xref: /openbmc/linux/kernel/time/tick-sched.c (revision a1dfb631)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
173 {
174 	int cpu = smp_processor_id();
175 
176 #ifdef CONFIG_NO_HZ_COMMON
177 	/*
178 	 * Check if the do_timer duty was dropped. We don't care about
179 	 * concurrency: This happens only when the CPU in charge went
180 	 * into a long sleep. If two CPUs happen to assign themselves to
181 	 * this duty, then the jiffies update is still serialized by
182 	 * jiffies_lock.
183 	 *
184 	 * If nohz_full is enabled, this should not happen because the
185 	 * tick_do_timer_cpu never relinquishes.
186 	 */
187 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 		WARN_ON(tick_nohz_full_running);
190 #endif
191 		tick_do_timer_cpu = cpu;
192 	}
193 #endif
194 
195 	/* Check, if the jiffies need an update */
196 	if (tick_do_timer_cpu == cpu)
197 		tick_do_update_jiffies64(now);
198 
199 	if (ts->inidle)
200 		ts->got_idle_tick = 1;
201 }
202 
203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204 {
205 #ifdef CONFIG_NO_HZ_COMMON
206 	/*
207 	 * When we are idle and the tick is stopped, we have to touch
208 	 * the watchdog as we might not schedule for a really long
209 	 * time. This happens on complete idle SMP systems while
210 	 * waiting on the login prompt. We also increment the "start of
211 	 * idle" jiffy stamp so the idle accounting adjustment we do
212 	 * when we go busy again does not account too much ticks.
213 	 */
214 	if (ts->tick_stopped) {
215 		touch_softlockup_watchdog_sched();
216 		if (is_idle_task(current))
217 			ts->idle_jiffies++;
218 		/*
219 		 * In case the current tick fired too early past its expected
220 		 * expiration, make sure we don't bypass the next clock reprogramming
221 		 * to the same deadline.
222 		 */
223 		ts->next_tick = 0;
224 	}
225 #endif
226 	update_process_times(user_mode(regs));
227 	profile_tick(CPU_PROFILING);
228 }
229 #endif
230 
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 bool tick_nohz_full_running;
234 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
235 static atomic_t tick_dep_mask;
236 
237 static bool check_tick_dependency(atomic_t *dep)
238 {
239 	int val = atomic_read(dep);
240 
241 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
242 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
243 		return true;
244 	}
245 
246 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
247 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
248 		return true;
249 	}
250 
251 	if (val & TICK_DEP_MASK_SCHED) {
252 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
253 		return true;
254 	}
255 
256 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
257 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
258 		return true;
259 	}
260 
261 	if (val & TICK_DEP_MASK_RCU) {
262 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
263 		return true;
264 	}
265 
266 	return false;
267 }
268 
269 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
270 {
271 	lockdep_assert_irqs_disabled();
272 
273 	if (unlikely(!cpu_online(cpu)))
274 		return false;
275 
276 	if (check_tick_dependency(&tick_dep_mask))
277 		return false;
278 
279 	if (check_tick_dependency(&ts->tick_dep_mask))
280 		return false;
281 
282 	if (check_tick_dependency(&current->tick_dep_mask))
283 		return false;
284 
285 	if (check_tick_dependency(&current->signal->tick_dep_mask))
286 		return false;
287 
288 	return true;
289 }
290 
291 static void nohz_full_kick_func(struct irq_work *work)
292 {
293 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
294 }
295 
296 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
297 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
298 
299 /*
300  * Kick this CPU if it's full dynticks in order to force it to
301  * re-evaluate its dependency on the tick and restart it if necessary.
302  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
303  * is NMI safe.
304  */
305 static void tick_nohz_full_kick(void)
306 {
307 	if (!tick_nohz_full_cpu(smp_processor_id()))
308 		return;
309 
310 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
311 }
312 
313 /*
314  * Kick the CPU if it's full dynticks in order to force it to
315  * re-evaluate its dependency on the tick and restart it if necessary.
316  */
317 void tick_nohz_full_kick_cpu(int cpu)
318 {
319 	if (!tick_nohz_full_cpu(cpu))
320 		return;
321 
322 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
323 }
324 
325 static void tick_nohz_kick_task(struct task_struct *tsk)
326 {
327 	int cpu;
328 
329 	/*
330 	 * If the task is not running, run_posix_cpu_timers()
331 	 * has nothing to elapse, IPI can then be spared.
332 	 *
333 	 * activate_task()                      STORE p->tick_dep_mask
334 	 *   STORE p->on_rq
335 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
336 	 *   LOCK rq->lock                      LOAD p->on_rq
337 	 *   smp_mb__after_spin_lock()
338 	 *   tick_nohz_task_switch()
339 	 *     LOAD p->tick_dep_mask
340 	 */
341 	if (!sched_task_on_rq(tsk))
342 		return;
343 
344 	/*
345 	 * If the task concurrently migrates to another CPU,
346 	 * we guarantee it sees the new tick dependency upon
347 	 * schedule.
348 	 *
349 	 * set_task_cpu(p, cpu);
350 	 *   STORE p->cpu = @cpu
351 	 * __schedule() (switch to task 'p')
352 	 *   LOCK rq->lock
353 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
354 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
355 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
356 	 */
357 	cpu = task_cpu(tsk);
358 
359 	preempt_disable();
360 	if (cpu_online(cpu))
361 		tick_nohz_full_kick_cpu(cpu);
362 	preempt_enable();
363 }
364 
365 /*
366  * Kick all full dynticks CPUs in order to force these to re-evaluate
367  * their dependency on the tick and restart it if necessary.
368  */
369 static void tick_nohz_full_kick_all(void)
370 {
371 	int cpu;
372 
373 	if (!tick_nohz_full_running)
374 		return;
375 
376 	preempt_disable();
377 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
378 		tick_nohz_full_kick_cpu(cpu);
379 	preempt_enable();
380 }
381 
382 static void tick_nohz_dep_set_all(atomic_t *dep,
383 				  enum tick_dep_bits bit)
384 {
385 	int prev;
386 
387 	prev = atomic_fetch_or(BIT(bit), dep);
388 	if (!prev)
389 		tick_nohz_full_kick_all();
390 }
391 
392 /*
393  * Set a global tick dependency. Used by perf events that rely on freq and
394  * by unstable clock.
395  */
396 void tick_nohz_dep_set(enum tick_dep_bits bit)
397 {
398 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
399 }
400 
401 void tick_nohz_dep_clear(enum tick_dep_bits bit)
402 {
403 	atomic_andnot(BIT(bit), &tick_dep_mask);
404 }
405 
406 /*
407  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
408  * manage events throttling.
409  */
410 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
411 {
412 	int prev;
413 	struct tick_sched *ts;
414 
415 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
416 
417 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
418 	if (!prev) {
419 		preempt_disable();
420 		/* Perf needs local kick that is NMI safe */
421 		if (cpu == smp_processor_id()) {
422 			tick_nohz_full_kick();
423 		} else {
424 			/* Remote irq work not NMI-safe */
425 			if (!WARN_ON_ONCE(in_nmi()))
426 				tick_nohz_full_kick_cpu(cpu);
427 		}
428 		preempt_enable();
429 	}
430 }
431 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
432 
433 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
434 {
435 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
436 
437 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
438 }
439 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
440 
441 /*
442  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
443  * in order to elapse per task timers.
444  */
445 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
446 {
447 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
448 		tick_nohz_kick_task(tsk);
449 }
450 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
451 
452 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
453 {
454 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
455 }
456 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
457 
458 /*
459  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
460  * per process timers.
461  */
462 void tick_nohz_dep_set_signal(struct task_struct *tsk,
463 			      enum tick_dep_bits bit)
464 {
465 	int prev;
466 	struct signal_struct *sig = tsk->signal;
467 
468 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
469 	if (!prev) {
470 		struct task_struct *t;
471 
472 		lockdep_assert_held(&tsk->sighand->siglock);
473 		__for_each_thread(sig, t)
474 			tick_nohz_kick_task(t);
475 	}
476 }
477 
478 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
479 {
480 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
481 }
482 
483 /*
484  * Re-evaluate the need for the tick as we switch the current task.
485  * It might need the tick due to per task/process properties:
486  * perf events, posix CPU timers, ...
487  */
488 void __tick_nohz_task_switch(void)
489 {
490 	unsigned long flags;
491 	struct tick_sched *ts;
492 
493 	local_irq_save(flags);
494 
495 	if (!tick_nohz_full_cpu(smp_processor_id()))
496 		goto out;
497 
498 	ts = this_cpu_ptr(&tick_cpu_sched);
499 
500 	if (ts->tick_stopped) {
501 		if (atomic_read(&current->tick_dep_mask) ||
502 		    atomic_read(&current->signal->tick_dep_mask))
503 			tick_nohz_full_kick();
504 	}
505 out:
506 	local_irq_restore(flags);
507 }
508 
509 /* Get the boot-time nohz CPU list from the kernel parameters. */
510 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
511 {
512 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
513 	cpumask_copy(tick_nohz_full_mask, cpumask);
514 	tick_nohz_full_running = true;
515 }
516 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
517 
518 static int tick_nohz_cpu_down(unsigned int cpu)
519 {
520 	/*
521 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
522 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
523 	 * CPUs. It must remain online when nohz full is enabled.
524 	 */
525 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
526 		return -EBUSY;
527 	return 0;
528 }
529 
530 void __init tick_nohz_init(void)
531 {
532 	int cpu, ret;
533 
534 	if (!tick_nohz_full_running)
535 		return;
536 
537 	/*
538 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
539 	 * locking contexts. But then we need irq work to raise its own
540 	 * interrupts to avoid circular dependency on the tick
541 	 */
542 	if (!arch_irq_work_has_interrupt()) {
543 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
544 		cpumask_clear(tick_nohz_full_mask);
545 		tick_nohz_full_running = false;
546 		return;
547 	}
548 
549 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
550 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
551 		cpu = smp_processor_id();
552 
553 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
554 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
555 				"for timekeeping\n", cpu);
556 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
557 		}
558 	}
559 
560 	for_each_cpu(cpu, tick_nohz_full_mask)
561 		context_tracking_cpu_set(cpu);
562 
563 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
564 					"kernel/nohz:predown", NULL,
565 					tick_nohz_cpu_down);
566 	WARN_ON(ret < 0);
567 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
568 		cpumask_pr_args(tick_nohz_full_mask));
569 }
570 #endif
571 
572 /*
573  * NOHZ - aka dynamic tick functionality
574  */
575 #ifdef CONFIG_NO_HZ_COMMON
576 /*
577  * NO HZ enabled ?
578  */
579 bool tick_nohz_enabled __read_mostly  = true;
580 unsigned long tick_nohz_active  __read_mostly;
581 /*
582  * Enable / Disable tickless mode
583  */
584 static int __init setup_tick_nohz(char *str)
585 {
586 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
587 }
588 
589 __setup("nohz=", setup_tick_nohz);
590 
591 bool tick_nohz_tick_stopped(void)
592 {
593 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
594 
595 	return ts->tick_stopped;
596 }
597 
598 bool tick_nohz_tick_stopped_cpu(int cpu)
599 {
600 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
601 
602 	return ts->tick_stopped;
603 }
604 
605 /**
606  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
607  *
608  * Called from interrupt entry when the CPU was idle
609  *
610  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
611  * must be updated. Otherwise an interrupt handler could use a stale jiffy
612  * value. We do this unconditionally on any CPU, as we don't know whether the
613  * CPU, which has the update task assigned is in a long sleep.
614  */
615 static void tick_nohz_update_jiffies(ktime_t now)
616 {
617 	unsigned long flags;
618 
619 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
620 
621 	local_irq_save(flags);
622 	tick_do_update_jiffies64(now);
623 	local_irq_restore(flags);
624 
625 	touch_softlockup_watchdog_sched();
626 }
627 
628 /*
629  * Updates the per-CPU time idle statistics counters
630  */
631 static void
632 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
633 {
634 	ktime_t delta;
635 
636 	if (ts->idle_active) {
637 		delta = ktime_sub(now, ts->idle_entrytime);
638 		if (nr_iowait_cpu(cpu) > 0)
639 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
640 		else
641 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
642 		ts->idle_entrytime = now;
643 	}
644 
645 	if (last_update_time)
646 		*last_update_time = ktime_to_us(now);
647 
648 }
649 
650 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
651 {
652 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
653 	ts->idle_active = 0;
654 
655 	sched_clock_idle_wakeup_event();
656 }
657 
658 static void tick_nohz_start_idle(struct tick_sched *ts)
659 {
660 	ts->idle_entrytime = ktime_get();
661 	ts->idle_active = 1;
662 	sched_clock_idle_sleep_event();
663 }
664 
665 /**
666  * get_cpu_idle_time_us - get the total idle time of a CPU
667  * @cpu: CPU number to query
668  * @last_update_time: variable to store update time in. Do not update
669  * counters if NULL.
670  *
671  * Return the cumulative idle time (since boot) for a given
672  * CPU, in microseconds.
673  *
674  * This time is measured via accounting rather than sampling,
675  * and is as accurate as ktime_get() is.
676  *
677  * This function returns -1 if NOHZ is not enabled.
678  */
679 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
680 {
681 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
682 	ktime_t now, idle;
683 
684 	if (!tick_nohz_active)
685 		return -1;
686 
687 	now = ktime_get();
688 	if (last_update_time) {
689 		update_ts_time_stats(cpu, ts, now, last_update_time);
690 		idle = ts->idle_sleeptime;
691 	} else {
692 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
693 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
694 
695 			idle = ktime_add(ts->idle_sleeptime, delta);
696 		} else {
697 			idle = ts->idle_sleeptime;
698 		}
699 	}
700 
701 	return ktime_to_us(idle);
702 
703 }
704 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
705 
706 /**
707  * get_cpu_iowait_time_us - get the total iowait time of a CPU
708  * @cpu: CPU number to query
709  * @last_update_time: variable to store update time in. Do not update
710  * counters if NULL.
711  *
712  * Return the cumulative iowait time (since boot) for a given
713  * CPU, in microseconds.
714  *
715  * This time is measured via accounting rather than sampling,
716  * and is as accurate as ktime_get() is.
717  *
718  * This function returns -1 if NOHZ is not enabled.
719  */
720 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
721 {
722 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
723 	ktime_t now, iowait;
724 
725 	if (!tick_nohz_active)
726 		return -1;
727 
728 	now = ktime_get();
729 	if (last_update_time) {
730 		update_ts_time_stats(cpu, ts, now, last_update_time);
731 		iowait = ts->iowait_sleeptime;
732 	} else {
733 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
734 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
735 
736 			iowait = ktime_add(ts->iowait_sleeptime, delta);
737 		} else {
738 			iowait = ts->iowait_sleeptime;
739 		}
740 	}
741 
742 	return ktime_to_us(iowait);
743 }
744 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
745 
746 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
747 {
748 	hrtimer_cancel(&ts->sched_timer);
749 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
750 
751 	/* Forward the time to expire in the future */
752 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
753 
754 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
755 		hrtimer_start_expires(&ts->sched_timer,
756 				      HRTIMER_MODE_ABS_PINNED_HARD);
757 	} else {
758 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
759 	}
760 
761 	/*
762 	 * Reset to make sure next tick stop doesn't get fooled by past
763 	 * cached clock deadline.
764 	 */
765 	ts->next_tick = 0;
766 }
767 
768 static inline bool local_timer_softirq_pending(void)
769 {
770 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
771 }
772 
773 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
774 {
775 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
776 	unsigned long basejiff;
777 	unsigned int seq;
778 
779 	/* Read jiffies and the time when jiffies were updated last */
780 	do {
781 		seq = read_seqcount_begin(&jiffies_seq);
782 		basemono = last_jiffies_update;
783 		basejiff = jiffies;
784 	} while (read_seqcount_retry(&jiffies_seq, seq));
785 	ts->last_jiffies = basejiff;
786 	ts->timer_expires_base = basemono;
787 
788 	/*
789 	 * Keep the periodic tick, when RCU, architecture or irq_work
790 	 * requests it.
791 	 * Aside of that check whether the local timer softirq is
792 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
793 	 * because there is an already expired timer, so it will request
794 	 * immediate expiry, which rearms the hardware timer with a
795 	 * minimal delta which brings us back to this place
796 	 * immediately. Lather, rinse and repeat...
797 	 */
798 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
799 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
800 		next_tick = basemono + TICK_NSEC;
801 	} else {
802 		/*
803 		 * Get the next pending timer. If high resolution
804 		 * timers are enabled this only takes the timer wheel
805 		 * timers into account. If high resolution timers are
806 		 * disabled this also looks at the next expiring
807 		 * hrtimer.
808 		 */
809 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
810 		ts->next_timer = next_tmr;
811 		/* Take the next rcu event into account */
812 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
813 	}
814 
815 	/*
816 	 * If the tick is due in the next period, keep it ticking or
817 	 * force prod the timer.
818 	 */
819 	delta = next_tick - basemono;
820 	if (delta <= (u64)TICK_NSEC) {
821 		/*
822 		 * Tell the timer code that the base is not idle, i.e. undo
823 		 * the effect of get_next_timer_interrupt():
824 		 */
825 		timer_clear_idle();
826 		/*
827 		 * We've not stopped the tick yet, and there's a timer in the
828 		 * next period, so no point in stopping it either, bail.
829 		 */
830 		if (!ts->tick_stopped) {
831 			ts->timer_expires = 0;
832 			goto out;
833 		}
834 	}
835 
836 	/*
837 	 * If this CPU is the one which had the do_timer() duty last, we limit
838 	 * the sleep time to the timekeeping max_deferment value.
839 	 * Otherwise we can sleep as long as we want.
840 	 */
841 	delta = timekeeping_max_deferment();
842 	if (cpu != tick_do_timer_cpu &&
843 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
844 		delta = KTIME_MAX;
845 
846 	/* Calculate the next expiry time */
847 	if (delta < (KTIME_MAX - basemono))
848 		expires = basemono + delta;
849 	else
850 		expires = KTIME_MAX;
851 
852 	ts->timer_expires = min_t(u64, expires, next_tick);
853 
854 out:
855 	return ts->timer_expires;
856 }
857 
858 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
859 {
860 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
861 	u64 basemono = ts->timer_expires_base;
862 	u64 expires = ts->timer_expires;
863 	ktime_t tick = expires;
864 
865 	/* Make sure we won't be trying to stop it twice in a row. */
866 	ts->timer_expires_base = 0;
867 
868 	/*
869 	 * If this CPU is the one which updates jiffies, then give up
870 	 * the assignment and let it be taken by the CPU which runs
871 	 * the tick timer next, which might be this CPU as well. If we
872 	 * don't drop this here the jiffies might be stale and
873 	 * do_timer() never invoked. Keep track of the fact that it
874 	 * was the one which had the do_timer() duty last.
875 	 */
876 	if (cpu == tick_do_timer_cpu) {
877 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
878 		ts->do_timer_last = 1;
879 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
880 		ts->do_timer_last = 0;
881 	}
882 
883 	/* Skip reprogram of event if its not changed */
884 	if (ts->tick_stopped && (expires == ts->next_tick)) {
885 		/* Sanity check: make sure clockevent is actually programmed */
886 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
887 			return;
888 
889 		WARN_ON_ONCE(1);
890 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
891 			    basemono, ts->next_tick, dev->next_event,
892 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
893 	}
894 
895 	/*
896 	 * nohz_stop_sched_tick can be called several times before
897 	 * the nohz_restart_sched_tick is called. This happens when
898 	 * interrupts arrive which do not cause a reschedule. In the
899 	 * first call we save the current tick time, so we can restart
900 	 * the scheduler tick in nohz_restart_sched_tick.
901 	 */
902 	if (!ts->tick_stopped) {
903 		calc_load_nohz_start();
904 		quiet_vmstat();
905 
906 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
907 		ts->tick_stopped = 1;
908 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
909 	}
910 
911 	ts->next_tick = tick;
912 
913 	/*
914 	 * If the expiration time == KTIME_MAX, then we simply stop
915 	 * the tick timer.
916 	 */
917 	if (unlikely(expires == KTIME_MAX)) {
918 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
919 			hrtimer_cancel(&ts->sched_timer);
920 		return;
921 	}
922 
923 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
924 		hrtimer_start(&ts->sched_timer, tick,
925 			      HRTIMER_MODE_ABS_PINNED_HARD);
926 	} else {
927 		hrtimer_set_expires(&ts->sched_timer, tick);
928 		tick_program_event(tick, 1);
929 	}
930 }
931 
932 static void tick_nohz_retain_tick(struct tick_sched *ts)
933 {
934 	ts->timer_expires_base = 0;
935 }
936 
937 #ifdef CONFIG_NO_HZ_FULL
938 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
939 {
940 	if (tick_nohz_next_event(ts, cpu))
941 		tick_nohz_stop_tick(ts, cpu);
942 	else
943 		tick_nohz_retain_tick(ts);
944 }
945 #endif /* CONFIG_NO_HZ_FULL */
946 
947 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
948 {
949 	/* Update jiffies first */
950 	tick_do_update_jiffies64(now);
951 
952 	/*
953 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
954 	 * the clock forward checks in the enqueue path:
955 	 */
956 	timer_clear_idle();
957 
958 	calc_load_nohz_stop();
959 	touch_softlockup_watchdog_sched();
960 	/*
961 	 * Cancel the scheduled timer and restore the tick
962 	 */
963 	ts->tick_stopped  = 0;
964 	tick_nohz_restart(ts, now);
965 }
966 
967 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
968 					 ktime_t now)
969 {
970 #ifdef CONFIG_NO_HZ_FULL
971 	int cpu = smp_processor_id();
972 
973 	if (can_stop_full_tick(cpu, ts))
974 		tick_nohz_stop_sched_tick(ts, cpu);
975 	else if (ts->tick_stopped)
976 		tick_nohz_restart_sched_tick(ts, now);
977 #endif
978 }
979 
980 static void tick_nohz_full_update_tick(struct tick_sched *ts)
981 {
982 	if (!tick_nohz_full_cpu(smp_processor_id()))
983 		return;
984 
985 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
986 		return;
987 
988 	__tick_nohz_full_update_tick(ts, ktime_get());
989 }
990 
991 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
992 {
993 	/*
994 	 * If this CPU is offline and it is the one which updates
995 	 * jiffies, then give up the assignment and let it be taken by
996 	 * the CPU which runs the tick timer next. If we don't drop
997 	 * this here the jiffies might be stale and do_timer() never
998 	 * invoked.
999 	 */
1000 	if (unlikely(!cpu_online(cpu))) {
1001 		if (cpu == tick_do_timer_cpu)
1002 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1003 		/*
1004 		 * Make sure the CPU doesn't get fooled by obsolete tick
1005 		 * deadline if it comes back online later.
1006 		 */
1007 		ts->next_tick = 0;
1008 		return false;
1009 	}
1010 
1011 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1012 		return false;
1013 
1014 	if (need_resched())
1015 		return false;
1016 
1017 	if (unlikely(local_softirq_pending())) {
1018 		static int ratelimit;
1019 
1020 		if (ratelimit < 10 && !local_bh_blocked() &&
1021 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1022 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1023 				(unsigned int) local_softirq_pending());
1024 			ratelimit++;
1025 		}
1026 		return false;
1027 	}
1028 
1029 	if (tick_nohz_full_enabled()) {
1030 		/*
1031 		 * Keep the tick alive to guarantee timekeeping progression
1032 		 * if there are full dynticks CPUs around
1033 		 */
1034 		if (tick_do_timer_cpu == cpu)
1035 			return false;
1036 
1037 		/* Should not happen for nohz-full */
1038 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1039 			return false;
1040 	}
1041 
1042 	return true;
1043 }
1044 
1045 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1046 {
1047 	ktime_t expires;
1048 	int cpu = smp_processor_id();
1049 
1050 	/*
1051 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1052 	 * tick timer expiration time is known already.
1053 	 */
1054 	if (ts->timer_expires_base)
1055 		expires = ts->timer_expires;
1056 	else if (can_stop_idle_tick(cpu, ts))
1057 		expires = tick_nohz_next_event(ts, cpu);
1058 	else
1059 		return;
1060 
1061 	ts->idle_calls++;
1062 
1063 	if (expires > 0LL) {
1064 		int was_stopped = ts->tick_stopped;
1065 
1066 		tick_nohz_stop_tick(ts, cpu);
1067 
1068 		ts->idle_sleeps++;
1069 		ts->idle_expires = expires;
1070 
1071 		if (!was_stopped && ts->tick_stopped) {
1072 			ts->idle_jiffies = ts->last_jiffies;
1073 			nohz_balance_enter_idle(cpu);
1074 		}
1075 	} else {
1076 		tick_nohz_retain_tick(ts);
1077 	}
1078 }
1079 
1080 /**
1081  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1082  *
1083  * When the next event is more than a tick into the future, stop the idle tick
1084  */
1085 void tick_nohz_idle_stop_tick(void)
1086 {
1087 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1088 }
1089 
1090 void tick_nohz_idle_retain_tick(void)
1091 {
1092 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1093 	/*
1094 	 * Undo the effect of get_next_timer_interrupt() called from
1095 	 * tick_nohz_next_event().
1096 	 */
1097 	timer_clear_idle();
1098 }
1099 
1100 /**
1101  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1102  *
1103  * Called when we start the idle loop.
1104  */
1105 void tick_nohz_idle_enter(void)
1106 {
1107 	struct tick_sched *ts;
1108 
1109 	lockdep_assert_irqs_enabled();
1110 
1111 	local_irq_disable();
1112 
1113 	ts = this_cpu_ptr(&tick_cpu_sched);
1114 
1115 	WARN_ON_ONCE(ts->timer_expires_base);
1116 
1117 	ts->inidle = 1;
1118 	tick_nohz_start_idle(ts);
1119 
1120 	local_irq_enable();
1121 }
1122 
1123 /**
1124  * tick_nohz_irq_exit - update next tick event from interrupt exit
1125  *
1126  * When an interrupt fires while we are idle and it doesn't cause
1127  * a reschedule, it may still add, modify or delete a timer, enqueue
1128  * an RCU callback, etc...
1129  * So we need to re-calculate and reprogram the next tick event.
1130  */
1131 void tick_nohz_irq_exit(void)
1132 {
1133 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1134 
1135 	if (ts->inidle)
1136 		tick_nohz_start_idle(ts);
1137 	else
1138 		tick_nohz_full_update_tick(ts);
1139 }
1140 
1141 /**
1142  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1143  */
1144 bool tick_nohz_idle_got_tick(void)
1145 {
1146 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147 
1148 	if (ts->got_idle_tick) {
1149 		ts->got_idle_tick = 0;
1150 		return true;
1151 	}
1152 	return false;
1153 }
1154 
1155 /**
1156  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1157  * or the tick, whatever that expires first. Note that, if the tick has been
1158  * stopped, it returns the next hrtimer.
1159  *
1160  * Called from power state control code with interrupts disabled
1161  */
1162 ktime_t tick_nohz_get_next_hrtimer(void)
1163 {
1164 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1165 }
1166 
1167 /**
1168  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1169  * @delta_next: duration until the next event if the tick cannot be stopped
1170  *
1171  * Called from power state control code with interrupts disabled.
1172  *
1173  * The return value of this function and/or the value returned by it through the
1174  * @delta_next pointer can be negative which must be taken into account by its
1175  * callers.
1176  */
1177 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1178 {
1179 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1180 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1181 	int cpu = smp_processor_id();
1182 	/*
1183 	 * The idle entry time is expected to be a sufficient approximation of
1184 	 * the current time at this point.
1185 	 */
1186 	ktime_t now = ts->idle_entrytime;
1187 	ktime_t next_event;
1188 
1189 	WARN_ON_ONCE(!ts->inidle);
1190 
1191 	*delta_next = ktime_sub(dev->next_event, now);
1192 
1193 	if (!can_stop_idle_tick(cpu, ts))
1194 		return *delta_next;
1195 
1196 	next_event = tick_nohz_next_event(ts, cpu);
1197 	if (!next_event)
1198 		return *delta_next;
1199 
1200 	/*
1201 	 * If the next highres timer to expire is earlier than next_event, the
1202 	 * idle governor needs to know that.
1203 	 */
1204 	next_event = min_t(u64, next_event,
1205 			   hrtimer_next_event_without(&ts->sched_timer));
1206 
1207 	return ktime_sub(next_event, now);
1208 }
1209 
1210 /**
1211  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1212  * for a particular CPU.
1213  *
1214  * Called from the schedutil frequency scaling governor in scheduler context.
1215  */
1216 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1217 {
1218 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1219 
1220 	return ts->idle_calls;
1221 }
1222 
1223 /**
1224  * tick_nohz_get_idle_calls - return the current idle calls counter value
1225  *
1226  * Called from the schedutil frequency scaling governor in scheduler context.
1227  */
1228 unsigned long tick_nohz_get_idle_calls(void)
1229 {
1230 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1231 
1232 	return ts->idle_calls;
1233 }
1234 
1235 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1236 					ktime_t now)
1237 {
1238 	unsigned long ticks;
1239 
1240 	ts->idle_exittime = now;
1241 
1242 	if (vtime_accounting_enabled_this_cpu())
1243 		return;
1244 	/*
1245 	 * We stopped the tick in idle. Update process times would miss the
1246 	 * time we slept as update_process_times does only a 1 tick
1247 	 * accounting. Enforce that this is accounted to idle !
1248 	 */
1249 	ticks = jiffies - ts->idle_jiffies;
1250 	/*
1251 	 * We might be one off. Do not randomly account a huge number of ticks!
1252 	 */
1253 	if (ticks && ticks < LONG_MAX)
1254 		account_idle_ticks(ticks);
1255 }
1256 
1257 void tick_nohz_idle_restart_tick(void)
1258 {
1259 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1260 
1261 	if (ts->tick_stopped) {
1262 		ktime_t now = ktime_get();
1263 		tick_nohz_restart_sched_tick(ts, now);
1264 		tick_nohz_account_idle_time(ts, now);
1265 	}
1266 }
1267 
1268 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1269 {
1270 	if (tick_nohz_full_cpu(smp_processor_id()))
1271 		__tick_nohz_full_update_tick(ts, now);
1272 	else
1273 		tick_nohz_restart_sched_tick(ts, now);
1274 
1275 	tick_nohz_account_idle_time(ts, now);
1276 }
1277 
1278 /**
1279  * tick_nohz_idle_exit - restart the idle tick from the idle task
1280  *
1281  * Restart the idle tick when the CPU is woken up from idle
1282  * This also exit the RCU extended quiescent state. The CPU
1283  * can use RCU again after this function is called.
1284  */
1285 void tick_nohz_idle_exit(void)
1286 {
1287 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1288 	bool idle_active, tick_stopped;
1289 	ktime_t now;
1290 
1291 	local_irq_disable();
1292 
1293 	WARN_ON_ONCE(!ts->inidle);
1294 	WARN_ON_ONCE(ts->timer_expires_base);
1295 
1296 	ts->inidle = 0;
1297 	idle_active = ts->idle_active;
1298 	tick_stopped = ts->tick_stopped;
1299 
1300 	if (idle_active || tick_stopped)
1301 		now = ktime_get();
1302 
1303 	if (idle_active)
1304 		tick_nohz_stop_idle(ts, now);
1305 
1306 	if (tick_stopped)
1307 		tick_nohz_idle_update_tick(ts, now);
1308 
1309 	local_irq_enable();
1310 }
1311 
1312 /*
1313  * The nohz low res interrupt handler
1314  */
1315 static void tick_nohz_handler(struct clock_event_device *dev)
1316 {
1317 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1318 	struct pt_regs *regs = get_irq_regs();
1319 	ktime_t now = ktime_get();
1320 
1321 	dev->next_event = KTIME_MAX;
1322 
1323 	tick_sched_do_timer(ts, now);
1324 	tick_sched_handle(ts, regs);
1325 
1326 	/* No need to reprogram if we are running tickless  */
1327 	if (unlikely(ts->tick_stopped))
1328 		return;
1329 
1330 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1331 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1332 }
1333 
1334 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1335 {
1336 	if (!tick_nohz_enabled)
1337 		return;
1338 	ts->nohz_mode = mode;
1339 	/* One update is enough */
1340 	if (!test_and_set_bit(0, &tick_nohz_active))
1341 		timers_update_nohz();
1342 }
1343 
1344 /**
1345  * tick_nohz_switch_to_nohz - switch to nohz mode
1346  */
1347 static void tick_nohz_switch_to_nohz(void)
1348 {
1349 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1350 	ktime_t next;
1351 
1352 	if (!tick_nohz_enabled)
1353 		return;
1354 
1355 	if (tick_switch_to_oneshot(tick_nohz_handler))
1356 		return;
1357 
1358 	/*
1359 	 * Recycle the hrtimer in ts, so we can share the
1360 	 * hrtimer_forward with the highres code.
1361 	 */
1362 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363 	/* Get the next period */
1364 	next = tick_init_jiffy_update();
1365 
1366 	hrtimer_set_expires(&ts->sched_timer, next);
1367 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1368 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1369 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1370 }
1371 
1372 static inline void tick_nohz_irq_enter(void)
1373 {
1374 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1375 	ktime_t now;
1376 
1377 	if (!ts->idle_active && !ts->tick_stopped)
1378 		return;
1379 	now = ktime_get();
1380 	if (ts->idle_active)
1381 		tick_nohz_stop_idle(ts, now);
1382 	if (ts->tick_stopped)
1383 		tick_nohz_update_jiffies(now);
1384 }
1385 
1386 #else
1387 
1388 static inline void tick_nohz_switch_to_nohz(void) { }
1389 static inline void tick_nohz_irq_enter(void) { }
1390 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1391 
1392 #endif /* CONFIG_NO_HZ_COMMON */
1393 
1394 /*
1395  * Called from irq_enter to notify about the possible interruption of idle()
1396  */
1397 void tick_irq_enter(void)
1398 {
1399 	tick_check_oneshot_broadcast_this_cpu();
1400 	tick_nohz_irq_enter();
1401 }
1402 
1403 /*
1404  * High resolution timer specific code
1405  */
1406 #ifdef CONFIG_HIGH_RES_TIMERS
1407 /*
1408  * We rearm the timer until we get disabled by the idle code.
1409  * Called with interrupts disabled.
1410  */
1411 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1412 {
1413 	struct tick_sched *ts =
1414 		container_of(timer, struct tick_sched, sched_timer);
1415 	struct pt_regs *regs = get_irq_regs();
1416 	ktime_t now = ktime_get();
1417 
1418 	tick_sched_do_timer(ts, now);
1419 
1420 	/*
1421 	 * Do not call, when we are not in irq context and have
1422 	 * no valid regs pointer
1423 	 */
1424 	if (regs)
1425 		tick_sched_handle(ts, regs);
1426 	else
1427 		ts->next_tick = 0;
1428 
1429 	/* No need to reprogram if we are in idle or full dynticks mode */
1430 	if (unlikely(ts->tick_stopped))
1431 		return HRTIMER_NORESTART;
1432 
1433 	hrtimer_forward(timer, now, TICK_NSEC);
1434 
1435 	return HRTIMER_RESTART;
1436 }
1437 
1438 static int sched_skew_tick;
1439 
1440 static int __init skew_tick(char *str)
1441 {
1442 	get_option(&str, &sched_skew_tick);
1443 
1444 	return 0;
1445 }
1446 early_param("skew_tick", skew_tick);
1447 
1448 /**
1449  * tick_setup_sched_timer - setup the tick emulation timer
1450  */
1451 void tick_setup_sched_timer(void)
1452 {
1453 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1454 	ktime_t now = ktime_get();
1455 
1456 	/*
1457 	 * Emulate tick processing via per-CPU hrtimers:
1458 	 */
1459 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1460 	ts->sched_timer.function = tick_sched_timer;
1461 
1462 	/* Get the next period (per-CPU) */
1463 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1464 
1465 	/* Offset the tick to avert jiffies_lock contention. */
1466 	if (sched_skew_tick) {
1467 		u64 offset = TICK_NSEC >> 1;
1468 		do_div(offset, num_possible_cpus());
1469 		offset *= smp_processor_id();
1470 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1471 	}
1472 
1473 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1474 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1475 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1476 }
1477 #endif /* HIGH_RES_TIMERS */
1478 
1479 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1480 void tick_cancel_sched_timer(int cpu)
1481 {
1482 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1483 
1484 # ifdef CONFIG_HIGH_RES_TIMERS
1485 	if (ts->sched_timer.base)
1486 		hrtimer_cancel(&ts->sched_timer);
1487 # endif
1488 
1489 	memset(ts, 0, sizeof(*ts));
1490 }
1491 #endif
1492 
1493 /**
1494  * Async notification about clocksource changes
1495  */
1496 void tick_clock_notify(void)
1497 {
1498 	int cpu;
1499 
1500 	for_each_possible_cpu(cpu)
1501 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1502 }
1503 
1504 /*
1505  * Async notification about clock event changes
1506  */
1507 void tick_oneshot_notify(void)
1508 {
1509 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1510 
1511 	set_bit(0, &ts->check_clocks);
1512 }
1513 
1514 /**
1515  * Check, if a change happened, which makes oneshot possible.
1516  *
1517  * Called cyclic from the hrtimer softirq (driven by the timer
1518  * softirq) allow_nohz signals, that we can switch into low-res nohz
1519  * mode, because high resolution timers are disabled (either compile
1520  * or runtime). Called with interrupts disabled.
1521  */
1522 int tick_check_oneshot_change(int allow_nohz)
1523 {
1524 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1525 
1526 	if (!test_and_clear_bit(0, &ts->check_clocks))
1527 		return 0;
1528 
1529 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1530 		return 0;
1531 
1532 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1533 		return 0;
1534 
1535 	if (!allow_nohz)
1536 		return 1;
1537 
1538 	tick_nohz_switch_to_nohz();
1539 	return 0;
1540 }
1541