xref: /openbmc/linux/kernel/time/tick-sched.c (revision a1ff03cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 #define MAX_STALLED_JIFFIES 5
173 
174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176 	int cpu = smp_processor_id();
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 	/*
180 	 * Check if the do_timer duty was dropped. We don't care about
181 	 * concurrency: This happens only when the CPU in charge went
182 	 * into a long sleep. If two CPUs happen to assign themselves to
183 	 * this duty, then the jiffies update is still serialized by
184 	 * jiffies_lock.
185 	 *
186 	 * If nohz_full is enabled, this should not happen because the
187 	 * tick_do_timer_cpu never relinquishes.
188 	 */
189 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191 		WARN_ON(tick_nohz_full_running);
192 #endif
193 		tick_do_timer_cpu = cpu;
194 	}
195 #endif
196 
197 	/* Check, if the jiffies need an update */
198 	if (tick_do_timer_cpu == cpu)
199 		tick_do_update_jiffies64(now);
200 
201 	/*
202 	 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 	 * or VMEXIT'ed for several msecs), force an update.
204 	 */
205 	if (ts->last_tick_jiffies != jiffies) {
206 		ts->stalled_jiffies = 0;
207 		ts->last_tick_jiffies = READ_ONCE(jiffies);
208 	} else {
209 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 			tick_do_update_jiffies64(now);
211 			ts->stalled_jiffies = 0;
212 			ts->last_tick_jiffies = READ_ONCE(jiffies);
213 		}
214 	}
215 
216 	if (ts->inidle)
217 		ts->got_idle_tick = 1;
218 }
219 
220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223 	/*
224 	 * When we are idle and the tick is stopped, we have to touch
225 	 * the watchdog as we might not schedule for a really long
226 	 * time. This happens on complete idle SMP systems while
227 	 * waiting on the login prompt. We also increment the "start of
228 	 * idle" jiffy stamp so the idle accounting adjustment we do
229 	 * when we go busy again does not account too much ticks.
230 	 */
231 	if (ts->tick_stopped) {
232 		touch_softlockup_watchdog_sched();
233 		if (is_idle_task(current))
234 			ts->idle_jiffies++;
235 		/*
236 		 * In case the current tick fired too early past its expected
237 		 * expiration, make sure we don't bypass the next clock reprogramming
238 		 * to the same deadline.
239 		 */
240 		ts->next_tick = 0;
241 	}
242 #endif
243 	update_process_times(user_mode(regs));
244 	profile_tick(CPU_PROFILING);
245 }
246 #endif
247 
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254 
255 static bool check_tick_dependency(atomic_t *dep)
256 {
257 	int val = atomic_read(dep);
258 
259 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
260 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261 		return true;
262 	}
263 
264 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
265 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266 		return true;
267 	}
268 
269 	if (val & TICK_DEP_MASK_SCHED) {
270 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271 		return true;
272 	}
273 
274 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276 		return true;
277 	}
278 
279 	if (val & TICK_DEP_MASK_RCU) {
280 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 		return true;
282 	}
283 
284 	return false;
285 }
286 
287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289 	lockdep_assert_irqs_disabled();
290 
291 	if (unlikely(!cpu_online(cpu)))
292 		return false;
293 
294 	if (check_tick_dependency(&tick_dep_mask))
295 		return false;
296 
297 	if (check_tick_dependency(&ts->tick_dep_mask))
298 		return false;
299 
300 	if (check_tick_dependency(&current->tick_dep_mask))
301 		return false;
302 
303 	if (check_tick_dependency(&current->signal->tick_dep_mask))
304 		return false;
305 
306 	return true;
307 }
308 
309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313 
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316 
317 /*
318  * Kick this CPU if it's full dynticks in order to force it to
319  * re-evaluate its dependency on the tick and restart it if necessary.
320  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321  * is NMI safe.
322  */
323 static void tick_nohz_full_kick(void)
324 {
325 	if (!tick_nohz_full_cpu(smp_processor_id()))
326 		return;
327 
328 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330 
331 /*
332  * Kick the CPU if it's full dynticks in order to force it to
333  * re-evaluate its dependency on the tick and restart it if necessary.
334  */
335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337 	if (!tick_nohz_full_cpu(cpu))
338 		return;
339 
340 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342 
343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345 	int cpu;
346 
347 	/*
348 	 * If the task is not running, run_posix_cpu_timers()
349 	 * has nothing to elapse, IPI can then be spared.
350 	 *
351 	 * activate_task()                      STORE p->tick_dep_mask
352 	 *   STORE p->on_rq
353 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
354 	 *   LOCK rq->lock                      LOAD p->on_rq
355 	 *   smp_mb__after_spin_lock()
356 	 *   tick_nohz_task_switch()
357 	 *     LOAD p->tick_dep_mask
358 	 */
359 	if (!sched_task_on_rq(tsk))
360 		return;
361 
362 	/*
363 	 * If the task concurrently migrates to another CPU,
364 	 * we guarantee it sees the new tick dependency upon
365 	 * schedule.
366 	 *
367 	 * set_task_cpu(p, cpu);
368 	 *   STORE p->cpu = @cpu
369 	 * __schedule() (switch to task 'p')
370 	 *   LOCK rq->lock
371 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
372 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
373 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
374 	 */
375 	cpu = task_cpu(tsk);
376 
377 	preempt_disable();
378 	if (cpu_online(cpu))
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
383 /*
384  * Kick all full dynticks CPUs in order to force these to re-evaluate
385  * their dependency on the tick and restart it if necessary.
386  */
387 static void tick_nohz_full_kick_all(void)
388 {
389 	int cpu;
390 
391 	if (!tick_nohz_full_running)
392 		return;
393 
394 	preempt_disable();
395 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 		tick_nohz_full_kick_cpu(cpu);
397 	preempt_enable();
398 }
399 
400 static void tick_nohz_dep_set_all(atomic_t *dep,
401 				  enum tick_dep_bits bit)
402 {
403 	int prev;
404 
405 	prev = atomic_fetch_or(BIT(bit), dep);
406 	if (!prev)
407 		tick_nohz_full_kick_all();
408 }
409 
410 /*
411  * Set a global tick dependency. Used by perf events that rely on freq and
412  * by unstable clock.
413  */
414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418 
419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421 	atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423 
424 /*
425  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426  * manage events throttling.
427  */
428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430 	int prev;
431 	struct tick_sched *ts;
432 
433 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434 
435 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436 	if (!prev) {
437 		preempt_disable();
438 		/* Perf needs local kick that is NMI safe */
439 		if (cpu == smp_processor_id()) {
440 			tick_nohz_full_kick();
441 		} else {
442 			/* Remote irq work not NMI-safe */
443 			if (!WARN_ON_ONCE(in_nmi()))
444 				tick_nohz_full_kick_cpu(cpu);
445 		}
446 		preempt_enable();
447 	}
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450 
451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454 
455 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458 
459 /*
460  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461  * in order to elapse per task timers.
462  */
463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 		tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469 
470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475 
476 /*
477  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478  * per process timers.
479  */
480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 			      enum tick_dep_bits bit)
482 {
483 	int prev;
484 	struct signal_struct *sig = tsk->signal;
485 
486 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 	if (!prev) {
488 		struct task_struct *t;
489 
490 		lockdep_assert_held(&tsk->sighand->siglock);
491 		__for_each_thread(sig, t)
492 			tick_nohz_kick_task(t);
493 	}
494 }
495 
496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500 
501 /*
502  * Re-evaluate the need for the tick as we switch the current task.
503  * It might need the tick due to per task/process properties:
504  * perf events, posix CPU timers, ...
505  */
506 void __tick_nohz_task_switch(void)
507 {
508 	struct tick_sched *ts;
509 
510 	if (!tick_nohz_full_cpu(smp_processor_id()))
511 		return;
512 
513 	ts = this_cpu_ptr(&tick_cpu_sched);
514 
515 	if (ts->tick_stopped) {
516 		if (atomic_read(&current->tick_dep_mask) ||
517 		    atomic_read(&current->signal->tick_dep_mask))
518 			tick_nohz_full_kick();
519 	}
520 }
521 
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526 	cpumask_copy(tick_nohz_full_mask, cpumask);
527 	tick_nohz_full_running = true;
528 }
529 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
530 
531 static int tick_nohz_cpu_down(unsigned int cpu)
532 {
533 	/*
534 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
535 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
536 	 * CPUs. It must remain online when nohz full is enabled.
537 	 */
538 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
539 		return -EBUSY;
540 	return 0;
541 }
542 
543 void __init tick_nohz_init(void)
544 {
545 	int cpu, ret;
546 
547 	if (!tick_nohz_full_running)
548 		return;
549 
550 	/*
551 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
552 	 * locking contexts. But then we need irq work to raise its own
553 	 * interrupts to avoid circular dependency on the tick
554 	 */
555 	if (!arch_irq_work_has_interrupt()) {
556 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
557 		cpumask_clear(tick_nohz_full_mask);
558 		tick_nohz_full_running = false;
559 		return;
560 	}
561 
562 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
563 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
564 		cpu = smp_processor_id();
565 
566 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
567 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
568 				"for timekeeping\n", cpu);
569 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
570 		}
571 	}
572 
573 	for_each_cpu(cpu, tick_nohz_full_mask)
574 		context_tracking_cpu_set(cpu);
575 
576 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
577 					"kernel/nohz:predown", NULL,
578 					tick_nohz_cpu_down);
579 	WARN_ON(ret < 0);
580 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
581 		cpumask_pr_args(tick_nohz_full_mask));
582 }
583 #endif
584 
585 /*
586  * NOHZ - aka dynamic tick functionality
587  */
588 #ifdef CONFIG_NO_HZ_COMMON
589 /*
590  * NO HZ enabled ?
591  */
592 bool tick_nohz_enabled __read_mostly  = true;
593 unsigned long tick_nohz_active  __read_mostly;
594 /*
595  * Enable / Disable tickless mode
596  */
597 static int __init setup_tick_nohz(char *str)
598 {
599 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
600 }
601 
602 __setup("nohz=", setup_tick_nohz);
603 
604 bool tick_nohz_tick_stopped(void)
605 {
606 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
607 
608 	return ts->tick_stopped;
609 }
610 
611 bool tick_nohz_tick_stopped_cpu(int cpu)
612 {
613 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
614 
615 	return ts->tick_stopped;
616 }
617 
618 /**
619  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
620  *
621  * Called from interrupt entry when the CPU was idle
622  *
623  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
624  * must be updated. Otherwise an interrupt handler could use a stale jiffy
625  * value. We do this unconditionally on any CPU, as we don't know whether the
626  * CPU, which has the update task assigned is in a long sleep.
627  */
628 static void tick_nohz_update_jiffies(ktime_t now)
629 {
630 	unsigned long flags;
631 
632 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
633 
634 	local_irq_save(flags);
635 	tick_do_update_jiffies64(now);
636 	local_irq_restore(flags);
637 
638 	touch_softlockup_watchdog_sched();
639 }
640 
641 /*
642  * Updates the per-CPU time idle statistics counters
643  */
644 static void
645 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
646 {
647 	ktime_t delta;
648 
649 	if (ts->idle_active) {
650 		delta = ktime_sub(now, ts->idle_entrytime);
651 		if (nr_iowait_cpu(cpu) > 0)
652 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
653 		else
654 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
655 		ts->idle_entrytime = now;
656 	}
657 
658 	if (last_update_time)
659 		*last_update_time = ktime_to_us(now);
660 
661 }
662 
663 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
664 {
665 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
666 	ts->idle_active = 0;
667 
668 	sched_clock_idle_wakeup_event();
669 }
670 
671 static void tick_nohz_start_idle(struct tick_sched *ts)
672 {
673 	ts->idle_entrytime = ktime_get();
674 	ts->idle_active = 1;
675 	sched_clock_idle_sleep_event();
676 }
677 
678 /**
679  * get_cpu_idle_time_us - get the total idle time of a CPU
680  * @cpu: CPU number to query
681  * @last_update_time: variable to store update time in. Do not update
682  * counters if NULL.
683  *
684  * Return the cumulative idle time (since boot) for a given
685  * CPU, in microseconds.
686  *
687  * This time is measured via accounting rather than sampling,
688  * and is as accurate as ktime_get() is.
689  *
690  * This function returns -1 if NOHZ is not enabled.
691  */
692 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
693 {
694 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
695 	ktime_t now, idle;
696 
697 	if (!tick_nohz_active)
698 		return -1;
699 
700 	now = ktime_get();
701 	if (last_update_time) {
702 		update_ts_time_stats(cpu, ts, now, last_update_time);
703 		idle = ts->idle_sleeptime;
704 	} else {
705 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
706 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
707 
708 			idle = ktime_add(ts->idle_sleeptime, delta);
709 		} else {
710 			idle = ts->idle_sleeptime;
711 		}
712 	}
713 
714 	return ktime_to_us(idle);
715 
716 }
717 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
718 
719 /**
720  * get_cpu_iowait_time_us - get the total iowait time of a CPU
721  * @cpu: CPU number to query
722  * @last_update_time: variable to store update time in. Do not update
723  * counters if NULL.
724  *
725  * Return the cumulative iowait time (since boot) for a given
726  * CPU, in microseconds.
727  *
728  * This time is measured via accounting rather than sampling,
729  * and is as accurate as ktime_get() is.
730  *
731  * This function returns -1 if NOHZ is not enabled.
732  */
733 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
734 {
735 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
736 	ktime_t now, iowait;
737 
738 	if (!tick_nohz_active)
739 		return -1;
740 
741 	now = ktime_get();
742 	if (last_update_time) {
743 		update_ts_time_stats(cpu, ts, now, last_update_time);
744 		iowait = ts->iowait_sleeptime;
745 	} else {
746 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
747 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
748 
749 			iowait = ktime_add(ts->iowait_sleeptime, delta);
750 		} else {
751 			iowait = ts->iowait_sleeptime;
752 		}
753 	}
754 
755 	return ktime_to_us(iowait);
756 }
757 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
758 
759 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
760 {
761 	hrtimer_cancel(&ts->sched_timer);
762 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
763 
764 	/* Forward the time to expire in the future */
765 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
766 
767 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
768 		hrtimer_start_expires(&ts->sched_timer,
769 				      HRTIMER_MODE_ABS_PINNED_HARD);
770 	} else {
771 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
772 	}
773 
774 	/*
775 	 * Reset to make sure next tick stop doesn't get fooled by past
776 	 * cached clock deadline.
777 	 */
778 	ts->next_tick = 0;
779 }
780 
781 static inline bool local_timer_softirq_pending(void)
782 {
783 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
784 }
785 
786 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
787 {
788 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
789 	unsigned long basejiff;
790 	unsigned int seq;
791 
792 	/* Read jiffies and the time when jiffies were updated last */
793 	do {
794 		seq = read_seqcount_begin(&jiffies_seq);
795 		basemono = last_jiffies_update;
796 		basejiff = jiffies;
797 	} while (read_seqcount_retry(&jiffies_seq, seq));
798 	ts->last_jiffies = basejiff;
799 	ts->timer_expires_base = basemono;
800 
801 	/*
802 	 * Keep the periodic tick, when RCU, architecture or irq_work
803 	 * requests it.
804 	 * Aside of that check whether the local timer softirq is
805 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
806 	 * because there is an already expired timer, so it will request
807 	 * immediate expiry, which rearms the hardware timer with a
808 	 * minimal delta which brings us back to this place
809 	 * immediately. Lather, rinse and repeat...
810 	 */
811 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
812 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
813 		next_tick = basemono + TICK_NSEC;
814 	} else {
815 		/*
816 		 * Get the next pending timer. If high resolution
817 		 * timers are enabled this only takes the timer wheel
818 		 * timers into account. If high resolution timers are
819 		 * disabled this also looks at the next expiring
820 		 * hrtimer.
821 		 */
822 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
823 		ts->next_timer = next_tmr;
824 		/* Take the next rcu event into account */
825 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
826 	}
827 
828 	/*
829 	 * If the tick is due in the next period, keep it ticking or
830 	 * force prod the timer.
831 	 */
832 	delta = next_tick - basemono;
833 	if (delta <= (u64)TICK_NSEC) {
834 		/*
835 		 * Tell the timer code that the base is not idle, i.e. undo
836 		 * the effect of get_next_timer_interrupt():
837 		 */
838 		timer_clear_idle();
839 		/*
840 		 * We've not stopped the tick yet, and there's a timer in the
841 		 * next period, so no point in stopping it either, bail.
842 		 */
843 		if (!ts->tick_stopped) {
844 			ts->timer_expires = 0;
845 			goto out;
846 		}
847 	}
848 
849 	/*
850 	 * If this CPU is the one which had the do_timer() duty last, we limit
851 	 * the sleep time to the timekeeping max_deferment value.
852 	 * Otherwise we can sleep as long as we want.
853 	 */
854 	delta = timekeeping_max_deferment();
855 	if (cpu != tick_do_timer_cpu &&
856 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
857 		delta = KTIME_MAX;
858 
859 	/* Calculate the next expiry time */
860 	if (delta < (KTIME_MAX - basemono))
861 		expires = basemono + delta;
862 	else
863 		expires = KTIME_MAX;
864 
865 	ts->timer_expires = min_t(u64, expires, next_tick);
866 
867 out:
868 	return ts->timer_expires;
869 }
870 
871 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
872 {
873 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
874 	u64 basemono = ts->timer_expires_base;
875 	u64 expires = ts->timer_expires;
876 	ktime_t tick = expires;
877 
878 	/* Make sure we won't be trying to stop it twice in a row. */
879 	ts->timer_expires_base = 0;
880 
881 	/*
882 	 * If this CPU is the one which updates jiffies, then give up
883 	 * the assignment and let it be taken by the CPU which runs
884 	 * the tick timer next, which might be this CPU as well. If we
885 	 * don't drop this here the jiffies might be stale and
886 	 * do_timer() never invoked. Keep track of the fact that it
887 	 * was the one which had the do_timer() duty last.
888 	 */
889 	if (cpu == tick_do_timer_cpu) {
890 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
891 		ts->do_timer_last = 1;
892 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
893 		ts->do_timer_last = 0;
894 	}
895 
896 	/* Skip reprogram of event if its not changed */
897 	if (ts->tick_stopped && (expires == ts->next_tick)) {
898 		/* Sanity check: make sure clockevent is actually programmed */
899 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
900 			return;
901 
902 		WARN_ON_ONCE(1);
903 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
904 			    basemono, ts->next_tick, dev->next_event,
905 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
906 	}
907 
908 	/*
909 	 * nohz_stop_sched_tick can be called several times before
910 	 * the nohz_restart_sched_tick is called. This happens when
911 	 * interrupts arrive which do not cause a reschedule. In the
912 	 * first call we save the current tick time, so we can restart
913 	 * the scheduler tick in nohz_restart_sched_tick.
914 	 */
915 	if (!ts->tick_stopped) {
916 		calc_load_nohz_start();
917 		quiet_vmstat();
918 
919 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
920 		ts->tick_stopped = 1;
921 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
922 	}
923 
924 	ts->next_tick = tick;
925 
926 	/*
927 	 * If the expiration time == KTIME_MAX, then we simply stop
928 	 * the tick timer.
929 	 */
930 	if (unlikely(expires == KTIME_MAX)) {
931 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
932 			hrtimer_cancel(&ts->sched_timer);
933 		return;
934 	}
935 
936 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
937 		hrtimer_start(&ts->sched_timer, tick,
938 			      HRTIMER_MODE_ABS_PINNED_HARD);
939 	} else {
940 		hrtimer_set_expires(&ts->sched_timer, tick);
941 		tick_program_event(tick, 1);
942 	}
943 }
944 
945 static void tick_nohz_retain_tick(struct tick_sched *ts)
946 {
947 	ts->timer_expires_base = 0;
948 }
949 
950 #ifdef CONFIG_NO_HZ_FULL
951 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
952 {
953 	if (tick_nohz_next_event(ts, cpu))
954 		tick_nohz_stop_tick(ts, cpu);
955 	else
956 		tick_nohz_retain_tick(ts);
957 }
958 #endif /* CONFIG_NO_HZ_FULL */
959 
960 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
961 {
962 	/* Update jiffies first */
963 	tick_do_update_jiffies64(now);
964 
965 	/*
966 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
967 	 * the clock forward checks in the enqueue path:
968 	 */
969 	timer_clear_idle();
970 
971 	calc_load_nohz_stop();
972 	touch_softlockup_watchdog_sched();
973 	/*
974 	 * Cancel the scheduled timer and restore the tick
975 	 */
976 	ts->tick_stopped  = 0;
977 	tick_nohz_restart(ts, now);
978 }
979 
980 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
981 					 ktime_t now)
982 {
983 #ifdef CONFIG_NO_HZ_FULL
984 	int cpu = smp_processor_id();
985 
986 	if (can_stop_full_tick(cpu, ts))
987 		tick_nohz_stop_sched_tick(ts, cpu);
988 	else if (ts->tick_stopped)
989 		tick_nohz_restart_sched_tick(ts, now);
990 #endif
991 }
992 
993 static void tick_nohz_full_update_tick(struct tick_sched *ts)
994 {
995 	if (!tick_nohz_full_cpu(smp_processor_id()))
996 		return;
997 
998 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
999 		return;
1000 
1001 	__tick_nohz_full_update_tick(ts, ktime_get());
1002 }
1003 
1004 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1005 {
1006 	/*
1007 	 * If this CPU is offline and it is the one which updates
1008 	 * jiffies, then give up the assignment and let it be taken by
1009 	 * the CPU which runs the tick timer next. If we don't drop
1010 	 * this here the jiffies might be stale and do_timer() never
1011 	 * invoked.
1012 	 */
1013 	if (unlikely(!cpu_online(cpu))) {
1014 		if (cpu == tick_do_timer_cpu)
1015 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1016 		/*
1017 		 * Make sure the CPU doesn't get fooled by obsolete tick
1018 		 * deadline if it comes back online later.
1019 		 */
1020 		ts->next_tick = 0;
1021 		return false;
1022 	}
1023 
1024 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1025 		return false;
1026 
1027 	if (need_resched())
1028 		return false;
1029 
1030 	if (unlikely(local_softirq_pending())) {
1031 		static int ratelimit;
1032 
1033 		if (ratelimit < 10 && !local_bh_blocked() &&
1034 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1035 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1036 				(unsigned int) local_softirq_pending());
1037 			ratelimit++;
1038 		}
1039 		return false;
1040 	}
1041 
1042 	if (tick_nohz_full_enabled()) {
1043 		/*
1044 		 * Keep the tick alive to guarantee timekeeping progression
1045 		 * if there are full dynticks CPUs around
1046 		 */
1047 		if (tick_do_timer_cpu == cpu)
1048 			return false;
1049 
1050 		/* Should not happen for nohz-full */
1051 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1052 			return false;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1059 {
1060 	ktime_t expires;
1061 	int cpu = smp_processor_id();
1062 
1063 	/*
1064 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1065 	 * tick timer expiration time is known already.
1066 	 */
1067 	if (ts->timer_expires_base)
1068 		expires = ts->timer_expires;
1069 	else if (can_stop_idle_tick(cpu, ts))
1070 		expires = tick_nohz_next_event(ts, cpu);
1071 	else
1072 		return;
1073 
1074 	ts->idle_calls++;
1075 
1076 	if (expires > 0LL) {
1077 		int was_stopped = ts->tick_stopped;
1078 
1079 		tick_nohz_stop_tick(ts, cpu);
1080 
1081 		ts->idle_sleeps++;
1082 		ts->idle_expires = expires;
1083 
1084 		if (!was_stopped && ts->tick_stopped) {
1085 			ts->idle_jiffies = ts->last_jiffies;
1086 			nohz_balance_enter_idle(cpu);
1087 		}
1088 	} else {
1089 		tick_nohz_retain_tick(ts);
1090 	}
1091 }
1092 
1093 /**
1094  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1095  *
1096  * When the next event is more than a tick into the future, stop the idle tick
1097  */
1098 void tick_nohz_idle_stop_tick(void)
1099 {
1100 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1101 }
1102 
1103 void tick_nohz_idle_retain_tick(void)
1104 {
1105 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1106 	/*
1107 	 * Undo the effect of get_next_timer_interrupt() called from
1108 	 * tick_nohz_next_event().
1109 	 */
1110 	timer_clear_idle();
1111 }
1112 
1113 /**
1114  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1115  *
1116  * Called when we start the idle loop.
1117  */
1118 void tick_nohz_idle_enter(void)
1119 {
1120 	struct tick_sched *ts;
1121 
1122 	lockdep_assert_irqs_enabled();
1123 
1124 	local_irq_disable();
1125 
1126 	ts = this_cpu_ptr(&tick_cpu_sched);
1127 
1128 	WARN_ON_ONCE(ts->timer_expires_base);
1129 
1130 	ts->inidle = 1;
1131 	tick_nohz_start_idle(ts);
1132 
1133 	local_irq_enable();
1134 }
1135 
1136 /**
1137  * tick_nohz_irq_exit - update next tick event from interrupt exit
1138  *
1139  * When an interrupt fires while we are idle and it doesn't cause
1140  * a reschedule, it may still add, modify or delete a timer, enqueue
1141  * an RCU callback, etc...
1142  * So we need to re-calculate and reprogram the next tick event.
1143  */
1144 void tick_nohz_irq_exit(void)
1145 {
1146 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147 
1148 	if (ts->inidle)
1149 		tick_nohz_start_idle(ts);
1150 	else
1151 		tick_nohz_full_update_tick(ts);
1152 }
1153 
1154 /**
1155  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1156  */
1157 bool tick_nohz_idle_got_tick(void)
1158 {
1159 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1160 
1161 	if (ts->got_idle_tick) {
1162 		ts->got_idle_tick = 0;
1163 		return true;
1164 	}
1165 	return false;
1166 }
1167 
1168 /**
1169  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1170  * or the tick, whatever that expires first. Note that, if the tick has been
1171  * stopped, it returns the next hrtimer.
1172  *
1173  * Called from power state control code with interrupts disabled
1174  */
1175 ktime_t tick_nohz_get_next_hrtimer(void)
1176 {
1177 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1178 }
1179 
1180 /**
1181  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1182  * @delta_next: duration until the next event if the tick cannot be stopped
1183  *
1184  * Called from power state control code with interrupts disabled.
1185  *
1186  * The return value of this function and/or the value returned by it through the
1187  * @delta_next pointer can be negative which must be taken into account by its
1188  * callers.
1189  */
1190 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1191 {
1192 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1193 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1194 	int cpu = smp_processor_id();
1195 	/*
1196 	 * The idle entry time is expected to be a sufficient approximation of
1197 	 * the current time at this point.
1198 	 */
1199 	ktime_t now = ts->idle_entrytime;
1200 	ktime_t next_event;
1201 
1202 	WARN_ON_ONCE(!ts->inidle);
1203 
1204 	*delta_next = ktime_sub(dev->next_event, now);
1205 
1206 	if (!can_stop_idle_tick(cpu, ts))
1207 		return *delta_next;
1208 
1209 	next_event = tick_nohz_next_event(ts, cpu);
1210 	if (!next_event)
1211 		return *delta_next;
1212 
1213 	/*
1214 	 * If the next highres timer to expire is earlier than next_event, the
1215 	 * idle governor needs to know that.
1216 	 */
1217 	next_event = min_t(u64, next_event,
1218 			   hrtimer_next_event_without(&ts->sched_timer));
1219 
1220 	return ktime_sub(next_event, now);
1221 }
1222 
1223 /**
1224  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1225  * for a particular CPU.
1226  *
1227  * Called from the schedutil frequency scaling governor in scheduler context.
1228  */
1229 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1230 {
1231 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1232 
1233 	return ts->idle_calls;
1234 }
1235 
1236 /**
1237  * tick_nohz_get_idle_calls - return the current idle calls counter value
1238  *
1239  * Called from the schedutil frequency scaling governor in scheduler context.
1240  */
1241 unsigned long tick_nohz_get_idle_calls(void)
1242 {
1243 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1244 
1245 	return ts->idle_calls;
1246 }
1247 
1248 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1249 					ktime_t now)
1250 {
1251 	unsigned long ticks;
1252 
1253 	ts->idle_exittime = now;
1254 
1255 	if (vtime_accounting_enabled_this_cpu())
1256 		return;
1257 	/*
1258 	 * We stopped the tick in idle. Update process times would miss the
1259 	 * time we slept as update_process_times does only a 1 tick
1260 	 * accounting. Enforce that this is accounted to idle !
1261 	 */
1262 	ticks = jiffies - ts->idle_jiffies;
1263 	/*
1264 	 * We might be one off. Do not randomly account a huge number of ticks!
1265 	 */
1266 	if (ticks && ticks < LONG_MAX)
1267 		account_idle_ticks(ticks);
1268 }
1269 
1270 void tick_nohz_idle_restart_tick(void)
1271 {
1272 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1273 
1274 	if (ts->tick_stopped) {
1275 		ktime_t now = ktime_get();
1276 		tick_nohz_restart_sched_tick(ts, now);
1277 		tick_nohz_account_idle_time(ts, now);
1278 	}
1279 }
1280 
1281 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1282 {
1283 	if (tick_nohz_full_cpu(smp_processor_id()))
1284 		__tick_nohz_full_update_tick(ts, now);
1285 	else
1286 		tick_nohz_restart_sched_tick(ts, now);
1287 
1288 	tick_nohz_account_idle_time(ts, now);
1289 }
1290 
1291 /**
1292  * tick_nohz_idle_exit - restart the idle tick from the idle task
1293  *
1294  * Restart the idle tick when the CPU is woken up from idle
1295  * This also exit the RCU extended quiescent state. The CPU
1296  * can use RCU again after this function is called.
1297  */
1298 void tick_nohz_idle_exit(void)
1299 {
1300 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301 	bool idle_active, tick_stopped;
1302 	ktime_t now;
1303 
1304 	local_irq_disable();
1305 
1306 	WARN_ON_ONCE(!ts->inidle);
1307 	WARN_ON_ONCE(ts->timer_expires_base);
1308 
1309 	ts->inidle = 0;
1310 	idle_active = ts->idle_active;
1311 	tick_stopped = ts->tick_stopped;
1312 
1313 	if (idle_active || tick_stopped)
1314 		now = ktime_get();
1315 
1316 	if (idle_active)
1317 		tick_nohz_stop_idle(ts, now);
1318 
1319 	if (tick_stopped)
1320 		tick_nohz_idle_update_tick(ts, now);
1321 
1322 	local_irq_enable();
1323 }
1324 
1325 /*
1326  * The nohz low res interrupt handler
1327  */
1328 static void tick_nohz_handler(struct clock_event_device *dev)
1329 {
1330 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1331 	struct pt_regs *regs = get_irq_regs();
1332 	ktime_t now = ktime_get();
1333 
1334 	dev->next_event = KTIME_MAX;
1335 
1336 	tick_sched_do_timer(ts, now);
1337 	tick_sched_handle(ts, regs);
1338 
1339 	/* No need to reprogram if we are running tickless  */
1340 	if (unlikely(ts->tick_stopped))
1341 		return;
1342 
1343 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1344 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1345 }
1346 
1347 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1348 {
1349 	if (!tick_nohz_enabled)
1350 		return;
1351 	ts->nohz_mode = mode;
1352 	/* One update is enough */
1353 	if (!test_and_set_bit(0, &tick_nohz_active))
1354 		timers_update_nohz();
1355 }
1356 
1357 /**
1358  * tick_nohz_switch_to_nohz - switch to nohz mode
1359  */
1360 static void tick_nohz_switch_to_nohz(void)
1361 {
1362 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1363 	ktime_t next;
1364 
1365 	if (!tick_nohz_enabled)
1366 		return;
1367 
1368 	if (tick_switch_to_oneshot(tick_nohz_handler))
1369 		return;
1370 
1371 	/*
1372 	 * Recycle the hrtimer in ts, so we can share the
1373 	 * hrtimer_forward with the highres code.
1374 	 */
1375 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1376 	/* Get the next period */
1377 	next = tick_init_jiffy_update();
1378 
1379 	hrtimer_set_expires(&ts->sched_timer, next);
1380 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1381 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1382 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1383 }
1384 
1385 static inline void tick_nohz_irq_enter(void)
1386 {
1387 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1388 	ktime_t now;
1389 
1390 	if (!ts->idle_active && !ts->tick_stopped)
1391 		return;
1392 	now = ktime_get();
1393 	if (ts->idle_active)
1394 		tick_nohz_stop_idle(ts, now);
1395 	/*
1396 	 * If all CPUs are idle. We may need to update a stale jiffies value.
1397 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1398 	 * alive but it might be busy looping with interrupts disabled in some
1399 	 * rare case (typically stop machine). So we must make sure we have a
1400 	 * last resort.
1401 	 */
1402 	if (ts->tick_stopped)
1403 		tick_nohz_update_jiffies(now);
1404 }
1405 
1406 #else
1407 
1408 static inline void tick_nohz_switch_to_nohz(void) { }
1409 static inline void tick_nohz_irq_enter(void) { }
1410 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1411 
1412 #endif /* CONFIG_NO_HZ_COMMON */
1413 
1414 /*
1415  * Called from irq_enter to notify about the possible interruption of idle()
1416  */
1417 void tick_irq_enter(void)
1418 {
1419 	tick_check_oneshot_broadcast_this_cpu();
1420 	tick_nohz_irq_enter();
1421 }
1422 
1423 /*
1424  * High resolution timer specific code
1425  */
1426 #ifdef CONFIG_HIGH_RES_TIMERS
1427 /*
1428  * We rearm the timer until we get disabled by the idle code.
1429  * Called with interrupts disabled.
1430  */
1431 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1432 {
1433 	struct tick_sched *ts =
1434 		container_of(timer, struct tick_sched, sched_timer);
1435 	struct pt_regs *regs = get_irq_regs();
1436 	ktime_t now = ktime_get();
1437 
1438 	tick_sched_do_timer(ts, now);
1439 
1440 	/*
1441 	 * Do not call, when we are not in irq context and have
1442 	 * no valid regs pointer
1443 	 */
1444 	if (regs)
1445 		tick_sched_handle(ts, regs);
1446 	else
1447 		ts->next_tick = 0;
1448 
1449 	/* No need to reprogram if we are in idle or full dynticks mode */
1450 	if (unlikely(ts->tick_stopped))
1451 		return HRTIMER_NORESTART;
1452 
1453 	hrtimer_forward(timer, now, TICK_NSEC);
1454 
1455 	return HRTIMER_RESTART;
1456 }
1457 
1458 static int sched_skew_tick;
1459 
1460 static int __init skew_tick(char *str)
1461 {
1462 	get_option(&str, &sched_skew_tick);
1463 
1464 	return 0;
1465 }
1466 early_param("skew_tick", skew_tick);
1467 
1468 /**
1469  * tick_setup_sched_timer - setup the tick emulation timer
1470  */
1471 void tick_setup_sched_timer(void)
1472 {
1473 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1474 	ktime_t now = ktime_get();
1475 
1476 	/*
1477 	 * Emulate tick processing via per-CPU hrtimers:
1478 	 */
1479 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1480 	ts->sched_timer.function = tick_sched_timer;
1481 
1482 	/* Get the next period (per-CPU) */
1483 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1484 
1485 	/* Offset the tick to avert jiffies_lock contention. */
1486 	if (sched_skew_tick) {
1487 		u64 offset = TICK_NSEC >> 1;
1488 		do_div(offset, num_possible_cpus());
1489 		offset *= smp_processor_id();
1490 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1491 	}
1492 
1493 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1494 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1495 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1496 }
1497 #endif /* HIGH_RES_TIMERS */
1498 
1499 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1500 void tick_cancel_sched_timer(int cpu)
1501 {
1502 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1503 
1504 # ifdef CONFIG_HIGH_RES_TIMERS
1505 	if (ts->sched_timer.base)
1506 		hrtimer_cancel(&ts->sched_timer);
1507 # endif
1508 
1509 	memset(ts, 0, sizeof(*ts));
1510 }
1511 #endif
1512 
1513 /**
1514  * Async notification about clocksource changes
1515  */
1516 void tick_clock_notify(void)
1517 {
1518 	int cpu;
1519 
1520 	for_each_possible_cpu(cpu)
1521 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1522 }
1523 
1524 /*
1525  * Async notification about clock event changes
1526  */
1527 void tick_oneshot_notify(void)
1528 {
1529 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1530 
1531 	set_bit(0, &ts->check_clocks);
1532 }
1533 
1534 /**
1535  * Check, if a change happened, which makes oneshot possible.
1536  *
1537  * Called cyclic from the hrtimer softirq (driven by the timer
1538  * softirq) allow_nohz signals, that we can switch into low-res nohz
1539  * mode, because high resolution timers are disabled (either compile
1540  * or runtime). Called with interrupts disabled.
1541  */
1542 int tick_check_oneshot_change(int allow_nohz)
1543 {
1544 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1545 
1546 	if (!test_and_clear_bit(0, &ts->check_clocks))
1547 		return 0;
1548 
1549 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1550 		return 0;
1551 
1552 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1553 		return 0;
1554 
1555 	if (!allow_nohz)
1556 		return 1;
1557 
1558 	tick_nohz_switch_to_nohz();
1559 	return 0;
1560 }
1561