xref: /openbmc/linux/kernel/time/tick-sched.c (revision 9e8f559b)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 
102 static void tick_sched_do_timer(ktime_t now)
103 {
104 	int cpu = smp_processor_id();
105 
106 #ifdef CONFIG_NO_HZ
107 	/*
108 	 * Check if the do_timer duty was dropped. We don't care about
109 	 * concurrency: This happens only when the cpu in charge went
110 	 * into a long sleep. If two cpus happen to assign themself to
111 	 * this duty, then the jiffies update is still serialized by
112 	 * xtime_lock.
113 	 */
114 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
115 		tick_do_timer_cpu = cpu;
116 #endif
117 
118 	/* Check, if the jiffies need an update */
119 	if (tick_do_timer_cpu == cpu)
120 		tick_do_update_jiffies64(now);
121 }
122 
123 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
124 {
125 	/*
126 	 * When we are idle and the tick is stopped, we have to touch
127 	 * the watchdog as we might not schedule for a really long
128 	 * time. This happens on complete idle SMP systems while
129 	 * waiting on the login prompt. We also increment the "start of
130 	 * idle" jiffy stamp so the idle accounting adjustment we do
131 	 * when we go busy again does not account too much ticks.
132 	 */
133 	if (ts->tick_stopped) {
134 		touch_softlockup_watchdog();
135 		if (is_idle_task(current))
136 			ts->idle_jiffies++;
137 	}
138 	update_process_times(user_mode(regs));
139 	profile_tick(CPU_PROFILING);
140 }
141 
142 /*
143  * NOHZ - aka dynamic tick functionality
144  */
145 #ifdef CONFIG_NO_HZ
146 /*
147  * NO HZ enabled ?
148  */
149 int tick_nohz_enabled __read_mostly  = 1;
150 
151 /*
152  * Enable / Disable tickless mode
153  */
154 static int __init setup_tick_nohz(char *str)
155 {
156 	if (!strcmp(str, "off"))
157 		tick_nohz_enabled = 0;
158 	else if (!strcmp(str, "on"))
159 		tick_nohz_enabled = 1;
160 	else
161 		return 0;
162 	return 1;
163 }
164 
165 __setup("nohz=", setup_tick_nohz);
166 
167 /**
168  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
169  *
170  * Called from interrupt entry when the CPU was idle
171  *
172  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
173  * must be updated. Otherwise an interrupt handler could use a stale jiffy
174  * value. We do this unconditionally on any cpu, as we don't know whether the
175  * cpu, which has the update task assigned is in a long sleep.
176  */
177 static void tick_nohz_update_jiffies(ktime_t now)
178 {
179 	int cpu = smp_processor_id();
180 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
181 	unsigned long flags;
182 
183 	ts->idle_waketime = now;
184 
185 	local_irq_save(flags);
186 	tick_do_update_jiffies64(now);
187 	local_irq_restore(flags);
188 
189 	touch_softlockup_watchdog();
190 }
191 
192 /*
193  * Updates the per cpu time idle statistics counters
194  */
195 static void
196 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
197 {
198 	ktime_t delta;
199 
200 	if (ts->idle_active) {
201 		delta = ktime_sub(now, ts->idle_entrytime);
202 		if (nr_iowait_cpu(cpu) > 0)
203 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
204 		else
205 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
206 		ts->idle_entrytime = now;
207 	}
208 
209 	if (last_update_time)
210 		*last_update_time = ktime_to_us(now);
211 
212 }
213 
214 static void tick_nohz_stop_idle(int cpu, ktime_t now)
215 {
216 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
217 
218 	update_ts_time_stats(cpu, ts, now, NULL);
219 	ts->idle_active = 0;
220 
221 	sched_clock_idle_wakeup_event(0);
222 }
223 
224 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
225 {
226 	ktime_t now = ktime_get();
227 
228 	ts->idle_entrytime = now;
229 	ts->idle_active = 1;
230 	sched_clock_idle_sleep_event();
231 	return now;
232 }
233 
234 /**
235  * get_cpu_idle_time_us - get the total idle time of a cpu
236  * @cpu: CPU number to query
237  * @last_update_time: variable to store update time in. Do not update
238  * counters if NULL.
239  *
240  * Return the cummulative idle time (since boot) for a given
241  * CPU, in microseconds.
242  *
243  * This time is measured via accounting rather than sampling,
244  * and is as accurate as ktime_get() is.
245  *
246  * This function returns -1 if NOHZ is not enabled.
247  */
248 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
249 {
250 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 	ktime_t now, idle;
252 
253 	if (!tick_nohz_enabled)
254 		return -1;
255 
256 	now = ktime_get();
257 	if (last_update_time) {
258 		update_ts_time_stats(cpu, ts, now, last_update_time);
259 		idle = ts->idle_sleeptime;
260 	} else {
261 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
262 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263 
264 			idle = ktime_add(ts->idle_sleeptime, delta);
265 		} else {
266 			idle = ts->idle_sleeptime;
267 		}
268 	}
269 
270 	return ktime_to_us(idle);
271 
272 }
273 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
274 
275 /**
276  * get_cpu_iowait_time_us - get the total iowait time of a cpu
277  * @cpu: CPU number to query
278  * @last_update_time: variable to store update time in. Do not update
279  * counters if NULL.
280  *
281  * Return the cummulative iowait time (since boot) for a given
282  * CPU, in microseconds.
283  *
284  * This time is measured via accounting rather than sampling,
285  * and is as accurate as ktime_get() is.
286  *
287  * This function returns -1 if NOHZ is not enabled.
288  */
289 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
290 {
291 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
292 	ktime_t now, iowait;
293 
294 	if (!tick_nohz_enabled)
295 		return -1;
296 
297 	now = ktime_get();
298 	if (last_update_time) {
299 		update_ts_time_stats(cpu, ts, now, last_update_time);
300 		iowait = ts->iowait_sleeptime;
301 	} else {
302 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
303 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
304 
305 			iowait = ktime_add(ts->iowait_sleeptime, delta);
306 		} else {
307 			iowait = ts->iowait_sleeptime;
308 		}
309 	}
310 
311 	return ktime_to_us(iowait);
312 }
313 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
314 
315 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
316 					 ktime_t now, int cpu)
317 {
318 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
319 	ktime_t last_update, expires, ret = { .tv64 = 0 };
320 	unsigned long rcu_delta_jiffies;
321 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
322 	u64 time_delta;
323 
324 	/* Read jiffies and the time when jiffies were updated last */
325 	do {
326 		seq = read_seqbegin(&xtime_lock);
327 		last_update = last_jiffies_update;
328 		last_jiffies = jiffies;
329 		time_delta = timekeeping_max_deferment();
330 	} while (read_seqretry(&xtime_lock, seq));
331 
332 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
333 	    arch_needs_cpu(cpu)) {
334 		next_jiffies = last_jiffies + 1;
335 		delta_jiffies = 1;
336 	} else {
337 		/* Get the next timer wheel timer */
338 		next_jiffies = get_next_timer_interrupt(last_jiffies);
339 		delta_jiffies = next_jiffies - last_jiffies;
340 		if (rcu_delta_jiffies < delta_jiffies) {
341 			next_jiffies = last_jiffies + rcu_delta_jiffies;
342 			delta_jiffies = rcu_delta_jiffies;
343 		}
344 	}
345 	/*
346 	 * Do not stop the tick, if we are only one off
347 	 * or if the cpu is required for rcu
348 	 */
349 	if (!ts->tick_stopped && delta_jiffies == 1)
350 		goto out;
351 
352 	/* Schedule the tick, if we are at least one jiffie off */
353 	if ((long)delta_jiffies >= 1) {
354 
355 		/*
356 		 * If this cpu is the one which updates jiffies, then
357 		 * give up the assignment and let it be taken by the
358 		 * cpu which runs the tick timer next, which might be
359 		 * this cpu as well. If we don't drop this here the
360 		 * jiffies might be stale and do_timer() never
361 		 * invoked. Keep track of the fact that it was the one
362 		 * which had the do_timer() duty last. If this cpu is
363 		 * the one which had the do_timer() duty last, we
364 		 * limit the sleep time to the timekeeping
365 		 * max_deferement value which we retrieved
366 		 * above. Otherwise we can sleep as long as we want.
367 		 */
368 		if (cpu == tick_do_timer_cpu) {
369 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
370 			ts->do_timer_last = 1;
371 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
372 			time_delta = KTIME_MAX;
373 			ts->do_timer_last = 0;
374 		} else if (!ts->do_timer_last) {
375 			time_delta = KTIME_MAX;
376 		}
377 
378 		/*
379 		 * calculate the expiry time for the next timer wheel
380 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
381 		 * that there is no timer pending or at least extremely
382 		 * far into the future (12 days for HZ=1000). In this
383 		 * case we set the expiry to the end of time.
384 		 */
385 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
386 			/*
387 			 * Calculate the time delta for the next timer event.
388 			 * If the time delta exceeds the maximum time delta
389 			 * permitted by the current clocksource then adjust
390 			 * the time delta accordingly to ensure the
391 			 * clocksource does not wrap.
392 			 */
393 			time_delta = min_t(u64, time_delta,
394 					   tick_period.tv64 * delta_jiffies);
395 		}
396 
397 		if (time_delta < KTIME_MAX)
398 			expires = ktime_add_ns(last_update, time_delta);
399 		else
400 			expires.tv64 = KTIME_MAX;
401 
402 		/* Skip reprogram of event if its not changed */
403 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
404 			goto out;
405 
406 		ret = expires;
407 
408 		/*
409 		 * nohz_stop_sched_tick can be called several times before
410 		 * the nohz_restart_sched_tick is called. This happens when
411 		 * interrupts arrive which do not cause a reschedule. In the
412 		 * first call we save the current tick time, so we can restart
413 		 * the scheduler tick in nohz_restart_sched_tick.
414 		 */
415 		if (!ts->tick_stopped) {
416 			nohz_balance_enter_idle(cpu);
417 			calc_load_enter_idle();
418 
419 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
420 			ts->tick_stopped = 1;
421 		}
422 
423 		/*
424 		 * If the expiration time == KTIME_MAX, then
425 		 * in this case we simply stop the tick timer.
426 		 */
427 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
428 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
429 				hrtimer_cancel(&ts->sched_timer);
430 			goto out;
431 		}
432 
433 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
434 			hrtimer_start(&ts->sched_timer, expires,
435 				      HRTIMER_MODE_ABS_PINNED);
436 			/* Check, if the timer was already in the past */
437 			if (hrtimer_active(&ts->sched_timer))
438 				goto out;
439 		} else if (!tick_program_event(expires, 0))
440 				goto out;
441 		/*
442 		 * We are past the event already. So we crossed a
443 		 * jiffie boundary. Update jiffies and raise the
444 		 * softirq.
445 		 */
446 		tick_do_update_jiffies64(ktime_get());
447 	}
448 	raise_softirq_irqoff(TIMER_SOFTIRQ);
449 out:
450 	ts->next_jiffies = next_jiffies;
451 	ts->last_jiffies = last_jiffies;
452 	ts->sleep_length = ktime_sub(dev->next_event, now);
453 
454 	return ret;
455 }
456 
457 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
458 {
459 	/*
460 	 * If this cpu is offline and it is the one which updates
461 	 * jiffies, then give up the assignment and let it be taken by
462 	 * the cpu which runs the tick timer next. If we don't drop
463 	 * this here the jiffies might be stale and do_timer() never
464 	 * invoked.
465 	 */
466 	if (unlikely(!cpu_online(cpu))) {
467 		if (cpu == tick_do_timer_cpu)
468 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
469 	}
470 
471 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
472 		return false;
473 
474 	if (need_resched())
475 		return false;
476 
477 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
478 		static int ratelimit;
479 
480 		if (ratelimit < 10 &&
481 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
482 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
483 			       (unsigned int) local_softirq_pending());
484 			ratelimit++;
485 		}
486 		return false;
487 	}
488 
489 	return true;
490 }
491 
492 static void __tick_nohz_idle_enter(struct tick_sched *ts)
493 {
494 	ktime_t now, expires;
495 	int cpu = smp_processor_id();
496 
497 	now = tick_nohz_start_idle(cpu, ts);
498 
499 	if (can_stop_idle_tick(cpu, ts)) {
500 		int was_stopped = ts->tick_stopped;
501 
502 		ts->idle_calls++;
503 
504 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
505 		if (expires.tv64 > 0LL) {
506 			ts->idle_sleeps++;
507 			ts->idle_expires = expires;
508 		}
509 
510 		if (!was_stopped && ts->tick_stopped)
511 			ts->idle_jiffies = ts->last_jiffies;
512 	}
513 }
514 
515 /**
516  * tick_nohz_idle_enter - stop the idle tick from the idle task
517  *
518  * When the next event is more than a tick into the future, stop the idle tick
519  * Called when we start the idle loop.
520  *
521  * The arch is responsible of calling:
522  *
523  * - rcu_idle_enter() after its last use of RCU before the CPU is put
524  *  to sleep.
525  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
526  */
527 void tick_nohz_idle_enter(void)
528 {
529 	struct tick_sched *ts;
530 
531 	WARN_ON_ONCE(irqs_disabled());
532 
533 	/*
534  	 * Update the idle state in the scheduler domain hierarchy
535  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
536  	 * State will be updated to busy during the first busy tick after
537  	 * exiting idle.
538  	 */
539 	set_cpu_sd_state_idle();
540 
541 	local_irq_disable();
542 
543 	ts = &__get_cpu_var(tick_cpu_sched);
544 	/*
545 	 * set ts->inidle unconditionally. even if the system did not
546 	 * switch to nohz mode the cpu frequency governers rely on the
547 	 * update of the idle time accounting in tick_nohz_start_idle().
548 	 */
549 	ts->inidle = 1;
550 	__tick_nohz_idle_enter(ts);
551 
552 	local_irq_enable();
553 }
554 
555 /**
556  * tick_nohz_irq_exit - update next tick event from interrupt exit
557  *
558  * When an interrupt fires while we are idle and it doesn't cause
559  * a reschedule, it may still add, modify or delete a timer, enqueue
560  * an RCU callback, etc...
561  * So we need to re-calculate and reprogram the next tick event.
562  */
563 void tick_nohz_irq_exit(void)
564 {
565 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
566 
567 	if (!ts->inidle)
568 		return;
569 
570 	__tick_nohz_idle_enter(ts);
571 }
572 
573 /**
574  * tick_nohz_get_sleep_length - return the length of the current sleep
575  *
576  * Called from power state control code with interrupts disabled
577  */
578 ktime_t tick_nohz_get_sleep_length(void)
579 {
580 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
581 
582 	return ts->sleep_length;
583 }
584 
585 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
586 {
587 	hrtimer_cancel(&ts->sched_timer);
588 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
589 
590 	while (1) {
591 		/* Forward the time to expire in the future */
592 		hrtimer_forward(&ts->sched_timer, now, tick_period);
593 
594 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
595 			hrtimer_start_expires(&ts->sched_timer,
596 					      HRTIMER_MODE_ABS_PINNED);
597 			/* Check, if the timer was already in the past */
598 			if (hrtimer_active(&ts->sched_timer))
599 				break;
600 		} else {
601 			if (!tick_program_event(
602 				hrtimer_get_expires(&ts->sched_timer), 0))
603 				break;
604 		}
605 		/* Reread time and update jiffies */
606 		now = ktime_get();
607 		tick_do_update_jiffies64(now);
608 	}
609 }
610 
611 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
612 {
613 	/* Update jiffies first */
614 	tick_do_update_jiffies64(now);
615 	update_cpu_load_nohz();
616 
617 	calc_load_exit_idle();
618 	touch_softlockup_watchdog();
619 	/*
620 	 * Cancel the scheduled timer and restore the tick
621 	 */
622 	ts->tick_stopped  = 0;
623 	ts->idle_exittime = now;
624 
625 	tick_nohz_restart(ts, now);
626 }
627 
628 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
629 {
630 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
631 	unsigned long ticks;
632 	/*
633 	 * We stopped the tick in idle. Update process times would miss the
634 	 * time we slept as update_process_times does only a 1 tick
635 	 * accounting. Enforce that this is accounted to idle !
636 	 */
637 	ticks = jiffies - ts->idle_jiffies;
638 	/*
639 	 * We might be one off. Do not randomly account a huge number of ticks!
640 	 */
641 	if (ticks && ticks < LONG_MAX)
642 		account_idle_ticks(ticks);
643 #endif
644 }
645 
646 /**
647  * tick_nohz_idle_exit - restart the idle tick from the idle task
648  *
649  * Restart the idle tick when the CPU is woken up from idle
650  * This also exit the RCU extended quiescent state. The CPU
651  * can use RCU again after this function is called.
652  */
653 void tick_nohz_idle_exit(void)
654 {
655 	int cpu = smp_processor_id();
656 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
657 	ktime_t now;
658 
659 	local_irq_disable();
660 
661 	WARN_ON_ONCE(!ts->inidle);
662 
663 	ts->inidle = 0;
664 
665 	if (ts->idle_active || ts->tick_stopped)
666 		now = ktime_get();
667 
668 	if (ts->idle_active)
669 		tick_nohz_stop_idle(cpu, now);
670 
671 	if (ts->tick_stopped) {
672 		tick_nohz_restart_sched_tick(ts, now);
673 		tick_nohz_account_idle_ticks(ts);
674 	}
675 
676 	local_irq_enable();
677 }
678 
679 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
680 {
681 	hrtimer_forward(&ts->sched_timer, now, tick_period);
682 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
683 }
684 
685 /*
686  * The nohz low res interrupt handler
687  */
688 static void tick_nohz_handler(struct clock_event_device *dev)
689 {
690 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
691 	struct pt_regs *regs = get_irq_regs();
692 	ktime_t now = ktime_get();
693 
694 	dev->next_event.tv64 = KTIME_MAX;
695 
696 	tick_sched_do_timer(now);
697 	tick_sched_handle(ts, regs);
698 
699 	while (tick_nohz_reprogram(ts, now)) {
700 		now = ktime_get();
701 		tick_do_update_jiffies64(now);
702 	}
703 }
704 
705 /**
706  * tick_nohz_switch_to_nohz - switch to nohz mode
707  */
708 static void tick_nohz_switch_to_nohz(void)
709 {
710 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
711 	ktime_t next;
712 
713 	if (!tick_nohz_enabled)
714 		return;
715 
716 	local_irq_disable();
717 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
718 		local_irq_enable();
719 		return;
720 	}
721 
722 	ts->nohz_mode = NOHZ_MODE_LOWRES;
723 
724 	/*
725 	 * Recycle the hrtimer in ts, so we can share the
726 	 * hrtimer_forward with the highres code.
727 	 */
728 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
729 	/* Get the next period */
730 	next = tick_init_jiffy_update();
731 
732 	for (;;) {
733 		hrtimer_set_expires(&ts->sched_timer, next);
734 		if (!tick_program_event(next, 0))
735 			break;
736 		next = ktime_add(next, tick_period);
737 	}
738 	local_irq_enable();
739 }
740 
741 /*
742  * When NOHZ is enabled and the tick is stopped, we need to kick the
743  * tick timer from irq_enter() so that the jiffies update is kept
744  * alive during long running softirqs. That's ugly as hell, but
745  * correctness is key even if we need to fix the offending softirq in
746  * the first place.
747  *
748  * Note, this is different to tick_nohz_restart. We just kick the
749  * timer and do not touch the other magic bits which need to be done
750  * when idle is left.
751  */
752 static void tick_nohz_kick_tick(int cpu, ktime_t now)
753 {
754 #if 0
755 	/* Switch back to 2.6.27 behaviour */
756 
757 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
758 	ktime_t delta;
759 
760 	/*
761 	 * Do not touch the tick device, when the next expiry is either
762 	 * already reached or less/equal than the tick period.
763 	 */
764 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
765 	if (delta.tv64 <= tick_period.tv64)
766 		return;
767 
768 	tick_nohz_restart(ts, now);
769 #endif
770 }
771 
772 static inline void tick_check_nohz(int cpu)
773 {
774 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
775 	ktime_t now;
776 
777 	if (!ts->idle_active && !ts->tick_stopped)
778 		return;
779 	now = ktime_get();
780 	if (ts->idle_active)
781 		tick_nohz_stop_idle(cpu, now);
782 	if (ts->tick_stopped) {
783 		tick_nohz_update_jiffies(now);
784 		tick_nohz_kick_tick(cpu, now);
785 	}
786 }
787 
788 #else
789 
790 static inline void tick_nohz_switch_to_nohz(void) { }
791 static inline void tick_check_nohz(int cpu) { }
792 
793 #endif /* NO_HZ */
794 
795 /*
796  * Called from irq_enter to notify about the possible interruption of idle()
797  */
798 void tick_check_idle(int cpu)
799 {
800 	tick_check_oneshot_broadcast(cpu);
801 	tick_check_nohz(cpu);
802 }
803 
804 /*
805  * High resolution timer specific code
806  */
807 #ifdef CONFIG_HIGH_RES_TIMERS
808 /*
809  * We rearm the timer until we get disabled by the idle code.
810  * Called with interrupts disabled and timer->base->cpu_base->lock held.
811  */
812 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
813 {
814 	struct tick_sched *ts =
815 		container_of(timer, struct tick_sched, sched_timer);
816 	struct pt_regs *regs = get_irq_regs();
817 	ktime_t now = ktime_get();
818 
819 	tick_sched_do_timer(now);
820 
821 	/*
822 	 * Do not call, when we are not in irq context and have
823 	 * no valid regs pointer
824 	 */
825 	if (regs)
826 		tick_sched_handle(ts, regs);
827 
828 	hrtimer_forward(timer, now, tick_period);
829 
830 	return HRTIMER_RESTART;
831 }
832 
833 static int sched_skew_tick;
834 
835 static int __init skew_tick(char *str)
836 {
837 	get_option(&str, &sched_skew_tick);
838 
839 	return 0;
840 }
841 early_param("skew_tick", skew_tick);
842 
843 /**
844  * tick_setup_sched_timer - setup the tick emulation timer
845  */
846 void tick_setup_sched_timer(void)
847 {
848 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
849 	ktime_t now = ktime_get();
850 
851 	/*
852 	 * Emulate tick processing via per-CPU hrtimers:
853 	 */
854 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
855 	ts->sched_timer.function = tick_sched_timer;
856 
857 	/* Get the next period (per cpu) */
858 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
859 
860 	/* Offset the tick to avert xtime_lock contention. */
861 	if (sched_skew_tick) {
862 		u64 offset = ktime_to_ns(tick_period) >> 1;
863 		do_div(offset, num_possible_cpus());
864 		offset *= smp_processor_id();
865 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
866 	}
867 
868 	for (;;) {
869 		hrtimer_forward(&ts->sched_timer, now, tick_period);
870 		hrtimer_start_expires(&ts->sched_timer,
871 				      HRTIMER_MODE_ABS_PINNED);
872 		/* Check, if the timer was already in the past */
873 		if (hrtimer_active(&ts->sched_timer))
874 			break;
875 		now = ktime_get();
876 	}
877 
878 #ifdef CONFIG_NO_HZ
879 	if (tick_nohz_enabled)
880 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
881 #endif
882 }
883 #endif /* HIGH_RES_TIMERS */
884 
885 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
886 void tick_cancel_sched_timer(int cpu)
887 {
888 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
889 
890 # ifdef CONFIG_HIGH_RES_TIMERS
891 	if (ts->sched_timer.base)
892 		hrtimer_cancel(&ts->sched_timer);
893 # endif
894 
895 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
896 }
897 #endif
898 
899 /**
900  * Async notification about clocksource changes
901  */
902 void tick_clock_notify(void)
903 {
904 	int cpu;
905 
906 	for_each_possible_cpu(cpu)
907 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
908 }
909 
910 /*
911  * Async notification about clock event changes
912  */
913 void tick_oneshot_notify(void)
914 {
915 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
916 
917 	set_bit(0, &ts->check_clocks);
918 }
919 
920 /**
921  * Check, if a change happened, which makes oneshot possible.
922  *
923  * Called cyclic from the hrtimer softirq (driven by the timer
924  * softirq) allow_nohz signals, that we can switch into low-res nohz
925  * mode, because high resolution timers are disabled (either compile
926  * or runtime).
927  */
928 int tick_check_oneshot_change(int allow_nohz)
929 {
930 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
931 
932 	if (!test_and_clear_bit(0, &ts->check_clocks))
933 		return 0;
934 
935 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
936 		return 0;
937 
938 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
939 		return 0;
940 
941 	if (!allow_nohz)
942 		return 1;
943 
944 	tick_nohz_switch_to_nohz();
945 	return 0;
946 }
947