1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 #include <linux/mm.h> 31 32 #include <asm/irq_regs.h> 33 34 #include "tick-internal.h" 35 36 #include <trace/events/timer.h> 37 38 /* 39 * Per-CPU nohz control structure 40 */ 41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 49 /* 50 * The time, when the last jiffy update happened. Protected by jiffies_lock. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 0; 60 ktime_t delta; 61 62 /* 63 * Do a quick check without holding jiffies_lock: 64 */ 65 delta = ktime_sub(now, last_jiffies_update); 66 if (delta < tick_period) 67 return; 68 69 /* Reevaluate with jiffies_lock held */ 70 write_seqlock(&jiffies_lock); 71 72 delta = ktime_sub(now, last_jiffies_update); 73 if (delta >= tick_period) { 74 75 delta = ktime_sub(delta, tick_period); 76 last_jiffies_update = ktime_add(last_jiffies_update, 77 tick_period); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 last_jiffies_update = ktime_add_ns(last_jiffies_update, 86 incr * ticks); 87 } 88 do_timer(++ticks); 89 90 /* Keep the tick_next_period variable up to date */ 91 tick_next_period = ktime_add(last_jiffies_update, tick_period); 92 } else { 93 write_sequnlock(&jiffies_lock); 94 return; 95 } 96 write_sequnlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 /* 101 * Initialize and return retrieve the jiffies update. 102 */ 103 static ktime_t tick_init_jiffy_update(void) 104 { 105 ktime_t period; 106 107 write_seqlock(&jiffies_lock); 108 /* Did we start the jiffies update yet ? */ 109 if (last_jiffies_update == 0) 110 last_jiffies_update = tick_next_period; 111 period = last_jiffies_update; 112 write_sequnlock(&jiffies_lock); 113 return period; 114 } 115 116 117 static void tick_sched_do_timer(ktime_t now) 118 { 119 int cpu = smp_processor_id(); 120 121 #ifdef CONFIG_NO_HZ_COMMON 122 /* 123 * Check if the do_timer duty was dropped. We don't care about 124 * concurrency: This happens only when the CPU in charge went 125 * into a long sleep. If two CPUs happen to assign themselves to 126 * this duty, then the jiffies update is still serialized by 127 * jiffies_lock. 128 */ 129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 130 && !tick_nohz_full_cpu(cpu)) 131 tick_do_timer_cpu = cpu; 132 #endif 133 134 /* Check, if the jiffies need an update */ 135 if (tick_do_timer_cpu == cpu) 136 tick_do_update_jiffies64(now); 137 } 138 139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 140 { 141 #ifdef CONFIG_NO_HZ_COMMON 142 /* 143 * When we are idle and the tick is stopped, we have to touch 144 * the watchdog as we might not schedule for a really long 145 * time. This happens on complete idle SMP systems while 146 * waiting on the login prompt. We also increment the "start of 147 * idle" jiffy stamp so the idle accounting adjustment we do 148 * when we go busy again does not account too much ticks. 149 */ 150 if (ts->tick_stopped) { 151 touch_softlockup_watchdog_sched(); 152 if (is_idle_task(current)) 153 ts->idle_jiffies++; 154 /* 155 * In case the current tick fired too early past its expected 156 * expiration, make sure we don't bypass the next clock reprogramming 157 * to the same deadline. 158 */ 159 ts->next_tick = 0; 160 } 161 #endif 162 update_process_times(user_mode(regs)); 163 profile_tick(CPU_PROFILING); 164 } 165 #endif 166 167 #ifdef CONFIG_NO_HZ_FULL 168 cpumask_var_t tick_nohz_full_mask; 169 bool tick_nohz_full_running; 170 static atomic_t tick_dep_mask; 171 172 static bool check_tick_dependency(atomic_t *dep) 173 { 174 int val = atomic_read(dep); 175 176 if (val & TICK_DEP_MASK_POSIX_TIMER) { 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_PERF_EVENTS) { 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_SCHED) { 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 193 return true; 194 } 195 196 return false; 197 } 198 199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 200 { 201 lockdep_assert_irqs_disabled(); 202 203 if (unlikely(!cpu_online(cpu))) 204 return false; 205 206 if (check_tick_dependency(&tick_dep_mask)) 207 return false; 208 209 if (check_tick_dependency(&ts->tick_dep_mask)) 210 return false; 211 212 if (check_tick_dependency(¤t->tick_dep_mask)) 213 return false; 214 215 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 216 return false; 217 218 return true; 219 } 220 221 static void nohz_full_kick_func(struct irq_work *work) 222 { 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 224 } 225 226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 227 .func = nohz_full_kick_func, 228 }; 229 230 /* 231 * Kick this CPU if it's full dynticks in order to force it to 232 * re-evaluate its dependency on the tick and restart it if necessary. 233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 234 * is NMI safe. 235 */ 236 static void tick_nohz_full_kick(void) 237 { 238 if (!tick_nohz_full_cpu(smp_processor_id())) 239 return; 240 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 242 } 243 244 /* 245 * Kick the CPU if it's full dynticks in order to force it to 246 * re-evaluate its dependency on the tick and restart it if necessary. 247 */ 248 void tick_nohz_full_kick_cpu(int cpu) 249 { 250 if (!tick_nohz_full_cpu(cpu)) 251 return; 252 253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 254 } 255 256 /* 257 * Kick all full dynticks CPUs in order to force these to re-evaluate 258 * their dependency on the tick and restart it if necessary. 259 */ 260 static void tick_nohz_full_kick_all(void) 261 { 262 int cpu; 263 264 if (!tick_nohz_full_running) 265 return; 266 267 preempt_disable(); 268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 269 tick_nohz_full_kick_cpu(cpu); 270 preempt_enable(); 271 } 272 273 static void tick_nohz_dep_set_all(atomic_t *dep, 274 enum tick_dep_bits bit) 275 { 276 int prev; 277 278 prev = atomic_fetch_or(BIT(bit), dep); 279 if (!prev) 280 tick_nohz_full_kick_all(); 281 } 282 283 /* 284 * Set a global tick dependency. Used by perf events that rely on freq and 285 * by unstable clock. 286 */ 287 void tick_nohz_dep_set(enum tick_dep_bits bit) 288 { 289 tick_nohz_dep_set_all(&tick_dep_mask, bit); 290 } 291 292 void tick_nohz_dep_clear(enum tick_dep_bits bit) 293 { 294 atomic_andnot(BIT(bit), &tick_dep_mask); 295 } 296 297 /* 298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 299 * manage events throttling. 300 */ 301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 302 { 303 int prev; 304 struct tick_sched *ts; 305 306 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 307 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 309 if (!prev) { 310 preempt_disable(); 311 /* Perf needs local kick that is NMI safe */ 312 if (cpu == smp_processor_id()) { 313 tick_nohz_full_kick(); 314 } else { 315 /* Remote irq work not NMI-safe */ 316 if (!WARN_ON_ONCE(in_nmi())) 317 tick_nohz_full_kick_cpu(cpu); 318 } 319 preempt_enable(); 320 } 321 } 322 323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 324 { 325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 326 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 328 } 329 330 /* 331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 332 * per task timers. 333 */ 334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 335 { 336 /* 337 * We could optimize this with just kicking the target running the task 338 * if that noise matters for nohz full users. 339 */ 340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 341 } 342 343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 344 { 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 346 } 347 348 /* 349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 350 * per process timers. 351 */ 352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 353 { 354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 355 } 356 357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 360 } 361 362 /* 363 * Re-evaluate the need for the tick as we switch the current task. 364 * It might need the tick due to per task/process properties: 365 * perf events, posix CPU timers, ... 366 */ 367 void __tick_nohz_task_switch(void) 368 { 369 unsigned long flags; 370 struct tick_sched *ts; 371 372 local_irq_save(flags); 373 374 if (!tick_nohz_full_cpu(smp_processor_id())) 375 goto out; 376 377 ts = this_cpu_ptr(&tick_cpu_sched); 378 379 if (ts->tick_stopped) { 380 if (atomic_read(¤t->tick_dep_mask) || 381 atomic_read(¤t->signal->tick_dep_mask)) 382 tick_nohz_full_kick(); 383 } 384 out: 385 local_irq_restore(flags); 386 } 387 388 /* Get the boot-time nohz CPU list from the kernel parameters. */ 389 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 390 { 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 392 cpumask_copy(tick_nohz_full_mask, cpumask); 393 tick_nohz_full_running = true; 394 } 395 396 static int tick_nohz_cpu_down(unsigned int cpu) 397 { 398 /* 399 * The boot CPU handles housekeeping duty (unbound timers, 400 * workqueues, timekeeping, ...) on behalf of full dynticks 401 * CPUs. It must remain online when nohz full is enabled. 402 */ 403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 404 return -EBUSY; 405 return 0; 406 } 407 408 static int tick_nohz_init_all(void) 409 { 410 int err = -1; 411 412 #ifdef CONFIG_NO_HZ_FULL_ALL 413 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 414 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 415 return err; 416 } 417 err = 0; 418 cpumask_setall(tick_nohz_full_mask); 419 tick_nohz_full_running = true; 420 #endif 421 return err; 422 } 423 424 void __init tick_nohz_init(void) 425 { 426 int cpu, ret; 427 428 if (!tick_nohz_full_running) { 429 if (tick_nohz_init_all() < 0) 430 return; 431 } 432 433 /* 434 * Full dynticks uses irq work to drive the tick rescheduling on safe 435 * locking contexts. But then we need irq work to raise its own 436 * interrupts to avoid circular dependency on the tick 437 */ 438 if (!arch_irq_work_has_interrupt()) { 439 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 440 cpumask_clear(tick_nohz_full_mask); 441 tick_nohz_full_running = false; 442 return; 443 } 444 445 cpu = smp_processor_id(); 446 447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 448 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 449 cpu); 450 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 451 } 452 453 for_each_cpu(cpu, tick_nohz_full_mask) 454 context_tracking_cpu_set(cpu); 455 456 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 457 "kernel/nohz:predown", NULL, 458 tick_nohz_cpu_down); 459 WARN_ON(ret < 0); 460 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 461 cpumask_pr_args(tick_nohz_full_mask)); 462 } 463 #endif 464 465 /* 466 * NOHZ - aka dynamic tick functionality 467 */ 468 #ifdef CONFIG_NO_HZ_COMMON 469 /* 470 * NO HZ enabled ? 471 */ 472 bool tick_nohz_enabled __read_mostly = true; 473 unsigned long tick_nohz_active __read_mostly; 474 /* 475 * Enable / Disable tickless mode 476 */ 477 static int __init setup_tick_nohz(char *str) 478 { 479 return (kstrtobool(str, &tick_nohz_enabled) == 0); 480 } 481 482 __setup("nohz=", setup_tick_nohz); 483 484 int tick_nohz_tick_stopped(void) 485 { 486 return __this_cpu_read(tick_cpu_sched.tick_stopped); 487 } 488 489 /** 490 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 491 * 492 * Called from interrupt entry when the CPU was idle 493 * 494 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 495 * must be updated. Otherwise an interrupt handler could use a stale jiffy 496 * value. We do this unconditionally on any CPU, as we don't know whether the 497 * CPU, which has the update task assigned is in a long sleep. 498 */ 499 static void tick_nohz_update_jiffies(ktime_t now) 500 { 501 unsigned long flags; 502 503 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 504 505 local_irq_save(flags); 506 tick_do_update_jiffies64(now); 507 local_irq_restore(flags); 508 509 touch_softlockup_watchdog_sched(); 510 } 511 512 /* 513 * Updates the per-CPU time idle statistics counters 514 */ 515 static void 516 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 517 { 518 ktime_t delta; 519 520 if (ts->idle_active) { 521 delta = ktime_sub(now, ts->idle_entrytime); 522 if (nr_iowait_cpu(cpu) > 0) 523 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 524 else 525 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 526 ts->idle_entrytime = now; 527 } 528 529 if (last_update_time) 530 *last_update_time = ktime_to_us(now); 531 532 } 533 534 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 535 { 536 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 537 ts->idle_active = 0; 538 539 sched_clock_idle_wakeup_event(); 540 } 541 542 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 543 { 544 ktime_t now = ktime_get(); 545 546 ts->idle_entrytime = now; 547 ts->idle_active = 1; 548 sched_clock_idle_sleep_event(); 549 return now; 550 } 551 552 /** 553 * get_cpu_idle_time_us - get the total idle time of a CPU 554 * @cpu: CPU number to query 555 * @last_update_time: variable to store update time in. Do not update 556 * counters if NULL. 557 * 558 * Return the cumulative idle time (since boot) for a given 559 * CPU, in microseconds. 560 * 561 * This time is measured via accounting rather than sampling, 562 * and is as accurate as ktime_get() is. 563 * 564 * This function returns -1 if NOHZ is not enabled. 565 */ 566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 567 { 568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 569 ktime_t now, idle; 570 571 if (!tick_nohz_active) 572 return -1; 573 574 now = ktime_get(); 575 if (last_update_time) { 576 update_ts_time_stats(cpu, ts, now, last_update_time); 577 idle = ts->idle_sleeptime; 578 } else { 579 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 580 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 581 582 idle = ktime_add(ts->idle_sleeptime, delta); 583 } else { 584 idle = ts->idle_sleeptime; 585 } 586 } 587 588 return ktime_to_us(idle); 589 590 } 591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 592 593 /** 594 * get_cpu_iowait_time_us - get the total iowait time of a CPU 595 * @cpu: CPU number to query 596 * @last_update_time: variable to store update time in. Do not update 597 * counters if NULL. 598 * 599 * Return the cumulative iowait time (since boot) for a given 600 * CPU, in microseconds. 601 * 602 * This time is measured via accounting rather than sampling, 603 * and is as accurate as ktime_get() is. 604 * 605 * This function returns -1 if NOHZ is not enabled. 606 */ 607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 608 { 609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 610 ktime_t now, iowait; 611 612 if (!tick_nohz_active) 613 return -1; 614 615 now = ktime_get(); 616 if (last_update_time) { 617 update_ts_time_stats(cpu, ts, now, last_update_time); 618 iowait = ts->iowait_sleeptime; 619 } else { 620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 621 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 622 623 iowait = ktime_add(ts->iowait_sleeptime, delta); 624 } else { 625 iowait = ts->iowait_sleeptime; 626 } 627 } 628 629 return ktime_to_us(iowait); 630 } 631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 632 633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 634 { 635 hrtimer_cancel(&ts->sched_timer); 636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 637 638 /* Forward the time to expire in the future */ 639 hrtimer_forward(&ts->sched_timer, now, tick_period); 640 641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 642 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 643 else 644 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 645 646 /* 647 * Reset to make sure next tick stop doesn't get fooled by past 648 * cached clock deadline. 649 */ 650 ts->next_tick = 0; 651 } 652 653 static inline bool local_timer_softirq_pending(void) 654 { 655 return local_softirq_pending() & TIMER_SOFTIRQ; 656 } 657 658 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 659 ktime_t now, int cpu) 660 { 661 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 663 unsigned long seq, basejiff; 664 ktime_t tick; 665 666 /* Read jiffies and the time when jiffies were updated last */ 667 do { 668 seq = read_seqbegin(&jiffies_lock); 669 basemono = last_jiffies_update; 670 basejiff = jiffies; 671 } while (read_seqretry(&jiffies_lock, seq)); 672 ts->last_jiffies = basejiff; 673 674 /* 675 * Keep the periodic tick, when RCU, architecture or irq_work 676 * requests it. 677 * Aside of that check whether the local timer softirq is 678 * pending. If so its a bad idea to call get_next_timer_interrupt() 679 * because there is an already expired timer, so it will request 680 * immeditate expiry, which rearms the hardware timer with a 681 * minimal delta which brings us back to this place 682 * immediately. Lather, rinse and repeat... 683 */ 684 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 685 irq_work_needs_cpu() || local_timer_softirq_pending()) { 686 next_tick = basemono + TICK_NSEC; 687 } else { 688 /* 689 * Get the next pending timer. If high resolution 690 * timers are enabled this only takes the timer wheel 691 * timers into account. If high resolution timers are 692 * disabled this also looks at the next expiring 693 * hrtimer. 694 */ 695 next_tmr = get_next_timer_interrupt(basejiff, basemono); 696 ts->next_timer = next_tmr; 697 /* Take the next rcu event into account */ 698 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 699 } 700 701 /* 702 * If the tick is due in the next period, keep it ticking or 703 * force prod the timer. 704 */ 705 delta = next_tick - basemono; 706 if (delta <= (u64)TICK_NSEC) { 707 /* 708 * Tell the timer code that the base is not idle, i.e. undo 709 * the effect of get_next_timer_interrupt(): 710 */ 711 timer_clear_idle(); 712 /* 713 * We've not stopped the tick yet, and there's a timer in the 714 * next period, so no point in stopping it either, bail. 715 */ 716 if (!ts->tick_stopped) { 717 tick = 0; 718 goto out; 719 } 720 } 721 722 /* 723 * If this CPU is the one which updates jiffies, then give up 724 * the assignment and let it be taken by the CPU which runs 725 * the tick timer next, which might be this CPU as well. If we 726 * don't drop this here the jiffies might be stale and 727 * do_timer() never invoked. Keep track of the fact that it 728 * was the one which had the do_timer() duty last. If this CPU 729 * is the one which had the do_timer() duty last, we limit the 730 * sleep time to the timekeeping max_deferment value. 731 * Otherwise we can sleep as long as we want. 732 */ 733 delta = timekeeping_max_deferment(); 734 if (cpu == tick_do_timer_cpu) { 735 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 736 ts->do_timer_last = 1; 737 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 738 delta = KTIME_MAX; 739 ts->do_timer_last = 0; 740 } else if (!ts->do_timer_last) { 741 delta = KTIME_MAX; 742 } 743 744 #ifdef CONFIG_NO_HZ_FULL 745 /* Limit the tick delta to the maximum scheduler deferment */ 746 if (!ts->inidle) 747 delta = min(delta, scheduler_tick_max_deferment()); 748 #endif 749 750 /* Calculate the next expiry time */ 751 if (delta < (KTIME_MAX - basemono)) 752 expires = basemono + delta; 753 else 754 expires = KTIME_MAX; 755 756 expires = min_t(u64, expires, next_tick); 757 tick = expires; 758 759 /* Skip reprogram of event if its not changed */ 760 if (ts->tick_stopped && (expires == ts->next_tick)) { 761 /* Sanity check: make sure clockevent is actually programmed */ 762 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 763 goto out; 764 765 WARN_ON_ONCE(1); 766 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 767 basemono, ts->next_tick, dev->next_event, 768 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 769 } 770 771 /* 772 * nohz_stop_sched_tick can be called several times before 773 * the nohz_restart_sched_tick is called. This happens when 774 * interrupts arrive which do not cause a reschedule. In the 775 * first call we save the current tick time, so we can restart 776 * the scheduler tick in nohz_restart_sched_tick. 777 */ 778 if (!ts->tick_stopped) { 779 calc_load_nohz_start(); 780 cpu_load_update_nohz_start(); 781 quiet_vmstat(); 782 783 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 784 ts->tick_stopped = 1; 785 trace_tick_stop(1, TICK_DEP_MASK_NONE); 786 } 787 788 ts->next_tick = tick; 789 790 /* 791 * If the expiration time == KTIME_MAX, then we simply stop 792 * the tick timer. 793 */ 794 if (unlikely(expires == KTIME_MAX)) { 795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 796 hrtimer_cancel(&ts->sched_timer); 797 goto out; 798 } 799 800 hrtimer_set_expires(&ts->sched_timer, tick); 801 802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 803 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 804 else 805 tick_program_event(tick, 1); 806 out: 807 /* 808 * Update the estimated sleep length until the next timer 809 * (not only the tick). 810 */ 811 ts->sleep_length = ktime_sub(dev->next_event, now); 812 return tick; 813 } 814 815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 816 { 817 /* Update jiffies first */ 818 tick_do_update_jiffies64(now); 819 cpu_load_update_nohz_stop(); 820 821 /* 822 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 823 * the clock forward checks in the enqueue path: 824 */ 825 timer_clear_idle(); 826 827 calc_load_nohz_stop(); 828 touch_softlockup_watchdog_sched(); 829 /* 830 * Cancel the scheduled timer and restore the tick 831 */ 832 ts->tick_stopped = 0; 833 ts->idle_exittime = now; 834 835 tick_nohz_restart(ts, now); 836 } 837 838 static void tick_nohz_full_update_tick(struct tick_sched *ts) 839 { 840 #ifdef CONFIG_NO_HZ_FULL 841 int cpu = smp_processor_id(); 842 843 if (!tick_nohz_full_cpu(cpu)) 844 return; 845 846 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 847 return; 848 849 if (can_stop_full_tick(cpu, ts)) 850 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 851 else if (ts->tick_stopped) 852 tick_nohz_restart_sched_tick(ts, ktime_get()); 853 #endif 854 } 855 856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 857 { 858 /* 859 * If this CPU is offline and it is the one which updates 860 * jiffies, then give up the assignment and let it be taken by 861 * the CPU which runs the tick timer next. If we don't drop 862 * this here the jiffies might be stale and do_timer() never 863 * invoked. 864 */ 865 if (unlikely(!cpu_online(cpu))) { 866 if (cpu == tick_do_timer_cpu) 867 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 868 /* 869 * Make sure the CPU doesn't get fooled by obsolete tick 870 * deadline if it comes back online later. 871 */ 872 ts->next_tick = 0; 873 return false; 874 } 875 876 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 877 ts->sleep_length = NSEC_PER_SEC / HZ; 878 return false; 879 } 880 881 if (need_resched()) 882 return false; 883 884 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 885 static int ratelimit; 886 887 if (ratelimit < 10 && 888 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 889 pr_warn("NOHZ: local_softirq_pending %02x\n", 890 (unsigned int) local_softirq_pending()); 891 ratelimit++; 892 } 893 return false; 894 } 895 896 if (tick_nohz_full_enabled()) { 897 /* 898 * Keep the tick alive to guarantee timekeeping progression 899 * if there are full dynticks CPUs around 900 */ 901 if (tick_do_timer_cpu == cpu) 902 return false; 903 /* 904 * Boot safety: make sure the timekeeping duty has been 905 * assigned before entering dyntick-idle mode, 906 */ 907 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 908 return false; 909 } 910 911 return true; 912 } 913 914 static void __tick_nohz_idle_enter(struct tick_sched *ts) 915 { 916 ktime_t now, expires; 917 int cpu = smp_processor_id(); 918 919 now = tick_nohz_start_idle(ts); 920 921 if (can_stop_idle_tick(cpu, ts)) { 922 int was_stopped = ts->tick_stopped; 923 924 ts->idle_calls++; 925 926 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 927 if (expires > 0LL) { 928 ts->idle_sleeps++; 929 ts->idle_expires = expires; 930 } 931 932 if (!was_stopped && ts->tick_stopped) { 933 ts->idle_jiffies = ts->last_jiffies; 934 nohz_balance_enter_idle(cpu); 935 } 936 } 937 } 938 939 /** 940 * tick_nohz_idle_enter - stop the idle tick from the idle task 941 * 942 * When the next event is more than a tick into the future, stop the idle tick 943 * Called when we start the idle loop. 944 * 945 * The arch is responsible of calling: 946 * 947 * - rcu_idle_enter() after its last use of RCU before the CPU is put 948 * to sleep. 949 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 950 */ 951 void tick_nohz_idle_enter(void) 952 { 953 struct tick_sched *ts; 954 955 lockdep_assert_irqs_enabled(); 956 /* 957 * Update the idle state in the scheduler domain hierarchy 958 * when tick_nohz_stop_sched_tick() is called from the idle loop. 959 * State will be updated to busy during the first busy tick after 960 * exiting idle. 961 */ 962 set_cpu_sd_state_idle(); 963 964 local_irq_disable(); 965 966 ts = this_cpu_ptr(&tick_cpu_sched); 967 ts->inidle = 1; 968 __tick_nohz_idle_enter(ts); 969 970 local_irq_enable(); 971 } 972 973 /** 974 * tick_nohz_irq_exit - update next tick event from interrupt exit 975 * 976 * When an interrupt fires while we are idle and it doesn't cause 977 * a reschedule, it may still add, modify or delete a timer, enqueue 978 * an RCU callback, etc... 979 * So we need to re-calculate and reprogram the next tick event. 980 */ 981 void tick_nohz_irq_exit(void) 982 { 983 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 984 985 if (ts->inidle) 986 __tick_nohz_idle_enter(ts); 987 else 988 tick_nohz_full_update_tick(ts); 989 } 990 991 /** 992 * tick_nohz_get_sleep_length - return the length of the current sleep 993 * 994 * Called from power state control code with interrupts disabled 995 */ 996 ktime_t tick_nohz_get_sleep_length(void) 997 { 998 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 999 1000 return ts->sleep_length; 1001 } 1002 1003 /** 1004 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1005 * for a particular CPU. 1006 * 1007 * Called from the schedutil frequency scaling governor in scheduler context. 1008 */ 1009 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1010 { 1011 struct tick_sched *ts = tick_get_tick_sched(cpu); 1012 1013 return ts->idle_calls; 1014 } 1015 1016 /** 1017 * tick_nohz_get_idle_calls - return the current idle calls counter value 1018 * 1019 * Called from the schedutil frequency scaling governor in scheduler context. 1020 */ 1021 unsigned long tick_nohz_get_idle_calls(void) 1022 { 1023 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1024 1025 return ts->idle_calls; 1026 } 1027 1028 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1029 { 1030 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1031 unsigned long ticks; 1032 1033 if (vtime_accounting_cpu_enabled()) 1034 return; 1035 /* 1036 * We stopped the tick in idle. Update process times would miss the 1037 * time we slept as update_process_times does only a 1 tick 1038 * accounting. Enforce that this is accounted to idle ! 1039 */ 1040 ticks = jiffies - ts->idle_jiffies; 1041 /* 1042 * We might be one off. Do not randomly account a huge number of ticks! 1043 */ 1044 if (ticks && ticks < LONG_MAX) 1045 account_idle_ticks(ticks); 1046 #endif 1047 } 1048 1049 /** 1050 * tick_nohz_idle_exit - restart the idle tick from the idle task 1051 * 1052 * Restart the idle tick when the CPU is woken up from idle 1053 * This also exit the RCU extended quiescent state. The CPU 1054 * can use RCU again after this function is called. 1055 */ 1056 void tick_nohz_idle_exit(void) 1057 { 1058 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1059 ktime_t now; 1060 1061 local_irq_disable(); 1062 1063 WARN_ON_ONCE(!ts->inidle); 1064 1065 ts->inidle = 0; 1066 1067 if (ts->idle_active || ts->tick_stopped) 1068 now = ktime_get(); 1069 1070 if (ts->idle_active) 1071 tick_nohz_stop_idle(ts, now); 1072 1073 if (ts->tick_stopped) { 1074 tick_nohz_restart_sched_tick(ts, now); 1075 tick_nohz_account_idle_ticks(ts); 1076 } 1077 1078 local_irq_enable(); 1079 } 1080 1081 /* 1082 * The nohz low res interrupt handler 1083 */ 1084 static void tick_nohz_handler(struct clock_event_device *dev) 1085 { 1086 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1087 struct pt_regs *regs = get_irq_regs(); 1088 ktime_t now = ktime_get(); 1089 1090 dev->next_event = KTIME_MAX; 1091 1092 tick_sched_do_timer(now); 1093 tick_sched_handle(ts, regs); 1094 1095 /* No need to reprogram if we are running tickless */ 1096 if (unlikely(ts->tick_stopped)) 1097 return; 1098 1099 hrtimer_forward(&ts->sched_timer, now, tick_period); 1100 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1101 } 1102 1103 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1104 { 1105 if (!tick_nohz_enabled) 1106 return; 1107 ts->nohz_mode = mode; 1108 /* One update is enough */ 1109 if (!test_and_set_bit(0, &tick_nohz_active)) 1110 timers_update_nohz(); 1111 } 1112 1113 /** 1114 * tick_nohz_switch_to_nohz - switch to nohz mode 1115 */ 1116 static void tick_nohz_switch_to_nohz(void) 1117 { 1118 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1119 ktime_t next; 1120 1121 if (!tick_nohz_enabled) 1122 return; 1123 1124 if (tick_switch_to_oneshot(tick_nohz_handler)) 1125 return; 1126 1127 /* 1128 * Recycle the hrtimer in ts, so we can share the 1129 * hrtimer_forward with the highres code. 1130 */ 1131 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1132 /* Get the next period */ 1133 next = tick_init_jiffy_update(); 1134 1135 hrtimer_set_expires(&ts->sched_timer, next); 1136 hrtimer_forward_now(&ts->sched_timer, tick_period); 1137 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1138 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1139 } 1140 1141 static inline void tick_nohz_irq_enter(void) 1142 { 1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1144 ktime_t now; 1145 1146 if (!ts->idle_active && !ts->tick_stopped) 1147 return; 1148 now = ktime_get(); 1149 if (ts->idle_active) 1150 tick_nohz_stop_idle(ts, now); 1151 if (ts->tick_stopped) 1152 tick_nohz_update_jiffies(now); 1153 } 1154 1155 #else 1156 1157 static inline void tick_nohz_switch_to_nohz(void) { } 1158 static inline void tick_nohz_irq_enter(void) { } 1159 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1160 1161 #endif /* CONFIG_NO_HZ_COMMON */ 1162 1163 /* 1164 * Called from irq_enter to notify about the possible interruption of idle() 1165 */ 1166 void tick_irq_enter(void) 1167 { 1168 tick_check_oneshot_broadcast_this_cpu(); 1169 tick_nohz_irq_enter(); 1170 } 1171 1172 /* 1173 * High resolution timer specific code 1174 */ 1175 #ifdef CONFIG_HIGH_RES_TIMERS 1176 /* 1177 * We rearm the timer until we get disabled by the idle code. 1178 * Called with interrupts disabled. 1179 */ 1180 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1181 { 1182 struct tick_sched *ts = 1183 container_of(timer, struct tick_sched, sched_timer); 1184 struct pt_regs *regs = get_irq_regs(); 1185 ktime_t now = ktime_get(); 1186 1187 tick_sched_do_timer(now); 1188 1189 /* 1190 * Do not call, when we are not in irq context and have 1191 * no valid regs pointer 1192 */ 1193 if (regs) 1194 tick_sched_handle(ts, regs); 1195 else 1196 ts->next_tick = 0; 1197 1198 /* No need to reprogram if we are in idle or full dynticks mode */ 1199 if (unlikely(ts->tick_stopped)) 1200 return HRTIMER_NORESTART; 1201 1202 hrtimer_forward(timer, now, tick_period); 1203 1204 return HRTIMER_RESTART; 1205 } 1206 1207 static int sched_skew_tick; 1208 1209 static int __init skew_tick(char *str) 1210 { 1211 get_option(&str, &sched_skew_tick); 1212 1213 return 0; 1214 } 1215 early_param("skew_tick", skew_tick); 1216 1217 /** 1218 * tick_setup_sched_timer - setup the tick emulation timer 1219 */ 1220 void tick_setup_sched_timer(void) 1221 { 1222 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1223 ktime_t now = ktime_get(); 1224 1225 /* 1226 * Emulate tick processing via per-CPU hrtimers: 1227 */ 1228 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1229 ts->sched_timer.function = tick_sched_timer; 1230 1231 /* Get the next period (per-CPU) */ 1232 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1233 1234 /* Offset the tick to avert jiffies_lock contention. */ 1235 if (sched_skew_tick) { 1236 u64 offset = ktime_to_ns(tick_period) >> 1; 1237 do_div(offset, num_possible_cpus()); 1238 offset *= smp_processor_id(); 1239 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1240 } 1241 1242 hrtimer_forward(&ts->sched_timer, now, tick_period); 1243 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1244 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1245 } 1246 #endif /* HIGH_RES_TIMERS */ 1247 1248 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1249 void tick_cancel_sched_timer(int cpu) 1250 { 1251 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1252 1253 # ifdef CONFIG_HIGH_RES_TIMERS 1254 if (ts->sched_timer.base) 1255 hrtimer_cancel(&ts->sched_timer); 1256 # endif 1257 1258 memset(ts, 0, sizeof(*ts)); 1259 } 1260 #endif 1261 1262 /** 1263 * Async notification about clocksource changes 1264 */ 1265 void tick_clock_notify(void) 1266 { 1267 int cpu; 1268 1269 for_each_possible_cpu(cpu) 1270 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1271 } 1272 1273 /* 1274 * Async notification about clock event changes 1275 */ 1276 void tick_oneshot_notify(void) 1277 { 1278 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1279 1280 set_bit(0, &ts->check_clocks); 1281 } 1282 1283 /** 1284 * Check, if a change happened, which makes oneshot possible. 1285 * 1286 * Called cyclic from the hrtimer softirq (driven by the timer 1287 * softirq) allow_nohz signals, that we can switch into low-res nohz 1288 * mode, because high resolution timers are disabled (either compile 1289 * or runtime). Called with interrupts disabled. 1290 */ 1291 int tick_check_oneshot_change(int allow_nohz) 1292 { 1293 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1294 1295 if (!test_and_clear_bit(0, &ts->check_clocks)) 1296 return 0; 1297 1298 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1299 return 0; 1300 1301 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1302 return 0; 1303 1304 if (!allow_nohz) 1305 return 1; 1306 1307 tick_nohz_switch_to_nohz(); 1308 return 0; 1309 } 1310