xref: /openbmc/linux/kernel/time/tick-sched.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 */
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta < tick_period)
64 		return;
65 
66 	/* Reevaluate with jiffies_lock held */
67 	write_seqlock(&jiffies_lock);
68 
69 	delta = ktime_sub(now, last_jiffies_update);
70 	if (delta >= tick_period) {
71 
72 		delta = ktime_sub(delta, tick_period);
73 		last_jiffies_update = ktime_add(last_jiffies_update,
74 						tick_period);
75 
76 		/* Slow path for long timeouts */
77 		if (unlikely(delta >= tick_period)) {
78 			s64 incr = ktime_to_ns(tick_period);
79 
80 			ticks = ktime_divns(delta, incr);
81 
82 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 							   incr * ticks);
84 		}
85 		do_timer(++ticks);
86 
87 		/* Keep the tick_next_period variable up to date */
88 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 	} else {
90 		write_sequnlock(&jiffies_lock);
91 		return;
92 	}
93 	write_sequnlock(&jiffies_lock);
94 	update_wall_time();
95 }
96 
97 /*
98  * Initialize and return retrieve the jiffies update.
99  */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 	ktime_t period;
103 
104 	write_seqlock(&jiffies_lock);
105 	/* Did we start the jiffies update yet ? */
106 	if (last_jiffies_update == 0)
107 		last_jiffies_update = tick_next_period;
108 	period = last_jiffies_update;
109 	write_sequnlock(&jiffies_lock);
110 	return period;
111 }
112 
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the CPU in charge went
121 	 * into a long sleep. If two CPUs happen to assign themselves to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 *
125 	 * If nohz_full is enabled, this should not happen because the
126 	 * tick_do_timer_cpu never relinquishes.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129 #ifdef CONFIG_NO_HZ_FULL
130 		WARN_ON(tick_nohz_full_running);
131 #endif
132 		tick_do_timer_cpu = cpu;
133 	}
134 #endif
135 
136 	/* Check, if the jiffies need an update */
137 	if (tick_do_timer_cpu == cpu)
138 		tick_do_update_jiffies64(now);
139 
140 	if (ts->inidle)
141 		ts->got_idle_tick = 1;
142 }
143 
144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145 {
146 #ifdef CONFIG_NO_HZ_COMMON
147 	/*
148 	 * When we are idle and the tick is stopped, we have to touch
149 	 * the watchdog as we might not schedule for a really long
150 	 * time. This happens on complete idle SMP systems while
151 	 * waiting on the login prompt. We also increment the "start of
152 	 * idle" jiffy stamp so the idle accounting adjustment we do
153 	 * when we go busy again does not account too much ticks.
154 	 */
155 	if (ts->tick_stopped) {
156 		touch_softlockup_watchdog_sched();
157 		if (is_idle_task(current))
158 			ts->idle_jiffies++;
159 		/*
160 		 * In case the current tick fired too early past its expected
161 		 * expiration, make sure we don't bypass the next clock reprogramming
162 		 * to the same deadline.
163 		 */
164 		ts->next_tick = 0;
165 	}
166 #endif
167 	update_process_times(user_mode(regs));
168 	profile_tick(CPU_PROFILING);
169 }
170 #endif
171 
172 #ifdef CONFIG_NO_HZ_FULL
173 cpumask_var_t tick_nohz_full_mask;
174 bool tick_nohz_full_running;
175 static atomic_t tick_dep_mask;
176 
177 static bool check_tick_dependency(atomic_t *dep)
178 {
179 	int val = atomic_read(dep);
180 
181 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
182 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
187 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_SCHED) {
192 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
193 		return true;
194 	}
195 
196 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
197 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
198 		return true;
199 	}
200 
201 	return false;
202 }
203 
204 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
205 {
206 	lockdep_assert_irqs_disabled();
207 
208 	if (unlikely(!cpu_online(cpu)))
209 		return false;
210 
211 	if (check_tick_dependency(&tick_dep_mask))
212 		return false;
213 
214 	if (check_tick_dependency(&ts->tick_dep_mask))
215 		return false;
216 
217 	if (check_tick_dependency(&current->tick_dep_mask))
218 		return false;
219 
220 	if (check_tick_dependency(&current->signal->tick_dep_mask))
221 		return false;
222 
223 	return true;
224 }
225 
226 static void nohz_full_kick_func(struct irq_work *work)
227 {
228 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
229 }
230 
231 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
232 	.func = nohz_full_kick_func,
233 };
234 
235 /*
236  * Kick this CPU if it's full dynticks in order to force it to
237  * re-evaluate its dependency on the tick and restart it if necessary.
238  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
239  * is NMI safe.
240  */
241 static void tick_nohz_full_kick(void)
242 {
243 	if (!tick_nohz_full_cpu(smp_processor_id()))
244 		return;
245 
246 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
247 }
248 
249 /*
250  * Kick the CPU if it's full dynticks in order to force it to
251  * re-evaluate its dependency on the tick and restart it if necessary.
252  */
253 void tick_nohz_full_kick_cpu(int cpu)
254 {
255 	if (!tick_nohz_full_cpu(cpu))
256 		return;
257 
258 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
259 }
260 
261 /*
262  * Kick all full dynticks CPUs in order to force these to re-evaluate
263  * their dependency on the tick and restart it if necessary.
264  */
265 static void tick_nohz_full_kick_all(void)
266 {
267 	int cpu;
268 
269 	if (!tick_nohz_full_running)
270 		return;
271 
272 	preempt_disable();
273 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
274 		tick_nohz_full_kick_cpu(cpu);
275 	preempt_enable();
276 }
277 
278 static void tick_nohz_dep_set_all(atomic_t *dep,
279 				  enum tick_dep_bits bit)
280 {
281 	int prev;
282 
283 	prev = atomic_fetch_or(BIT(bit), dep);
284 	if (!prev)
285 		tick_nohz_full_kick_all();
286 }
287 
288 /*
289  * Set a global tick dependency. Used by perf events that rely on freq and
290  * by unstable clock.
291  */
292 void tick_nohz_dep_set(enum tick_dep_bits bit)
293 {
294 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
295 }
296 
297 void tick_nohz_dep_clear(enum tick_dep_bits bit)
298 {
299 	atomic_andnot(BIT(bit), &tick_dep_mask);
300 }
301 
302 /*
303  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
304  * manage events throttling.
305  */
306 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
307 {
308 	int prev;
309 	struct tick_sched *ts;
310 
311 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
312 
313 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
314 	if (!prev) {
315 		preempt_disable();
316 		/* Perf needs local kick that is NMI safe */
317 		if (cpu == smp_processor_id()) {
318 			tick_nohz_full_kick();
319 		} else {
320 			/* Remote irq work not NMI-safe */
321 			if (!WARN_ON_ONCE(in_nmi()))
322 				tick_nohz_full_kick_cpu(cpu);
323 		}
324 		preempt_enable();
325 	}
326 }
327 
328 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
329 {
330 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331 
332 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
333 }
334 
335 /*
336  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
337  * per task timers.
338  */
339 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
340 {
341 	/*
342 	 * We could optimize this with just kicking the target running the task
343 	 * if that noise matters for nohz full users.
344 	 */
345 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
346 }
347 
348 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
349 {
350 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
351 }
352 
353 /*
354  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
355  * per process timers.
356  */
357 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
360 }
361 
362 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
363 {
364 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
365 }
366 
367 /*
368  * Re-evaluate the need for the tick as we switch the current task.
369  * It might need the tick due to per task/process properties:
370  * perf events, posix CPU timers, ...
371  */
372 void __tick_nohz_task_switch(void)
373 {
374 	unsigned long flags;
375 	struct tick_sched *ts;
376 
377 	local_irq_save(flags);
378 
379 	if (!tick_nohz_full_cpu(smp_processor_id()))
380 		goto out;
381 
382 	ts = this_cpu_ptr(&tick_cpu_sched);
383 
384 	if (ts->tick_stopped) {
385 		if (atomic_read(&current->tick_dep_mask) ||
386 		    atomic_read(&current->signal->tick_dep_mask))
387 			tick_nohz_full_kick();
388 	}
389 out:
390 	local_irq_restore(flags);
391 }
392 
393 /* Get the boot-time nohz CPU list from the kernel parameters. */
394 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
395 {
396 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
397 	cpumask_copy(tick_nohz_full_mask, cpumask);
398 	tick_nohz_full_running = true;
399 }
400 
401 static int tick_nohz_cpu_down(unsigned int cpu)
402 {
403 	/*
404 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
405 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
406 	 * CPUs. It must remain online when nohz full is enabled.
407 	 */
408 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
409 		return -EBUSY;
410 	return 0;
411 }
412 
413 void __init tick_nohz_init(void)
414 {
415 	int cpu, ret;
416 
417 	if (!tick_nohz_full_running)
418 		return;
419 
420 	/*
421 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
422 	 * locking contexts. But then we need irq work to raise its own
423 	 * interrupts to avoid circular dependency on the tick
424 	 */
425 	if (!arch_irq_work_has_interrupt()) {
426 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
427 		cpumask_clear(tick_nohz_full_mask);
428 		tick_nohz_full_running = false;
429 		return;
430 	}
431 
432 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
433 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
434 		cpu = smp_processor_id();
435 
436 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
437 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
438 				"for timekeeping\n", cpu);
439 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
440 		}
441 	}
442 
443 	for_each_cpu(cpu, tick_nohz_full_mask)
444 		context_tracking_cpu_set(cpu);
445 
446 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
447 					"kernel/nohz:predown", NULL,
448 					tick_nohz_cpu_down);
449 	WARN_ON(ret < 0);
450 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
451 		cpumask_pr_args(tick_nohz_full_mask));
452 }
453 #endif
454 
455 /*
456  * NOHZ - aka dynamic tick functionality
457  */
458 #ifdef CONFIG_NO_HZ_COMMON
459 /*
460  * NO HZ enabled ?
461  */
462 bool tick_nohz_enabled __read_mostly  = true;
463 unsigned long tick_nohz_active  __read_mostly;
464 /*
465  * Enable / Disable tickless mode
466  */
467 static int __init setup_tick_nohz(char *str)
468 {
469 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
470 }
471 
472 __setup("nohz=", setup_tick_nohz);
473 
474 bool tick_nohz_tick_stopped(void)
475 {
476 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
477 
478 	return ts->tick_stopped;
479 }
480 
481 bool tick_nohz_tick_stopped_cpu(int cpu)
482 {
483 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
484 
485 	return ts->tick_stopped;
486 }
487 
488 /**
489  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490  *
491  * Called from interrupt entry when the CPU was idle
492  *
493  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
494  * must be updated. Otherwise an interrupt handler could use a stale jiffy
495  * value. We do this unconditionally on any CPU, as we don't know whether the
496  * CPU, which has the update task assigned is in a long sleep.
497  */
498 static void tick_nohz_update_jiffies(ktime_t now)
499 {
500 	unsigned long flags;
501 
502 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
503 
504 	local_irq_save(flags);
505 	tick_do_update_jiffies64(now);
506 	local_irq_restore(flags);
507 
508 	touch_softlockup_watchdog_sched();
509 }
510 
511 /*
512  * Updates the per-CPU time idle statistics counters
513  */
514 static void
515 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
516 {
517 	ktime_t delta;
518 
519 	if (ts->idle_active) {
520 		delta = ktime_sub(now, ts->idle_entrytime);
521 		if (nr_iowait_cpu(cpu) > 0)
522 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
523 		else
524 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
525 		ts->idle_entrytime = now;
526 	}
527 
528 	if (last_update_time)
529 		*last_update_time = ktime_to_us(now);
530 
531 }
532 
533 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
534 {
535 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
536 	ts->idle_active = 0;
537 
538 	sched_clock_idle_wakeup_event();
539 }
540 
541 static void tick_nohz_start_idle(struct tick_sched *ts)
542 {
543 	ts->idle_entrytime = ktime_get();
544 	ts->idle_active = 1;
545 	sched_clock_idle_sleep_event();
546 }
547 
548 /**
549  * get_cpu_idle_time_us - get the total idle time of a CPU
550  * @cpu: CPU number to query
551  * @last_update_time: variable to store update time in. Do not update
552  * counters if NULL.
553  *
554  * Return the cumulative idle time (since boot) for a given
555  * CPU, in microseconds.
556  *
557  * This time is measured via accounting rather than sampling,
558  * and is as accurate as ktime_get() is.
559  *
560  * This function returns -1 if NOHZ is not enabled.
561  */
562 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
563 {
564 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
565 	ktime_t now, idle;
566 
567 	if (!tick_nohz_active)
568 		return -1;
569 
570 	now = ktime_get();
571 	if (last_update_time) {
572 		update_ts_time_stats(cpu, ts, now, last_update_time);
573 		idle = ts->idle_sleeptime;
574 	} else {
575 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
576 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
577 
578 			idle = ktime_add(ts->idle_sleeptime, delta);
579 		} else {
580 			idle = ts->idle_sleeptime;
581 		}
582 	}
583 
584 	return ktime_to_us(idle);
585 
586 }
587 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
588 
589 /**
590  * get_cpu_iowait_time_us - get the total iowait time of a CPU
591  * @cpu: CPU number to query
592  * @last_update_time: variable to store update time in. Do not update
593  * counters if NULL.
594  *
595  * Return the cumulative iowait time (since boot) for a given
596  * CPU, in microseconds.
597  *
598  * This time is measured via accounting rather than sampling,
599  * and is as accurate as ktime_get() is.
600  *
601  * This function returns -1 if NOHZ is not enabled.
602  */
603 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
604 {
605 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
606 	ktime_t now, iowait;
607 
608 	if (!tick_nohz_active)
609 		return -1;
610 
611 	now = ktime_get();
612 	if (last_update_time) {
613 		update_ts_time_stats(cpu, ts, now, last_update_time);
614 		iowait = ts->iowait_sleeptime;
615 	} else {
616 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
617 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
618 
619 			iowait = ktime_add(ts->iowait_sleeptime, delta);
620 		} else {
621 			iowait = ts->iowait_sleeptime;
622 		}
623 	}
624 
625 	return ktime_to_us(iowait);
626 }
627 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
628 
629 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
630 {
631 	hrtimer_cancel(&ts->sched_timer);
632 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
633 
634 	/* Forward the time to expire in the future */
635 	hrtimer_forward(&ts->sched_timer, now, tick_period);
636 
637 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
638 		hrtimer_start_expires(&ts->sched_timer,
639 				      HRTIMER_MODE_ABS_PINNED_HARD);
640 	} else {
641 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
642 	}
643 
644 	/*
645 	 * Reset to make sure next tick stop doesn't get fooled by past
646 	 * cached clock deadline.
647 	 */
648 	ts->next_tick = 0;
649 }
650 
651 static inline bool local_timer_softirq_pending(void)
652 {
653 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
654 }
655 
656 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
657 {
658 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
659 	unsigned long basejiff;
660 	unsigned int seq;
661 
662 	/* Read jiffies and the time when jiffies were updated last */
663 	do {
664 		seq = read_seqbegin(&jiffies_lock);
665 		basemono = last_jiffies_update;
666 		basejiff = jiffies;
667 	} while (read_seqretry(&jiffies_lock, seq));
668 	ts->last_jiffies = basejiff;
669 	ts->timer_expires_base = basemono;
670 
671 	/*
672 	 * Keep the periodic tick, when RCU, architecture or irq_work
673 	 * requests it.
674 	 * Aside of that check whether the local timer softirq is
675 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
676 	 * because there is an already expired timer, so it will request
677 	 * immeditate expiry, which rearms the hardware timer with a
678 	 * minimal delta which brings us back to this place
679 	 * immediately. Lather, rinse and repeat...
680 	 */
681 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
682 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
683 		next_tick = basemono + TICK_NSEC;
684 	} else {
685 		/*
686 		 * Get the next pending timer. If high resolution
687 		 * timers are enabled this only takes the timer wheel
688 		 * timers into account. If high resolution timers are
689 		 * disabled this also looks at the next expiring
690 		 * hrtimer.
691 		 */
692 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 		ts->next_timer = next_tmr;
694 		/* Take the next rcu event into account */
695 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
696 	}
697 
698 	/*
699 	 * If the tick is due in the next period, keep it ticking or
700 	 * force prod the timer.
701 	 */
702 	delta = next_tick - basemono;
703 	if (delta <= (u64)TICK_NSEC) {
704 		/*
705 		 * Tell the timer code that the base is not idle, i.e. undo
706 		 * the effect of get_next_timer_interrupt():
707 		 */
708 		timer_clear_idle();
709 		/*
710 		 * We've not stopped the tick yet, and there's a timer in the
711 		 * next period, so no point in stopping it either, bail.
712 		 */
713 		if (!ts->tick_stopped) {
714 			ts->timer_expires = 0;
715 			goto out;
716 		}
717 	}
718 
719 	/*
720 	 * If this CPU is the one which had the do_timer() duty last, we limit
721 	 * the sleep time to the timekeeping max_deferment value.
722 	 * Otherwise we can sleep as long as we want.
723 	 */
724 	delta = timekeeping_max_deferment();
725 	if (cpu != tick_do_timer_cpu &&
726 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
727 		delta = KTIME_MAX;
728 
729 	/* Calculate the next expiry time */
730 	if (delta < (KTIME_MAX - basemono))
731 		expires = basemono + delta;
732 	else
733 		expires = KTIME_MAX;
734 
735 	ts->timer_expires = min_t(u64, expires, next_tick);
736 
737 out:
738 	return ts->timer_expires;
739 }
740 
741 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
742 {
743 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
744 	u64 basemono = ts->timer_expires_base;
745 	u64 expires = ts->timer_expires;
746 	ktime_t tick = expires;
747 
748 	/* Make sure we won't be trying to stop it twice in a row. */
749 	ts->timer_expires_base = 0;
750 
751 	/*
752 	 * If this CPU is the one which updates jiffies, then give up
753 	 * the assignment and let it be taken by the CPU which runs
754 	 * the tick timer next, which might be this CPU as well. If we
755 	 * don't drop this here the jiffies might be stale and
756 	 * do_timer() never invoked. Keep track of the fact that it
757 	 * was the one which had the do_timer() duty last.
758 	 */
759 	if (cpu == tick_do_timer_cpu) {
760 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
761 		ts->do_timer_last = 1;
762 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
763 		ts->do_timer_last = 0;
764 	}
765 
766 	/* Skip reprogram of event if its not changed */
767 	if (ts->tick_stopped && (expires == ts->next_tick)) {
768 		/* Sanity check: make sure clockevent is actually programmed */
769 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
770 			return;
771 
772 		WARN_ON_ONCE(1);
773 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
774 			    basemono, ts->next_tick, dev->next_event,
775 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
776 	}
777 
778 	/*
779 	 * nohz_stop_sched_tick can be called several times before
780 	 * the nohz_restart_sched_tick is called. This happens when
781 	 * interrupts arrive which do not cause a reschedule. In the
782 	 * first call we save the current tick time, so we can restart
783 	 * the scheduler tick in nohz_restart_sched_tick.
784 	 */
785 	if (!ts->tick_stopped) {
786 		calc_load_nohz_start();
787 		quiet_vmstat();
788 
789 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
790 		ts->tick_stopped = 1;
791 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
792 	}
793 
794 	ts->next_tick = tick;
795 
796 	/*
797 	 * If the expiration time == KTIME_MAX, then we simply stop
798 	 * the tick timer.
799 	 */
800 	if (unlikely(expires == KTIME_MAX)) {
801 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
802 			hrtimer_cancel(&ts->sched_timer);
803 		return;
804 	}
805 
806 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
807 		hrtimer_start(&ts->sched_timer, tick,
808 			      HRTIMER_MODE_ABS_PINNED_HARD);
809 	} else {
810 		hrtimer_set_expires(&ts->sched_timer, tick);
811 		tick_program_event(tick, 1);
812 	}
813 }
814 
815 static void tick_nohz_retain_tick(struct tick_sched *ts)
816 {
817 	ts->timer_expires_base = 0;
818 }
819 
820 #ifdef CONFIG_NO_HZ_FULL
821 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
822 {
823 	if (tick_nohz_next_event(ts, cpu))
824 		tick_nohz_stop_tick(ts, cpu);
825 	else
826 		tick_nohz_retain_tick(ts);
827 }
828 #endif /* CONFIG_NO_HZ_FULL */
829 
830 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
831 {
832 	/* Update jiffies first */
833 	tick_do_update_jiffies64(now);
834 
835 	/*
836 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
837 	 * the clock forward checks in the enqueue path:
838 	 */
839 	timer_clear_idle();
840 
841 	calc_load_nohz_stop();
842 	touch_softlockup_watchdog_sched();
843 	/*
844 	 * Cancel the scheduled timer and restore the tick
845 	 */
846 	ts->tick_stopped  = 0;
847 	ts->idle_exittime = now;
848 
849 	tick_nohz_restart(ts, now);
850 }
851 
852 static void tick_nohz_full_update_tick(struct tick_sched *ts)
853 {
854 #ifdef CONFIG_NO_HZ_FULL
855 	int cpu = smp_processor_id();
856 
857 	if (!tick_nohz_full_cpu(cpu))
858 		return;
859 
860 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
861 		return;
862 
863 	if (can_stop_full_tick(cpu, ts))
864 		tick_nohz_stop_sched_tick(ts, cpu);
865 	else if (ts->tick_stopped)
866 		tick_nohz_restart_sched_tick(ts, ktime_get());
867 #endif
868 }
869 
870 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
871 {
872 	/*
873 	 * If this CPU is offline and it is the one which updates
874 	 * jiffies, then give up the assignment and let it be taken by
875 	 * the CPU which runs the tick timer next. If we don't drop
876 	 * this here the jiffies might be stale and do_timer() never
877 	 * invoked.
878 	 */
879 	if (unlikely(!cpu_online(cpu))) {
880 		if (cpu == tick_do_timer_cpu)
881 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
882 		/*
883 		 * Make sure the CPU doesn't get fooled by obsolete tick
884 		 * deadline if it comes back online later.
885 		 */
886 		ts->next_tick = 0;
887 		return false;
888 	}
889 
890 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
891 		return false;
892 
893 	if (need_resched())
894 		return false;
895 
896 	if (unlikely(local_softirq_pending())) {
897 		static int ratelimit;
898 
899 		if (ratelimit < 10 &&
900 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
901 			pr_warn("NOHZ: local_softirq_pending %02x\n",
902 				(unsigned int) local_softirq_pending());
903 			ratelimit++;
904 		}
905 		return false;
906 	}
907 
908 	if (tick_nohz_full_enabled()) {
909 		/*
910 		 * Keep the tick alive to guarantee timekeeping progression
911 		 * if there are full dynticks CPUs around
912 		 */
913 		if (tick_do_timer_cpu == cpu)
914 			return false;
915 		/*
916 		 * Boot safety: make sure the timekeeping duty has been
917 		 * assigned before entering dyntick-idle mode,
918 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
919 		 */
920 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
921 			return false;
922 
923 		/* Should not happen for nohz-full */
924 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
925 			return false;
926 	}
927 
928 	return true;
929 }
930 
931 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
932 {
933 	ktime_t expires;
934 	int cpu = smp_processor_id();
935 
936 	/*
937 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
938 	 * tick timer expiration time is known already.
939 	 */
940 	if (ts->timer_expires_base)
941 		expires = ts->timer_expires;
942 	else if (can_stop_idle_tick(cpu, ts))
943 		expires = tick_nohz_next_event(ts, cpu);
944 	else
945 		return;
946 
947 	ts->idle_calls++;
948 
949 	if (expires > 0LL) {
950 		int was_stopped = ts->tick_stopped;
951 
952 		tick_nohz_stop_tick(ts, cpu);
953 
954 		ts->idle_sleeps++;
955 		ts->idle_expires = expires;
956 
957 		if (!was_stopped && ts->tick_stopped) {
958 			ts->idle_jiffies = ts->last_jiffies;
959 			nohz_balance_enter_idle(cpu);
960 		}
961 	} else {
962 		tick_nohz_retain_tick(ts);
963 	}
964 }
965 
966 /**
967  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
968  *
969  * When the next event is more than a tick into the future, stop the idle tick
970  */
971 void tick_nohz_idle_stop_tick(void)
972 {
973 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
974 }
975 
976 void tick_nohz_idle_retain_tick(void)
977 {
978 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
979 	/*
980 	 * Undo the effect of get_next_timer_interrupt() called from
981 	 * tick_nohz_next_event().
982 	 */
983 	timer_clear_idle();
984 }
985 
986 /**
987  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
988  *
989  * Called when we start the idle loop.
990  */
991 void tick_nohz_idle_enter(void)
992 {
993 	struct tick_sched *ts;
994 
995 	lockdep_assert_irqs_enabled();
996 
997 	local_irq_disable();
998 
999 	ts = this_cpu_ptr(&tick_cpu_sched);
1000 
1001 	WARN_ON_ONCE(ts->timer_expires_base);
1002 
1003 	ts->inidle = 1;
1004 	tick_nohz_start_idle(ts);
1005 
1006 	local_irq_enable();
1007 }
1008 
1009 /**
1010  * tick_nohz_irq_exit - update next tick event from interrupt exit
1011  *
1012  * When an interrupt fires while we are idle and it doesn't cause
1013  * a reschedule, it may still add, modify or delete a timer, enqueue
1014  * an RCU callback, etc...
1015  * So we need to re-calculate and reprogram the next tick event.
1016  */
1017 void tick_nohz_irq_exit(void)
1018 {
1019 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020 
1021 	if (ts->inidle)
1022 		tick_nohz_start_idle(ts);
1023 	else
1024 		tick_nohz_full_update_tick(ts);
1025 }
1026 
1027 /**
1028  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029  */
1030 bool tick_nohz_idle_got_tick(void)
1031 {
1032 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033 
1034 	if (ts->got_idle_tick) {
1035 		ts->got_idle_tick = 0;
1036 		return true;
1037 	}
1038 	return false;
1039 }
1040 
1041 /**
1042  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043  * or the tick, whatever that expires first. Note that, if the tick has been
1044  * stopped, it returns the next hrtimer.
1045  *
1046  * Called from power state control code with interrupts disabled
1047  */
1048 ktime_t tick_nohz_get_next_hrtimer(void)
1049 {
1050 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051 }
1052 
1053 /**
1054  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1055  * @delta_next: duration until the next event if the tick cannot be stopped
1056  *
1057  * Called from power state control code with interrupts disabled
1058  */
1059 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1060 {
1061 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1062 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063 	int cpu = smp_processor_id();
1064 	/*
1065 	 * The idle entry time is expected to be a sufficient approximation of
1066 	 * the current time at this point.
1067 	 */
1068 	ktime_t now = ts->idle_entrytime;
1069 	ktime_t next_event;
1070 
1071 	WARN_ON_ONCE(!ts->inidle);
1072 
1073 	*delta_next = ktime_sub(dev->next_event, now);
1074 
1075 	if (!can_stop_idle_tick(cpu, ts))
1076 		return *delta_next;
1077 
1078 	next_event = tick_nohz_next_event(ts, cpu);
1079 	if (!next_event)
1080 		return *delta_next;
1081 
1082 	/*
1083 	 * If the next highres timer to expire is earlier than next_event, the
1084 	 * idle governor needs to know that.
1085 	 */
1086 	next_event = min_t(u64, next_event,
1087 			   hrtimer_next_event_without(&ts->sched_timer));
1088 
1089 	return ktime_sub(next_event, now);
1090 }
1091 
1092 /**
1093  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094  * for a particular CPU.
1095  *
1096  * Called from the schedutil frequency scaling governor in scheduler context.
1097  */
1098 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099 {
1100 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1101 
1102 	return ts->idle_calls;
1103 }
1104 
1105 /**
1106  * tick_nohz_get_idle_calls - return the current idle calls counter value
1107  *
1108  * Called from the schedutil frequency scaling governor in scheduler context.
1109  */
1110 unsigned long tick_nohz_get_idle_calls(void)
1111 {
1112 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113 
1114 	return ts->idle_calls;
1115 }
1116 
1117 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1118 {
1119 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1120 	unsigned long ticks;
1121 
1122 	if (vtime_accounting_cpu_enabled())
1123 		return;
1124 	/*
1125 	 * We stopped the tick in idle. Update process times would miss the
1126 	 * time we slept as update_process_times does only a 1 tick
1127 	 * accounting. Enforce that this is accounted to idle !
1128 	 */
1129 	ticks = jiffies - ts->idle_jiffies;
1130 	/*
1131 	 * We might be one off. Do not randomly account a huge number of ticks!
1132 	 */
1133 	if (ticks && ticks < LONG_MAX)
1134 		account_idle_ticks(ticks);
1135 #endif
1136 }
1137 
1138 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139 {
1140 	tick_nohz_restart_sched_tick(ts, now);
1141 	tick_nohz_account_idle_ticks(ts);
1142 }
1143 
1144 void tick_nohz_idle_restart_tick(void)
1145 {
1146 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147 
1148 	if (ts->tick_stopped)
1149 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1150 }
1151 
1152 /**
1153  * tick_nohz_idle_exit - restart the idle tick from the idle task
1154  *
1155  * Restart the idle tick when the CPU is woken up from idle
1156  * This also exit the RCU extended quiescent state. The CPU
1157  * can use RCU again after this function is called.
1158  */
1159 void tick_nohz_idle_exit(void)
1160 {
1161 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162 	bool idle_active, tick_stopped;
1163 	ktime_t now;
1164 
1165 	local_irq_disable();
1166 
1167 	WARN_ON_ONCE(!ts->inidle);
1168 	WARN_ON_ONCE(ts->timer_expires_base);
1169 
1170 	ts->inidle = 0;
1171 	idle_active = ts->idle_active;
1172 	tick_stopped = ts->tick_stopped;
1173 
1174 	if (idle_active || tick_stopped)
1175 		now = ktime_get();
1176 
1177 	if (idle_active)
1178 		tick_nohz_stop_idle(ts, now);
1179 
1180 	if (tick_stopped)
1181 		__tick_nohz_idle_restart_tick(ts, now);
1182 
1183 	local_irq_enable();
1184 }
1185 
1186 /*
1187  * The nohz low res interrupt handler
1188  */
1189 static void tick_nohz_handler(struct clock_event_device *dev)
1190 {
1191 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1192 	struct pt_regs *regs = get_irq_regs();
1193 	ktime_t now = ktime_get();
1194 
1195 	dev->next_event = KTIME_MAX;
1196 
1197 	tick_sched_do_timer(ts, now);
1198 	tick_sched_handle(ts, regs);
1199 
1200 	/* No need to reprogram if we are running tickless  */
1201 	if (unlikely(ts->tick_stopped))
1202 		return;
1203 
1204 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1205 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1206 }
1207 
1208 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209 {
1210 	if (!tick_nohz_enabled)
1211 		return;
1212 	ts->nohz_mode = mode;
1213 	/* One update is enough */
1214 	if (!test_and_set_bit(0, &tick_nohz_active))
1215 		timers_update_nohz();
1216 }
1217 
1218 /**
1219  * tick_nohz_switch_to_nohz - switch to nohz mode
1220  */
1221 static void tick_nohz_switch_to_nohz(void)
1222 {
1223 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224 	ktime_t next;
1225 
1226 	if (!tick_nohz_enabled)
1227 		return;
1228 
1229 	if (tick_switch_to_oneshot(tick_nohz_handler))
1230 		return;
1231 
1232 	/*
1233 	 * Recycle the hrtimer in ts, so we can share the
1234 	 * hrtimer_forward with the highres code.
1235 	 */
1236 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1237 	/* Get the next period */
1238 	next = tick_init_jiffy_update();
1239 
1240 	hrtimer_set_expires(&ts->sched_timer, next);
1241 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1242 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1243 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1244 }
1245 
1246 static inline void tick_nohz_irq_enter(void)
1247 {
1248 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249 	ktime_t now;
1250 
1251 	if (!ts->idle_active && !ts->tick_stopped)
1252 		return;
1253 	now = ktime_get();
1254 	if (ts->idle_active)
1255 		tick_nohz_stop_idle(ts, now);
1256 	if (ts->tick_stopped)
1257 		tick_nohz_update_jiffies(now);
1258 }
1259 
1260 #else
1261 
1262 static inline void tick_nohz_switch_to_nohz(void) { }
1263 static inline void tick_nohz_irq_enter(void) { }
1264 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1265 
1266 #endif /* CONFIG_NO_HZ_COMMON */
1267 
1268 /*
1269  * Called from irq_enter to notify about the possible interruption of idle()
1270  */
1271 void tick_irq_enter(void)
1272 {
1273 	tick_check_oneshot_broadcast_this_cpu();
1274 	tick_nohz_irq_enter();
1275 }
1276 
1277 /*
1278  * High resolution timer specific code
1279  */
1280 #ifdef CONFIG_HIGH_RES_TIMERS
1281 /*
1282  * We rearm the timer until we get disabled by the idle code.
1283  * Called with interrupts disabled.
1284  */
1285 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286 {
1287 	struct tick_sched *ts =
1288 		container_of(timer, struct tick_sched, sched_timer);
1289 	struct pt_regs *regs = get_irq_regs();
1290 	ktime_t now = ktime_get();
1291 
1292 	tick_sched_do_timer(ts, now);
1293 
1294 	/*
1295 	 * Do not call, when we are not in irq context and have
1296 	 * no valid regs pointer
1297 	 */
1298 	if (regs)
1299 		tick_sched_handle(ts, regs);
1300 	else
1301 		ts->next_tick = 0;
1302 
1303 	/* No need to reprogram if we are in idle or full dynticks mode */
1304 	if (unlikely(ts->tick_stopped))
1305 		return HRTIMER_NORESTART;
1306 
1307 	hrtimer_forward(timer, now, tick_period);
1308 
1309 	return HRTIMER_RESTART;
1310 }
1311 
1312 static int sched_skew_tick;
1313 
1314 static int __init skew_tick(char *str)
1315 {
1316 	get_option(&str, &sched_skew_tick);
1317 
1318 	return 0;
1319 }
1320 early_param("skew_tick", skew_tick);
1321 
1322 /**
1323  * tick_setup_sched_timer - setup the tick emulation timer
1324  */
1325 void tick_setup_sched_timer(void)
1326 {
1327 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328 	ktime_t now = ktime_get();
1329 
1330 	/*
1331 	 * Emulate tick processing via per-CPU hrtimers:
1332 	 */
1333 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1334 	ts->sched_timer.function = tick_sched_timer;
1335 
1336 	/* Get the next period (per-CPU) */
1337 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1338 
1339 	/* Offset the tick to avert jiffies_lock contention. */
1340 	if (sched_skew_tick) {
1341 		u64 offset = ktime_to_ns(tick_period) >> 1;
1342 		do_div(offset, num_possible_cpus());
1343 		offset *= smp_processor_id();
1344 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345 	}
1346 
1347 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1348 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1349 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1350 }
1351 #endif /* HIGH_RES_TIMERS */
1352 
1353 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1354 void tick_cancel_sched_timer(int cpu)
1355 {
1356 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357 
1358 # ifdef CONFIG_HIGH_RES_TIMERS
1359 	if (ts->sched_timer.base)
1360 		hrtimer_cancel(&ts->sched_timer);
1361 # endif
1362 
1363 	memset(ts, 0, sizeof(*ts));
1364 }
1365 #endif
1366 
1367 /**
1368  * Async notification about clocksource changes
1369  */
1370 void tick_clock_notify(void)
1371 {
1372 	int cpu;
1373 
1374 	for_each_possible_cpu(cpu)
1375 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376 }
1377 
1378 /*
1379  * Async notification about clock event changes
1380  */
1381 void tick_oneshot_notify(void)
1382 {
1383 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1384 
1385 	set_bit(0, &ts->check_clocks);
1386 }
1387 
1388 /**
1389  * Check, if a change happened, which makes oneshot possible.
1390  *
1391  * Called cyclic from the hrtimer softirq (driven by the timer
1392  * softirq) allow_nohz signals, that we can switch into low-res nohz
1393  * mode, because high resolution timers are disabled (either compile
1394  * or runtime). Called with interrupts disabled.
1395  */
1396 int tick_check_oneshot_change(int allow_nohz)
1397 {
1398 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399 
1400 	if (!test_and_clear_bit(0, &ts->check_clocks))
1401 		return 0;
1402 
1403 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404 		return 0;
1405 
1406 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1407 		return 0;
1408 
1409 	if (!allow_nohz)
1410 		return 1;
1411 
1412 	tick_nohz_switch_to_nohz();
1413 	return 0;
1414 }
1415