) 215 return false; 216 217 if (check_tick_dependency(¤t->tick_dep_mask)) 218 return false; 219 220 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 221 return false; 222 223 return true; 224 } 225 226 static void nohz_full_kick_func(struct irq_work *work) 227 { 228 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 229 } 230 231 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 232 .func = nohz_full_kick_func, 233 }; 234 235 /* 236 * Kick this CPU if it's full dynticks in order to force it to 237 * re-evaluate its dependency on the tick and restart it if necessary. 238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 239 * is NMI safe. 240 */ 241 static void tick_nohz_full_kick(void) 242 { 243 if (!tick_nohz_full_cpu(smp_processor_id())) 244 return; 245 246 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 247 } 248 249 /* 250 * Kick the CPU if it's full dynticks in order to force it to 251 * re-evaluate its dependency on the tick and restart it if necessary. 252 */ 253 void tick_nohz_full_kick_cpu(int cpu) 254 { 255 if (!tick_nohz_full_cpu(cpu)) 256 return; 257 258 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 259 } 260 261 /* 262 * Kick all full dynticks CPUs in order to force these to re-evaluate 263 * their dependency on the tick and restart it if necessary. 264 */ 265 static void tick_nohz_full_kick_all(void) 266 { 267 int cpu; 268 269 if (!tick_nohz_full_running) 270 return; 271 272 preempt_disable(); 273 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 274 tick_nohz_full_kick_cpu(cpu); 275 preempt_enable(); 276 } 277 278 static void tick_nohz_dep_set_all(atomic_t *dep, 279 enum tick_dep_bits bit) 280 { 281 int prev; 282 283 prev = atomic_fetch_or(BIT(bit), dep); 284 if (!prev) 285 tick_nohz_full_kick_all(); 286 } 287 288 /* 289 * Set a global tick dependency. Used by perf events that rely on freq and 290 * by unstable clock. 291 */ 292 void tick_nohz_dep_set(enum tick_dep_bits bit) 293 { 294 tick_nohz_dep_set_all(&tick_dep_mask, bit); 295 } 296 297 void tick_nohz_dep_clear(enum tick_dep_bits bit) 298 { 299 atomic_andnot(BIT(bit), &tick_dep_mask); 300 } 301 302 /* 303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 304 * manage events throttling. 305 */ 306 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 307 { 308 int prev; 309 struct tick_sched *ts; 310 311 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 312 313 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 314 if (!prev) { 315 preempt_disable(); 316 /* Perf needs local kick that is NMI safe */ 317 if (cpu == smp_processor_id()) { 318 tick_nohz_full_kick(); 319 } else { 320 /* Remote irq work not NMI-safe */ 321 if (!WARN_ON_ONCE(in_nmi())) 322 tick_nohz_full_kick_cpu(cpu); 323 } 324 preempt_enable(); 325 } 326 } 327 328 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 329 { 330 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 331 332 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 333 } 334 335 /* 336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 337 * per task timers. 338 */ 339 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 340 { 341 /* 342 * We could optimize this with just kicking the target running the task 343 * if that noise matters for nohz full users. 344 */ 345 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 346 } 347 348 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 349 { 350 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 351 } 352 353 /* 354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 355 * per process timers. 356 */ 357 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 360 } 361 362 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 363 { 364 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 365 } 366 367 /* 368 * Re-evaluate the need for the tick as we switch the current task. 369 * It might need the tick due to per task/process properties: 370 * perf events, posix CPU timers, ... 371 */ 372 void __tick_nohz_task_switch(void) 373 { 374 unsigned long flags; 375 struct tick_sched *ts; 376 377 local_irq_save(flags); 378 379 if (!tick_nohz_full_cpu(smp_processor_id())) 380 goto out; 381 382 ts = this_cpu_ptr(&tick_cpu_sched); 383 384 if (ts->tick_stopped) { 385 if (atomic_read(¤t->tick_dep_mask) || 386 atomic_read(¤t->signal->tick_dep_mask)) 387 tick_nohz_full_kick(); 388 } 389 out: 390 local_irq_restore(flags); 391 } 392 393 /* Get the boot-time nohz CPU list from the kernel parameters. */ 394 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 395 { 396 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 397 cpumask_copy(tick_nohz_full_mask, cpumask); 398 tick_nohz_full_running = true; 399 } 400 401 static int tick_nohz_cpu_down(unsigned int cpu) 402 { 403 /* 404 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 405 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 406 * CPUs. It must remain online when nohz full is enabled. 407 */ 408 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 409 return -EBUSY; 410 return 0; 411 } 412 413 void __init tick_nohz_init(void) 414 { 415 int cpu, ret; 416 417 if (!tick_nohz_full_running) 418 return; 419 420 /* 421 * Full dynticks uses irq work to drive the tick rescheduling on safe 422 * locking contexts. But then we need irq work to raise its own 423 * interrupts to avoid circular dependency on the tick 424 */ 425 if (!arch_irq_work_has_interrupt()) { 426 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 427 cpumask_clear(tick_nohz_full_mask); 428 tick_nohz_full_running = false; 429 return; 430 } 431 432 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 433 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 434 cpu = smp_processor_id(); 435 436 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 437 pr_warn("NO_HZ: Clearing %d from nohz_full range " 438 "for timekeeping\n", cpu); 439 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 440 } 441 } 442 443 for_each_cpu(cpu, tick_nohz_full_mask) 444 context_tracking_cpu_set(cpu); 445 446 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 447 "kernel/nohz:predown", NULL, 448 tick_nohz_cpu_down); 449 WARN_ON(ret < 0); 450 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 451 cpumask_pr_args(tick_nohz_full_mask)); 452 } 453 #endif 454 455 /* 456 * NOHZ - aka dynamic tick functionality 457 */ 458 #ifdef CONFIG_NO_HZ_COMMON 459 /* 460 * NO HZ enabled ? 461 */ 462 bool tick_nohz_enabled __read_mostly = true; 463 unsigned long tick_nohz_active __read_mostly; 464 /* 465 * Enable / Disable tickless mode 466 */ 467 static int __init setup_tick_nohz(char *str) 468 { 469 return (kstrtobool(str, &tick_nohz_enabled) == 0); 470 } 471 472 __setup("nohz=", setup_tick_nohz); 473 474 bool tick_nohz_tick_stopped(void) 475 { 476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 477 478 return ts->tick_stopped; 479 } 480 481 bool tick_nohz_tick_stopped_cpu(int cpu) 482 { 483 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 484 485 return ts->tick_stopped; 486 } 487 488 /** 489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 490 * 491 * Called from interrupt entry when the CPU was idle 492 * 493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 494 * must be updated. Otherwise an interrupt handler could use a stale jiffy 495 * value. We do this unconditionally on any CPU, as we don't know whether the 496 * CPU, which has the update task assigned is in a long sleep. 497 */ 498 static void tick_nohz_update_jiffies(ktime_t now) 499 { 500 unsigned long flags; 501 502 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 503 504 local_irq_save(flags); 505 tick_do_update_jiffies64(now); 506 local_irq_restore(flags); 507 508 touch_softlockup_watchdog_sched(); 509 } 510 511 /* 512 * Updates the per-CPU time idle statistics counters 513 */ 514 static void 515 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 516 { 517 ktime_t delta; 518 519 if (ts->idle_active) { 520 delta = ktime_sub(now, ts->idle_entrytime); 521 if (nr_iowait_cpu(cpu) > 0) 522 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 523 else 524 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 525 ts->idle_entrytime = now; 526 } 527 528 if (last_update_time) 529 *last_update_time = ktime_to_us(now); 530 531 } 532 533 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 534 { 535 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 536 ts->idle_active = 0; 537 538 sched_clock_idle_wakeup_event(); 539 } 540 541 static void tick_nohz_start_idle(struct tick_sched *ts) 542 { 543 ts->idle_entrytime = ktime_get(); 544 ts->idle_active = 1; 545 sched_clock_idle_sleep_event(); 546 } 547 548 /** 549 * get_cpu_idle_time_us - get the total idle time of a CPU 550 * @cpu: CPU number to query 551 * @last_update_time: variable to store update time in. Do not update 552 * counters if NULL. 553 * 554 * Return the cumulative idle time (since boot) for a given 555 * CPU, in microseconds. 556 * 557 * This time is measured via accounting rather than sampling, 558 * and is as accurate as ktime_get() is. 559 * 560 * This function returns -1 if NOHZ is not enabled. 561 */ 562 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 563 { 564 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 565 ktime_t now, idle; 566 567 if (!tick_nohz_active) 568 return -1; 569 570 now = ktime_get(); 571 if (last_update_time) { 572 update_ts_time_stats(cpu, ts, now, last_update_time); 573 idle = ts->idle_sleeptime; 574 } else { 575 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 576 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 577 578 idle = ktime_add(ts->idle_sleeptime, delta); 579 } else { 580 idle = ts->idle_sleeptime; 581 } 582 } 583 584 return ktime_to_us(idle); 585 586 } 587 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 588 589 /** 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU 591 * @cpu: CPU number to query 592 * @last_update_time: variable to store update time in. Do not update 593 * counters if NULL. 594 * 595 * Return the cumulative iowait time (since boot) for a given 596 * CPU, in microseconds. 597 * 598 * This time is measured via accounting rather than sampling, 599 * and is as accurate as ktime_get() is. 600 * 601 * This function returns -1 if NOHZ is not enabled. 602 */ 603 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 604 { 605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 606 ktime_t now, iowait; 607 608 if (!tick_nohz_active) 609 return -1; 610 611 now = ktime_get(); 612 if (last_update_time) { 613 update_ts_time_stats(cpu, ts, now, last_update_time); 614 iowait = ts->iowait_sleeptime; 615 } else { 616 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 617 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 618 619 iowait = ktime_add(ts->iowait_sleeptime, delta); 620 } else { 621 iowait = ts->iowait_sleeptime; 622 } 623 } 624 625 return ktime_to_us(iowait); 626 } 627 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 628 629 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 630 { 631 hrtimer_cancel(&ts->sched_timer); 632 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 633 634 /* Forward the time to expire in the future */ 635 hrtimer_forward(&ts->sched_timer, now, tick_period); 636 637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 638 hrtimer_start_expires(&ts->sched_timer, 639 HRTIMER_MODE_ABS_PINNED_HARD); 640 } else { 641 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 642 } 643 644 /* 645 * Reset to make sure next tick stop doesn't get fooled by past 646 * cached clock deadline. 647 */ 648 ts->next_tick = 0; 649 } 650 651 static inline bool local_timer_softirq_pending(void) 652 { 653 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 654 } 655 656 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 657 { 658 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 659 unsigned long basejiff; 660 unsigned int seq; 661 662 /* Read jiffies and the time when jiffies were updated last */ 663 do { 664 seq = read_seqbegin(&jiffies_lock); 665 basemono = last_jiffies_update; 666 basejiff = jiffies; 667 } while (read_seqretry(&jiffies_lock, seq)); 668 ts->last_jiffies = basejiff; 669 ts->timer_expires_base = basemono; 670 671 /* 672 * Keep the periodic tick, when RCU, architecture or irq_work 673 * requests it. 674 * Aside of that check whether the local timer softirq is 675 * pending. If so its a bad idea to call get_next_timer_interrupt() 676 * because there is an already expired timer, so it will request 677 * immeditate expiry, which rearms the hardware timer with a 678 * minimal delta which brings us back to this place 679 * immediately. Lather, rinse and repeat... 680 */ 681 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 682 irq_work_needs_cpu() || local_timer_softirq_pending()) { 683 next_tick = basemono + TICK_NSEC; 684 } else { 685 /* 686 * Get the next pending timer. If high resolution 687 * timers are enabled this only takes the timer wheel 688 * timers into account. If high resolution timers are 689 * disabled this also looks at the next expiring 690 * hrtimer. 691 */ 692 next_tmr = get_next_timer_interrupt(basejiff, basemono); 693 ts->next_timer = next_tmr; 694 /* Take the next rcu event into account */ 695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 696 } 697 698 /* 699 * If the tick is due in the next period, keep it ticking or 700 * force prod the timer. 701 */ 702 delta = next_tick - basemono; 703 if (delta <= (u64)TICK_NSEC) { 704 /* 705 * Tell the timer code that the base is not idle, i.e. undo 706 * the effect of get_next_timer_interrupt(): 707 */ 708 timer_clear_idle(); 709 /* 710 * We've not stopped the tick yet, and there's a timer in the 711 * next period, so no point in stopping it either, bail. 712 */ 713 if (!ts->tick_stopped) { 714 ts->timer_expires = 0; 715 goto out; 716 } 717 } 718 719 /* 720 * If this CPU is the one which had the do_timer() duty last, we limit 721 * the sleep time to the timekeeping max_deferment value. 722 * Otherwise we can sleep as long as we want. 723 */ 724 delta = timekeeping_max_deferment(); 725 if (cpu != tick_do_timer_cpu && 726 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 727 delta = KTIME_MAX; 728 729 /* Calculate the next expiry time */ 730 if (delta < (KTIME_MAX - basemono)) 731 expires = basemono + delta; 732 else 733 expires = KTIME_MAX; 734 735 ts->timer_expires = min_t(u64, expires, next_tick); 736 737 out: 738 return ts->timer_expires; 739 } 740 741 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 742 { 743 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 744 u64 basemono = ts->timer_expires_base; 745 u64 expires = ts->timer_expires; 746 ktime_t tick = expires; 747 748 /* Make sure we won't be trying to stop it twice in a row. */ 749 ts->timer_expires_base = 0; 750 751 /* 752 * If this CPU is the one which updates jiffies, then give up 753 * the assignment and let it be taken by the CPU which runs 754 * the tick timer next, which might be this CPU as well. If we 755 * don't drop this here the jiffies might be stale and 756 * do_timer() never invoked. Keep track of the fact that it 757 * was the one which had the do_timer() duty last. 758 */ 759 if (cpu == tick_do_timer_cpu) { 760 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 761 ts->do_timer_last = 1; 762 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 763 ts->do_timer_last = 0; 764 } 765 766 /* Skip reprogram of event if its not changed */ 767 if (ts->tick_stopped && (expires == ts->next_tick)) { 768 /* Sanity check: make sure clockevent is actually programmed */ 769 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 770 return; 771 772 WARN_ON_ONCE(1); 773 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 774 basemono, ts->next_tick, dev->next_event, 775 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 776 } 777 778 /* 779 * nohz_stop_sched_tick can be called several times before 780 * the nohz_restart_sched_tick is called. This happens when 781 * interrupts arrive which do not cause a reschedule. In the 782 * first call we save the current tick time, so we can restart 783 * the scheduler tick in nohz_restart_sched_tick. 784 */ 785 if (!ts->tick_stopped) { 786 calc_load_nohz_start(); 787 quiet_vmstat(); 788 789 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 790 ts->tick_stopped = 1; 791 trace_tick_stop(1, TICK_DEP_MASK_NONE); 792 } 793 794 ts->next_tick = tick; 795 796 /* 797 * If the expiration time == KTIME_MAX, then we simply stop 798 * the tick timer. 799 */ 800 if (unlikely(expires == KTIME_MAX)) { 801 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 802 hrtimer_cancel(&ts->sched_timer); 803 return; 804 } 805 806 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 807 hrtimer_start(&ts->sched_timer, tick, 808 HRTIMER_MODE_ABS_PINNED_HARD); 809 } else { 810 hrtimer_set_expires(&ts->sched_timer, tick); 811 tick_program_event(tick, 1); 812 } 813 } 814 815 static void tick_nohz_retain_tick(struct tick_sched *ts) 816 { 817 ts->timer_expires_base = 0; 818 } 819 820 #ifdef CONFIG_NO_HZ_FULL 821 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 822 { 823 if (tick_nohz_next_event(ts, cpu)) 824 tick_nohz_stop_tick(ts, cpu); 825 else 826 tick_nohz_retain_tick(ts); 827 } 828 #endif /* CONFIG_NO_HZ_FULL */ 829 830 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 831 { 832 /* Update jiffies first */ 833 tick_do_update_jiffies64(now); 834 835 /* 836 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 837 * the clock forward checks in the enqueue path: 838 */ 839 timer_clear_idle(); 840 841 calc_load_nohz_stop(); 842 touch_softlockup_watchdog_sched(); 843 /* 844 * Cancel the scheduled timer and restore the tick 845 */ 846 ts->tick_stopped = 0; 847 ts->idle_exittime = now; 848 849 tick_nohz_restart(ts, now); 850 } 851 852 static void tick_nohz_full_update_tick(struct tick_sched *ts) 853 { 854 #ifdef CONFIG_NO_HZ_FULL 855 int cpu = smp_processor_id(); 856 857 if (!tick_nohz_full_cpu(cpu)) 858 return; 859 860 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 861 return; 862 863 if (can_stop_full_tick(cpu, ts)) 864 tick_nohz_stop_sched_tick(ts, cpu); 865 else if (ts->tick_stopped) 866 tick_nohz_restart_sched_tick(ts, ktime_get()); 867 #endif 868 } 869 870 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 871 { 872 /* 873 * If this CPU is offline and it is the one which updates 874 * jiffies, then give up the assignment and let it be taken by 875 * the CPU which runs the tick timer next. If we don't drop 876 * this here the jiffies might be stale and do_timer() never 877 * invoked. 878 */ 879 if (unlikely(!cpu_online(cpu))) { 880 if (cpu == tick_do_timer_cpu) 881 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 882 /* 883 * Make sure the CPU doesn't get fooled by obsolete tick 884 * deadline if it comes back online later. 885 */ 886 ts->next_tick = 0; 887 return false; 888 } 889 890 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 891 return false; 892 893 if (need_resched()) 894 return false; 895 896 if (unlikely(local_softirq_pending())) { 897 static int ratelimit; 898 899 if (ratelimit < 10 && 900 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 901 pr_warn("NOHZ: local_softirq_pending %02x\n", 902 (unsigned int) local_softirq_pending()); 903 ratelimit++; 904 } 905 return false; 906 } 907 908 if (tick_nohz_full_enabled()) { 909 /* 910 * Keep the tick alive to guarantee timekeeping progression 911 * if there are full dynticks CPUs around 912 */ 913 if (tick_do_timer_cpu == cpu) 914 return false; 915 /* 916 * Boot safety: make sure the timekeeping duty has been 917 * assigned before entering dyntick-idle mode, 918 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 919 */ 920 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 921 return false; 922 923 /* Should not happen for nohz-full */ 924 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 925 return false; 926 } 927 928 return true; 929 } 930 931 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 932 { 933 ktime_t expires; 934 int cpu = smp_processor_id(); 935 936 /* 937 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 938 * tick timer expiration time is known already. 939 */ 940 if (ts->timer_expires_base) 941 expires = ts->timer_expires; 942 else if (can_stop_idle_tick(cpu, ts)) 943 expires = tick_nohz_next_event(ts, cpu); 944 else 945 return; 946 947 ts->idle_calls++; 948 949 if (expires > 0LL) { 950 int was_stopped = ts->tick_stopped; 951 952 tick_nohz_stop_tick(ts, cpu); 953 954 ts->idle_sleeps++; 955 ts->idle_expires = expires; 956 957 if (!was_stopped && ts->tick_stopped) { 958 ts->idle_jiffies = ts->last_jiffies; 959 nohz_balance_enter_idle(cpu); 960 } 961 } else { 962 tick_nohz_retain_tick(ts); 963 } 964 } 965 966 /** 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 968 * 969 * When the next event is more than a tick into the future, stop the idle tick 970 */ 971 void tick_nohz_idle_stop_tick(void) 972 { 973 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 974 } 975 976 void tick_nohz_idle_retain_tick(void) 977 { 978 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 979 /* 980 * Undo the effect of get_next_timer_interrupt() called from 981 * tick_nohz_next_event(). 982 */ 983 timer_clear_idle(); 984 } 985 986 /** 987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 988 * 989 * Called when we start the idle loop. 990 */ 991 void tick_nohz_idle_enter(void) 992 { 993 struct tick_sched *ts; 994 995 lockdep_assert_irqs_enabled(); 996 997 local_irq_disable(); 998 999 ts = this_cpu_ptr(&tick_cpu_sched); 1000 1001 WARN_ON_ONCE(ts->timer_expires_base); 1002 1003 ts->inidle = 1; 1004 tick_nohz_start_idle(ts); 1005 1006 local_irq_enable(); 1007 } 1008 1009 /** 1010 * tick_nohz_irq_exit - update next tick event from interrupt exit 1011 * 1012 * When an interrupt fires while we are idle and it doesn't cause 1013 * a reschedule, it may still add, modify or delete a timer, enqueue 1014 * an RCU callback, etc... 1015 * So we need to re-calculate and reprogram the next tick event. 1016 */ 1017 void tick_nohz_irq_exit(void) 1018 { 1019 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1020 1021 if (ts->inidle) 1022 tick_nohz_start_idle(ts); 1023 else 1024 tick_nohz_full_update_tick(ts); 1025 } 1026 1027 /** 1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1029 */ 1030 bool tick_nohz_idle_got_tick(void) 1031 { 1032 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1033 1034 if (ts->got_idle_tick) { 1035 ts->got_idle_tick = 0; 1036 return true; 1037 } 1038 return false; 1039 } 1040 1041 /** 1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1043 * or the tick, whatever that expires first. Note that, if the tick has been 1044 * stopped, it returns the next hrtimer. 1045 * 1046 * Called from power state control code with interrupts disabled 1047 */ 1048 ktime_t tick_nohz_get_next_hrtimer(void) 1049 { 1050 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1051 } 1052 1053 /** 1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1055 * @delta_next: duration until the next event if the tick cannot be stopped 1056 * 1057 * Called from power state control code with interrupts disabled 1058 */ 1059 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1060 { 1061 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1062 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1063 int cpu = smp_processor_id(); 1064 /* 1065 * The idle entry time is expected to be a sufficient approximation of 1066 * the current time at this point. 1067 */ 1068 ktime_t now = ts->idle_entrytime; 1069 ktime_t next_event; 1070 1071 WARN_ON_ONCE(!ts->inidle); 1072 1073 *delta_next = ktime_sub(dev->next_event, now); 1074 1075 if (!can_stop_idle_tick(cpu, ts)) 1076 return *delta_next; 1077 1078 next_event = tick_nohz_next_event(ts, cpu); 1079 if (!next_event) 1080 return *delta_next; 1081 1082 /* 1083 * If the next highres timer to expire is earlier than next_event, the 1084 * idle governor needs to know that. 1085 */ 1086 next_event = min_t(u64, next_event, 1087 hrtimer_next_event_without(&ts->sched_timer)); 1088 1089 return ktime_sub(next_event, now); 1090 } 1091 1092 /** 1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1094 * for a particular CPU. 1095 * 1096 * Called from the schedutil frequency scaling governor in scheduler context. 1097 */ 1098 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1099 { 1100 struct tick_sched *ts = tick_get_tick_sched(cpu); 1101 1102 return ts->idle_calls; 1103 } 1104 1105 /** 1106 * tick_nohz_get_idle_calls - return the current idle calls counter value 1107 * 1108 * Called from the schedutil frequency scaling governor in scheduler context. 1109 */ 1110 unsigned long tick_nohz_get_idle_calls(void) 1111 { 1112 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1113 1114 return ts->idle_calls; 1115 } 1116 1117 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1118 { 1119 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1120 unsigned long ticks; 1121 1122 if (vtime_accounting_cpu_enabled()) 1123 return; 1124 /* 1125 * We stopped the tick in idle. Update process times would miss the 1126 * time we slept as update_process_times does only a 1 tick 1127 * accounting. Enforce that this is accounted to idle ! 1128 */ 1129 ticks = jiffies - ts->idle_jiffies; 1130 /* 1131 * We might be one off. Do not randomly account a huge number of ticks! 1132 */ 1133 if (ticks && ticks < LONG_MAX) 1134 account_idle_ticks(ticks); 1135 #endif 1136 } 1137 1138 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1139 { 1140 tick_nohz_restart_sched_tick(ts, now); 1141 tick_nohz_account_idle_ticks(ts); 1142 } 1143 1144 void tick_nohz_idle_restart_tick(void) 1145 { 1146 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1147 1148 if (ts->tick_stopped) 1149 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1150 } 1151 1152 /** 1153 * tick_nohz_idle_exit - restart the idle tick from the idle task 1154 * 1155 * Restart the idle tick when the CPU is woken up from idle 1156 * This also exit the RCU extended quiescent state. The CPU 1157 * can use RCU again after this function is called. 1158 */ 1159 void tick_nohz_idle_exit(void) 1160 { 1161 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1162 bool idle_active, tick_stopped; 1163 ktime_t now; 1164 1165 local_irq_disable(); 1166 1167 WARN_ON_ONCE(!ts->inidle); 1168 WARN_ON_ONCE(ts->timer_expires_base); 1169 1170 ts->inidle = 0; 1171 idle_active = ts->idle_active; 1172 tick_stopped = ts->tick_stopped; 1173 1174 if (idle_active || tick_stopped) 1175 now = ktime_get(); 1176 1177 if (idle_active) 1178 tick_nohz_stop_idle(ts, now); 1179 1180 if (tick_stopped) 1181 __tick_nohz_idle_restart_tick(ts, now); 1182 1183 local_irq_enable(); 1184 } 1185 1186 /* 1187 * The nohz low res interrupt handler 1188 */ 1189 static void tick_nohz_handler(struct clock_event_device *dev) 1190 { 1191 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1192 struct pt_regs *regs = get_irq_regs(); 1193 ktime_t now = ktime_get(); 1194 1195 dev->next_event = KTIME_MAX; 1196 1197 tick_sched_do_timer(ts, now); 1198 tick_sched_handle(ts, regs); 1199 1200 /* No need to reprogram if we are running tickless */ 1201 if (unlikely(ts->tick_stopped)) 1202 return; 1203 1204 hrtimer_forward(&ts->sched_timer, now, tick_period); 1205 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1206 } 1207 1208 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1209 { 1210 if (!tick_nohz_enabled) 1211 return; 1212 ts->nohz_mode = mode; 1213 /* One update is enough */ 1214 if (!test_and_set_bit(0, &tick_nohz_active)) 1215 timers_update_nohz(); 1216 } 1217 1218 /** 1219 * tick_nohz_switch_to_nohz - switch to nohz mode 1220 */ 1221 static void tick_nohz_switch_to_nohz(void) 1222 { 1223 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1224 ktime_t next; 1225 1226 if (!tick_nohz_enabled) 1227 return; 1228 1229 if (tick_switch_to_oneshot(tick_nohz_handler)) 1230 return; 1231 1232 /* 1233 * Recycle the hrtimer in ts, so we can share the 1234 * hrtimer_forward with the highres code. 1235 */ 1236 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1237 /* Get the next period */ 1238 next = tick_init_jiffy_update(); 1239 1240 hrtimer_set_expires(&ts->sched_timer, next); 1241 hrtimer_forward_now(&ts->sched_timer, tick_period); 1242 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1243 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1244 } 1245 1246 static inline void tick_nohz_irq_enter(void) 1247 { 1248 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1249 ktime_t now; 1250 1251 if (!ts->idle_active && !ts->tick_stopped) 1252 return; 1253 now = ktime_get(); 1254 if (ts->idle_active) 1255 tick_nohz_stop_idle(ts, now); 1256 if (ts->tick_stopped) 1257 tick_nohz_update_jiffies(now); 1258 } 1259 1260 #else 1261 1262 static inline void tick_nohz_switch_to_nohz(void) { } 1263 static inline void tick_nohz_irq_enter(void) { } 1264 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1265 1266 #endif /* CONFIG_NO_HZ_COMMON */ 1267 1268 /* 1269 * Called from irq_enter to notify about the possible interruption of idle() 1270 */ 1271 void tick_irq_enter(void) 1272 { 1273 tick_check_oneshot_broadcast_this_cpu(); 1274 tick_nohz_irq_enter(); 1275 } 1276 1277 /* 1278 * High resolution timer specific code 1279 */ 1280 #ifdef CONFIG_HIGH_RES_TIMERS 1281 /* 1282 * We rearm the timer until we get disabled by the idle code. 1283 * Called with interrupts disabled. 1284 */ 1285 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1286 { 1287 struct tick_sched *ts = 1288 container_of(timer, struct tick_sched, sched_timer); 1289 struct pt_regs *regs = get_irq_regs(); 1290 ktime_t now = ktime_get(); 1291 1292 tick_sched_do_timer(ts, now); 1293 1294 /* 1295 * Do not call, when we are not in irq context and have 1296 * no valid regs pointer 1297 */ 1298 if (regs) 1299 tick_sched_handle(ts, regs); 1300 else 1301 ts->next_tick = 0; 1302 1303 /* No need to reprogram if we are in idle or full dynticks mode */ 1304 if (unlikely(ts->tick_stopped)) 1305 return HRTIMER_NORESTART; 1306 1307 hrtimer_forward(timer, now, tick_period); 1308 1309 return HRTIMER_RESTART; 1310 } 1311 1312 static int sched_skew_tick; 1313 1314 static int __init skew_tick(char *str) 1315 { 1316 get_option(&str, &sched_skew_tick); 1317 1318 return 0; 1319 } 1320 early_param("skew_tick", skew_tick); 1321 1322 /** 1323 * tick_setup_sched_timer - setup the tick emulation timer 1324 */ 1325 void tick_setup_sched_timer(void) 1326 { 1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1328 ktime_t now = ktime_get(); 1329 1330 /* 1331 * Emulate tick processing via per-CPU hrtimers: 1332 */ 1333 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1334 ts->sched_timer.function = tick_sched_timer; 1335 1336 /* Get the next period (per-CPU) */ 1337 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1338 1339 /* Offset the tick to avert jiffies_lock contention. */ 1340 if (sched_skew_tick) { 1341 u64 offset = ktime_to_ns(tick_period) >> 1; 1342 do_div(offset, num_possible_cpus()); 1343 offset *= smp_processor_id(); 1344 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1345 } 1346 1347 hrtimer_forward(&ts->sched_timer, now, tick_period); 1348 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1349 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1350 } 1351 #endif /* HIGH_RES_TIMERS */ 1352 1353 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1354 void tick_cancel_sched_timer(int cpu) 1355 { 1356 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1357 1358 # ifdef CONFIG_HIGH_RES_TIMERS 1359 if (ts->sched_timer.base) 1360 hrtimer_cancel(&ts->sched_timer); 1361 # endif 1362 1363 memset(ts, 0, sizeof(*ts)); 1364 } 1365 #endif 1366 1367 /** 1368 * Async notification about clocksource changes 1369 */ 1370 void tick_clock_notify(void) 1371 { 1372 int cpu; 1373 1374 for_each_possible_cpu(cpu) 1375 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1376 } 1377 1378 /* 1379 * Async notification about clock event changes 1380 */ 1381 void tick_oneshot_notify(void) 1382 { 1383 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1384 1385 set_bit(0, &ts->check_clocks); 1386 } 1387 1388 /** 1389 * Check, if a change happened, which makes oneshot possible. 1390 * 1391 * Called cyclic from the hrtimer softirq (driven by the timer 1392 * softirq) allow_nohz signals, that we can switch into low-res nohz 1393 * mode, because high resolution timers are disabled (either compile 1394 * or runtime). Called with interrupts disabled. 1395 */ 1396 int tick_check_oneshot_change(int allow_nohz) 1397 { 1398 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1399 1400 if (!test_and_clear_bit(0, &ts->check_clocks)) 1401 return 0; 1402 1403 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1404 return 0; 1405 1406 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1407 return 0; 1408 1409 if (!allow_nohz) 1410 return 1; 1411 1412 tick_nohz_switch_to_nohz(); 1413 return 0; 1414 } 1415