xref: /openbmc/linux/kernel/time/tick-sched.c (revision 9b2e4f18)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now;
186 
187 	now = ktime_get();
188 
189 	update_ts_time_stats(cpu, ts, now, NULL);
190 
191 	ts->idle_entrytime = now;
192 	ts->idle_active = 1;
193 	sched_clock_idle_sleep_event();
194 	return now;
195 }
196 
197 /**
198  * get_cpu_idle_time_us - get the total idle time of a cpu
199  * @cpu: CPU number to query
200  * @last_update_time: variable to store update time in. Do not update
201  * counters if NULL.
202  *
203  * Return the cummulative idle time (since boot) for a given
204  * CPU, in microseconds.
205  *
206  * This time is measured via accounting rather than sampling,
207  * and is as accurate as ktime_get() is.
208  *
209  * This function returns -1 if NOHZ is not enabled.
210  */
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212 {
213 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 	ktime_t now, idle;
215 
216 	if (!tick_nohz_enabled)
217 		return -1;
218 
219 	now = ktime_get();
220 	if (last_update_time) {
221 		update_ts_time_stats(cpu, ts, now, last_update_time);
222 		idle = ts->idle_sleeptime;
223 	} else {
224 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
226 
227 			idle = ktime_add(ts->idle_sleeptime, delta);
228 		} else {
229 			idle = ts->idle_sleeptime;
230 		}
231 	}
232 
233 	return ktime_to_us(idle);
234 
235 }
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237 
238 /**
239  * get_cpu_iowait_time_us - get the total iowait time of a cpu
240  * @cpu: CPU number to query
241  * @last_update_time: variable to store update time in. Do not update
242  * counters if NULL.
243  *
244  * Return the cummulative iowait time (since boot) for a given
245  * CPU, in microseconds.
246  *
247  * This time is measured via accounting rather than sampling,
248  * and is as accurate as ktime_get() is.
249  *
250  * This function returns -1 if NOHZ is not enabled.
251  */
252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
253 {
254 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255 	ktime_t now, iowait;
256 
257 	if (!tick_nohz_enabled)
258 		return -1;
259 
260 	now = ktime_get();
261 	if (last_update_time) {
262 		update_ts_time_stats(cpu, ts, now, last_update_time);
263 		iowait = ts->iowait_sleeptime;
264 	} else {
265 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267 
268 			iowait = ktime_add(ts->iowait_sleeptime, delta);
269 		} else {
270 			iowait = ts->iowait_sleeptime;
271 		}
272 	}
273 
274 	return ktime_to_us(iowait);
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
277 
278 /**
279  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
280  *
281  * When the next event is more than a tick into the future, stop the idle tick
282  * Called either from the idle loop or from irq_exit() when an idle period was
283  * just interrupted by an interrupt which did not cause a reschedule.
284  */
285 void tick_nohz_stop_sched_tick(int inidle)
286 {
287 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
288 	struct tick_sched *ts;
289 	ktime_t last_update, expires, now;
290 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
291 	u64 time_delta;
292 	int cpu;
293 
294 	local_irq_save(flags);
295 
296 	cpu = smp_processor_id();
297 	ts = &per_cpu(tick_cpu_sched, cpu);
298 
299 	/*
300 	 * Call to tick_nohz_start_idle stops the last_update_time from being
301 	 * updated. Thus, it must not be called in the event we are called from
302 	 * irq_exit() with the prior state different than idle.
303 	 */
304 	if (!inidle && !ts->inidle)
305 		goto end;
306 
307 	/*
308 	 * Set ts->inidle unconditionally. Even if the system did not
309 	 * switch to NOHZ mode the cpu frequency governers rely on the
310 	 * update of the idle time accounting in tick_nohz_start_idle().
311 	 */
312 	ts->inidle = 1;
313 
314 	now = tick_nohz_start_idle(cpu, ts);
315 
316 	/*
317 	 * If this cpu is offline and it is the one which updates
318 	 * jiffies, then give up the assignment and let it be taken by
319 	 * the cpu which runs the tick timer next. If we don't drop
320 	 * this here the jiffies might be stale and do_timer() never
321 	 * invoked.
322 	 */
323 	if (unlikely(!cpu_online(cpu))) {
324 		if (cpu == tick_do_timer_cpu)
325 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
326 	}
327 
328 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
329 		goto end;
330 
331 	if (need_resched())
332 		goto end;
333 
334 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
335 		static int ratelimit;
336 
337 		if (ratelimit < 10) {
338 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
339 			       (unsigned int) local_softirq_pending());
340 			ratelimit++;
341 		}
342 		goto end;
343 	}
344 
345 	ts->idle_calls++;
346 	/* Read jiffies and the time when jiffies were updated last */
347 	do {
348 		seq = read_seqbegin(&xtime_lock);
349 		last_update = last_jiffies_update;
350 		last_jiffies = jiffies;
351 		time_delta = timekeeping_max_deferment();
352 	} while (read_seqretry(&xtime_lock, seq));
353 
354 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
355 	    arch_needs_cpu(cpu)) {
356 		next_jiffies = last_jiffies + 1;
357 		delta_jiffies = 1;
358 	} else {
359 		/* Get the next timer wheel timer */
360 		next_jiffies = get_next_timer_interrupt(last_jiffies);
361 		delta_jiffies = next_jiffies - last_jiffies;
362 	}
363 	/*
364 	 * Do not stop the tick, if we are only one off
365 	 * or if the cpu is required for rcu
366 	 */
367 	if (!ts->tick_stopped && delta_jiffies == 1)
368 		goto out;
369 
370 	/* Schedule the tick, if we are at least one jiffie off */
371 	if ((long)delta_jiffies >= 1) {
372 
373 		/*
374 		 * If this cpu is the one which updates jiffies, then
375 		 * give up the assignment and let it be taken by the
376 		 * cpu which runs the tick timer next, which might be
377 		 * this cpu as well. If we don't drop this here the
378 		 * jiffies might be stale and do_timer() never
379 		 * invoked. Keep track of the fact that it was the one
380 		 * which had the do_timer() duty last. If this cpu is
381 		 * the one which had the do_timer() duty last, we
382 		 * limit the sleep time to the timekeeping
383 		 * max_deferement value which we retrieved
384 		 * above. Otherwise we can sleep as long as we want.
385 		 */
386 		if (cpu == tick_do_timer_cpu) {
387 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
388 			ts->do_timer_last = 1;
389 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
390 			time_delta = KTIME_MAX;
391 			ts->do_timer_last = 0;
392 		} else if (!ts->do_timer_last) {
393 			time_delta = KTIME_MAX;
394 		}
395 
396 		/*
397 		 * calculate the expiry time for the next timer wheel
398 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
399 		 * that there is no timer pending or at least extremely
400 		 * far into the future (12 days for HZ=1000). In this
401 		 * case we set the expiry to the end of time.
402 		 */
403 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
404 			/*
405 			 * Calculate the time delta for the next timer event.
406 			 * If the time delta exceeds the maximum time delta
407 			 * permitted by the current clocksource then adjust
408 			 * the time delta accordingly to ensure the
409 			 * clocksource does not wrap.
410 			 */
411 			time_delta = min_t(u64, time_delta,
412 					   tick_period.tv64 * delta_jiffies);
413 		}
414 
415 		if (time_delta < KTIME_MAX)
416 			expires = ktime_add_ns(last_update, time_delta);
417 		else
418 			expires.tv64 = KTIME_MAX;
419 
420 		/* Skip reprogram of event if its not changed */
421 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
422 			goto out;
423 
424 		/*
425 		 * nohz_stop_sched_tick can be called several times before
426 		 * the nohz_restart_sched_tick is called. This happens when
427 		 * interrupts arrive which do not cause a reschedule. In the
428 		 * first call we save the current tick time, so we can restart
429 		 * the scheduler tick in nohz_restart_sched_tick.
430 		 */
431 		if (!ts->tick_stopped) {
432 			select_nohz_load_balancer(1);
433 
434 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
435 			ts->tick_stopped = 1;
436 			ts->idle_jiffies = last_jiffies;
437 		}
438 
439 		ts->idle_sleeps++;
440 
441 		/* Mark expires */
442 		ts->idle_expires = expires;
443 
444 		/*
445 		 * If the expiration time == KTIME_MAX, then
446 		 * in this case we simply stop the tick timer.
447 		 */
448 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
449 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
450 				hrtimer_cancel(&ts->sched_timer);
451 			goto out;
452 		}
453 
454 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
455 			hrtimer_start(&ts->sched_timer, expires,
456 				      HRTIMER_MODE_ABS_PINNED);
457 			/* Check, if the timer was already in the past */
458 			if (hrtimer_active(&ts->sched_timer))
459 				goto out;
460 		} else if (!tick_program_event(expires, 0))
461 				goto out;
462 		/*
463 		 * We are past the event already. So we crossed a
464 		 * jiffie boundary. Update jiffies and raise the
465 		 * softirq.
466 		 */
467 		tick_do_update_jiffies64(ktime_get());
468 	}
469 	raise_softirq_irqoff(TIMER_SOFTIRQ);
470 out:
471 	ts->next_jiffies = next_jiffies;
472 	ts->last_jiffies = last_jiffies;
473 	ts->sleep_length = ktime_sub(dev->next_event, now);
474 end:
475 	if (inidle)
476 		rcu_idle_enter();
477 	local_irq_restore(flags);
478 }
479 
480 /**
481  * tick_nohz_get_sleep_length - return the length of the current sleep
482  *
483  * Called from power state control code with interrupts disabled
484  */
485 ktime_t tick_nohz_get_sleep_length(void)
486 {
487 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
488 
489 	return ts->sleep_length;
490 }
491 
492 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
493 {
494 	hrtimer_cancel(&ts->sched_timer);
495 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
496 
497 	while (1) {
498 		/* Forward the time to expire in the future */
499 		hrtimer_forward(&ts->sched_timer, now, tick_period);
500 
501 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
502 			hrtimer_start_expires(&ts->sched_timer,
503 					      HRTIMER_MODE_ABS_PINNED);
504 			/* Check, if the timer was already in the past */
505 			if (hrtimer_active(&ts->sched_timer))
506 				break;
507 		} else {
508 			if (!tick_program_event(
509 				hrtimer_get_expires(&ts->sched_timer), 0))
510 				break;
511 		}
512 		/* Update jiffies and reread time */
513 		tick_do_update_jiffies64(now);
514 		now = ktime_get();
515 	}
516 }
517 
518 /**
519  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
520  *
521  * Restart the idle tick when the CPU is woken up from idle
522  */
523 void tick_nohz_restart_sched_tick(void)
524 {
525 	int cpu = smp_processor_id();
526 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
527 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
528 	unsigned long ticks;
529 #endif
530 	ktime_t now;
531 
532 	local_irq_disable();
533 	rcu_idle_exit();
534 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
535 		now = ktime_get();
536 
537 	if (ts->idle_active)
538 		tick_nohz_stop_idle(cpu, now);
539 
540 	if (!ts->inidle || !ts->tick_stopped) {
541 		ts->inidle = 0;
542 		local_irq_enable();
543 		return;
544 	}
545 
546 	ts->inidle = 0;
547 
548 	/* Update jiffies first */
549 	select_nohz_load_balancer(0);
550 	tick_do_update_jiffies64(now);
551 
552 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
553 	/*
554 	 * We stopped the tick in idle. Update process times would miss the
555 	 * time we slept as update_process_times does only a 1 tick
556 	 * accounting. Enforce that this is accounted to idle !
557 	 */
558 	ticks = jiffies - ts->idle_jiffies;
559 	/*
560 	 * We might be one off. Do not randomly account a huge number of ticks!
561 	 */
562 	if (ticks && ticks < LONG_MAX)
563 		account_idle_ticks(ticks);
564 #endif
565 
566 	touch_softlockup_watchdog();
567 	/*
568 	 * Cancel the scheduled timer and restore the tick
569 	 */
570 	ts->tick_stopped  = 0;
571 	ts->idle_exittime = now;
572 
573 	tick_nohz_restart(ts, now);
574 
575 	local_irq_enable();
576 }
577 
578 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
579 {
580 	hrtimer_forward(&ts->sched_timer, now, tick_period);
581 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
582 }
583 
584 /*
585  * The nohz low res interrupt handler
586  */
587 static void tick_nohz_handler(struct clock_event_device *dev)
588 {
589 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
590 	struct pt_regs *regs = get_irq_regs();
591 	int cpu = smp_processor_id();
592 	ktime_t now = ktime_get();
593 
594 	dev->next_event.tv64 = KTIME_MAX;
595 
596 	/*
597 	 * Check if the do_timer duty was dropped. We don't care about
598 	 * concurrency: This happens only when the cpu in charge went
599 	 * into a long sleep. If two cpus happen to assign themself to
600 	 * this duty, then the jiffies update is still serialized by
601 	 * xtime_lock.
602 	 */
603 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
604 		tick_do_timer_cpu = cpu;
605 
606 	/* Check, if the jiffies need an update */
607 	if (tick_do_timer_cpu == cpu)
608 		tick_do_update_jiffies64(now);
609 
610 	/*
611 	 * When we are idle and the tick is stopped, we have to touch
612 	 * the watchdog as we might not schedule for a really long
613 	 * time. This happens on complete idle SMP systems while
614 	 * waiting on the login prompt. We also increment the "start
615 	 * of idle" jiffy stamp so the idle accounting adjustment we
616 	 * do when we go busy again does not account too much ticks.
617 	 */
618 	if (ts->tick_stopped) {
619 		touch_softlockup_watchdog();
620 		ts->idle_jiffies++;
621 	}
622 
623 	update_process_times(user_mode(regs));
624 	profile_tick(CPU_PROFILING);
625 
626 	while (tick_nohz_reprogram(ts, now)) {
627 		now = ktime_get();
628 		tick_do_update_jiffies64(now);
629 	}
630 }
631 
632 /**
633  * tick_nohz_switch_to_nohz - switch to nohz mode
634  */
635 static void tick_nohz_switch_to_nohz(void)
636 {
637 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
638 	ktime_t next;
639 
640 	if (!tick_nohz_enabled)
641 		return;
642 
643 	local_irq_disable();
644 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
645 		local_irq_enable();
646 		return;
647 	}
648 
649 	ts->nohz_mode = NOHZ_MODE_LOWRES;
650 
651 	/*
652 	 * Recycle the hrtimer in ts, so we can share the
653 	 * hrtimer_forward with the highres code.
654 	 */
655 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
656 	/* Get the next period */
657 	next = tick_init_jiffy_update();
658 
659 	for (;;) {
660 		hrtimer_set_expires(&ts->sched_timer, next);
661 		if (!tick_program_event(next, 0))
662 			break;
663 		next = ktime_add(next, tick_period);
664 	}
665 	local_irq_enable();
666 }
667 
668 /*
669  * When NOHZ is enabled and the tick is stopped, we need to kick the
670  * tick timer from irq_enter() so that the jiffies update is kept
671  * alive during long running softirqs. That's ugly as hell, but
672  * correctness is key even if we need to fix the offending softirq in
673  * the first place.
674  *
675  * Note, this is different to tick_nohz_restart. We just kick the
676  * timer and do not touch the other magic bits which need to be done
677  * when idle is left.
678  */
679 static void tick_nohz_kick_tick(int cpu, ktime_t now)
680 {
681 #if 0
682 	/* Switch back to 2.6.27 behaviour */
683 
684 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
685 	ktime_t delta;
686 
687 	/*
688 	 * Do not touch the tick device, when the next expiry is either
689 	 * already reached or less/equal than the tick period.
690 	 */
691 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
692 	if (delta.tv64 <= tick_period.tv64)
693 		return;
694 
695 	tick_nohz_restart(ts, now);
696 #endif
697 }
698 
699 static inline void tick_check_nohz(int cpu)
700 {
701 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
702 	ktime_t now;
703 
704 	if (!ts->idle_active && !ts->tick_stopped)
705 		return;
706 	now = ktime_get();
707 	if (ts->idle_active)
708 		tick_nohz_stop_idle(cpu, now);
709 	if (ts->tick_stopped) {
710 		tick_nohz_update_jiffies(now);
711 		tick_nohz_kick_tick(cpu, now);
712 	}
713 }
714 
715 #else
716 
717 static inline void tick_nohz_switch_to_nohz(void) { }
718 static inline void tick_check_nohz(int cpu) { }
719 
720 #endif /* NO_HZ */
721 
722 /*
723  * Called from irq_enter to notify about the possible interruption of idle()
724  */
725 void tick_check_idle(int cpu)
726 {
727 	tick_check_oneshot_broadcast(cpu);
728 	tick_check_nohz(cpu);
729 }
730 
731 /*
732  * High resolution timer specific code
733  */
734 #ifdef CONFIG_HIGH_RES_TIMERS
735 /*
736  * We rearm the timer until we get disabled by the idle code.
737  * Called with interrupts disabled and timer->base->cpu_base->lock held.
738  */
739 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
740 {
741 	struct tick_sched *ts =
742 		container_of(timer, struct tick_sched, sched_timer);
743 	struct pt_regs *regs = get_irq_regs();
744 	ktime_t now = ktime_get();
745 	int cpu = smp_processor_id();
746 
747 #ifdef CONFIG_NO_HZ
748 	/*
749 	 * Check if the do_timer duty was dropped. We don't care about
750 	 * concurrency: This happens only when the cpu in charge went
751 	 * into a long sleep. If two cpus happen to assign themself to
752 	 * this duty, then the jiffies update is still serialized by
753 	 * xtime_lock.
754 	 */
755 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
756 		tick_do_timer_cpu = cpu;
757 #endif
758 
759 	/* Check, if the jiffies need an update */
760 	if (tick_do_timer_cpu == cpu)
761 		tick_do_update_jiffies64(now);
762 
763 	/*
764 	 * Do not call, when we are not in irq context and have
765 	 * no valid regs pointer
766 	 */
767 	if (regs) {
768 		/*
769 		 * When we are idle and the tick is stopped, we have to touch
770 		 * the watchdog as we might not schedule for a really long
771 		 * time. This happens on complete idle SMP systems while
772 		 * waiting on the login prompt. We also increment the "start of
773 		 * idle" jiffy stamp so the idle accounting adjustment we do
774 		 * when we go busy again does not account too much ticks.
775 		 */
776 		if (ts->tick_stopped) {
777 			touch_softlockup_watchdog();
778 			ts->idle_jiffies++;
779 		}
780 		update_process_times(user_mode(regs));
781 		profile_tick(CPU_PROFILING);
782 	}
783 
784 	hrtimer_forward(timer, now, tick_period);
785 
786 	return HRTIMER_RESTART;
787 }
788 
789 /**
790  * tick_setup_sched_timer - setup the tick emulation timer
791  */
792 void tick_setup_sched_timer(void)
793 {
794 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
795 	ktime_t now = ktime_get();
796 
797 	/*
798 	 * Emulate tick processing via per-CPU hrtimers:
799 	 */
800 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
801 	ts->sched_timer.function = tick_sched_timer;
802 
803 	/* Get the next period (per cpu) */
804 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
805 
806 	for (;;) {
807 		hrtimer_forward(&ts->sched_timer, now, tick_period);
808 		hrtimer_start_expires(&ts->sched_timer,
809 				      HRTIMER_MODE_ABS_PINNED);
810 		/* Check, if the timer was already in the past */
811 		if (hrtimer_active(&ts->sched_timer))
812 			break;
813 		now = ktime_get();
814 	}
815 
816 #ifdef CONFIG_NO_HZ
817 	if (tick_nohz_enabled)
818 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
819 #endif
820 }
821 #endif /* HIGH_RES_TIMERS */
822 
823 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
824 void tick_cancel_sched_timer(int cpu)
825 {
826 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
827 
828 # ifdef CONFIG_HIGH_RES_TIMERS
829 	if (ts->sched_timer.base)
830 		hrtimer_cancel(&ts->sched_timer);
831 # endif
832 
833 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
834 }
835 #endif
836 
837 /**
838  * Async notification about clocksource changes
839  */
840 void tick_clock_notify(void)
841 {
842 	int cpu;
843 
844 	for_each_possible_cpu(cpu)
845 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
846 }
847 
848 /*
849  * Async notification about clock event changes
850  */
851 void tick_oneshot_notify(void)
852 {
853 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
854 
855 	set_bit(0, &ts->check_clocks);
856 }
857 
858 /**
859  * Check, if a change happened, which makes oneshot possible.
860  *
861  * Called cyclic from the hrtimer softirq (driven by the timer
862  * softirq) allow_nohz signals, that we can switch into low-res nohz
863  * mode, because high resolution timers are disabled (either compile
864  * or runtime).
865  */
866 int tick_check_oneshot_change(int allow_nohz)
867 {
868 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
869 
870 	if (!test_and_clear_bit(0, &ts->check_clocks))
871 		return 0;
872 
873 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
874 		return 0;
875 
876 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
877 		return 0;
878 
879 	if (!allow_nohz)
880 		return 1;
881 
882 	tick_nohz_switch_to_nohz();
883 	return 0;
884 }
885