xref: /openbmc/linux/kernel/time/tick-sched.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 0;
60 	ktime_t delta;
61 
62 	/*
63 	 * Do a quick check without holding jiffies_lock:
64 	 */
65 	delta = ktime_sub(now, last_jiffies_update);
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		last_jiffies_update = ktime_add(last_jiffies_update,
77 						tick_period);
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 							   incr * ticks);
87 		}
88 		do_timer(++ticks);
89 
90 		/* Keep the tick_next_period variable up to date */
91 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 	} else {
93 		write_sequnlock(&jiffies_lock);
94 		return;
95 	}
96 	write_sequnlock(&jiffies_lock);
97 	update_wall_time();
98 }
99 
100 /*
101  * Initialize and return retrieve the jiffies update.
102  */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 	ktime_t period;
106 
107 	write_seqlock(&jiffies_lock);
108 	/* Did we start the jiffies update yet ? */
109 	if (last_jiffies_update == 0)
110 		last_jiffies_update = tick_next_period;
111 	period = last_jiffies_update;
112 	write_sequnlock(&jiffies_lock);
113 	return period;
114 }
115 
116 
117 static void tick_sched_do_timer(ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 */
129 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130 	    && !tick_nohz_full_cpu(cpu))
131 		tick_do_timer_cpu = cpu;
132 #endif
133 
134 	/* Check, if the jiffies need an update */
135 	if (tick_do_timer_cpu == cpu)
136 		tick_do_update_jiffies64(now);
137 }
138 
139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 {
141 #ifdef CONFIG_NO_HZ_COMMON
142 	/*
143 	 * When we are idle and the tick is stopped, we have to touch
144 	 * the watchdog as we might not schedule for a really long
145 	 * time. This happens on complete idle SMP systems while
146 	 * waiting on the login prompt. We also increment the "start of
147 	 * idle" jiffy stamp so the idle accounting adjustment we do
148 	 * when we go busy again does not account too much ticks.
149 	 */
150 	if (ts->tick_stopped) {
151 		touch_softlockup_watchdog_sched();
152 		if (is_idle_task(current))
153 			ts->idle_jiffies++;
154 		/*
155 		 * In case the current tick fired too early past its expected
156 		 * expiration, make sure we don't bypass the next clock reprogramming
157 		 * to the same deadline.
158 		 */
159 		ts->next_tick = 0;
160 	}
161 #endif
162 	update_process_times(user_mode(regs));
163 	profile_tick(CPU_PROFILING);
164 }
165 #endif
166 
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	lockdep_assert_irqs_disabled();
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	cpumask_copy(tick_nohz_full_mask, cpumask);
393 	tick_nohz_full_running = true;
394 }
395 
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 	/*
399 	 * The boot CPU handles housekeeping duty (unbound timers,
400 	 * workqueues, timekeeping, ...) on behalf of full dynticks
401 	 * CPUs. It must remain online when nohz full is enabled.
402 	 */
403 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 		return -EBUSY;
405 	return 0;
406 }
407 
408 static int tick_nohz_init_all(void)
409 {
410 	int err = -1;
411 
412 #ifdef CONFIG_NO_HZ_FULL_ALL
413 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
414 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 		return err;
416 	}
417 	err = 0;
418 	cpumask_setall(tick_nohz_full_mask);
419 	tick_nohz_full_running = true;
420 #endif
421 	return err;
422 }
423 
424 void __init tick_nohz_init(void)
425 {
426 	int cpu, ret;
427 
428 	if (!tick_nohz_full_running) {
429 		if (tick_nohz_init_all() < 0)
430 			return;
431 	}
432 
433 	/*
434 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
435 	 * locking contexts. But then we need irq work to raise its own
436 	 * interrupts to avoid circular dependency on the tick
437 	 */
438 	if (!arch_irq_work_has_interrupt()) {
439 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
440 		cpumask_clear(tick_nohz_full_mask);
441 		tick_nohz_full_running = false;
442 		return;
443 	}
444 
445 	cpu = smp_processor_id();
446 
447 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
449 			cpu);
450 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
451 	}
452 
453 	for_each_cpu(cpu, tick_nohz_full_mask)
454 		context_tracking_cpu_set(cpu);
455 
456 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
457 					"kernel/nohz:predown", NULL,
458 					tick_nohz_cpu_down);
459 	WARN_ON(ret < 0);
460 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
461 		cpumask_pr_args(tick_nohz_full_mask));
462 }
463 #endif
464 
465 /*
466  * NOHZ - aka dynamic tick functionality
467  */
468 #ifdef CONFIG_NO_HZ_COMMON
469 /*
470  * NO HZ enabled ?
471  */
472 bool tick_nohz_enabled __read_mostly  = true;
473 unsigned long tick_nohz_active  __read_mostly;
474 /*
475  * Enable / Disable tickless mode
476  */
477 static int __init setup_tick_nohz(char *str)
478 {
479 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
480 }
481 
482 __setup("nohz=", setup_tick_nohz);
483 
484 int tick_nohz_tick_stopped(void)
485 {
486 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
487 }
488 
489 /**
490  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
491  *
492  * Called from interrupt entry when the CPU was idle
493  *
494  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
495  * must be updated. Otherwise an interrupt handler could use a stale jiffy
496  * value. We do this unconditionally on any CPU, as we don't know whether the
497  * CPU, which has the update task assigned is in a long sleep.
498  */
499 static void tick_nohz_update_jiffies(ktime_t now)
500 {
501 	unsigned long flags;
502 
503 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
504 
505 	local_irq_save(flags);
506 	tick_do_update_jiffies64(now);
507 	local_irq_restore(flags);
508 
509 	touch_softlockup_watchdog_sched();
510 }
511 
512 /*
513  * Updates the per-CPU time idle statistics counters
514  */
515 static void
516 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
517 {
518 	ktime_t delta;
519 
520 	if (ts->idle_active) {
521 		delta = ktime_sub(now, ts->idle_entrytime);
522 		if (nr_iowait_cpu(cpu) > 0)
523 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
524 		else
525 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
526 		ts->idle_entrytime = now;
527 	}
528 
529 	if (last_update_time)
530 		*last_update_time = ktime_to_us(now);
531 
532 }
533 
534 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
535 {
536 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
537 	ts->idle_active = 0;
538 
539 	sched_clock_idle_wakeup_event();
540 }
541 
542 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
543 {
544 	ktime_t now = ktime_get();
545 
546 	ts->idle_entrytime = now;
547 	ts->idle_active = 1;
548 	sched_clock_idle_sleep_event();
549 	return now;
550 }
551 
552 /**
553  * get_cpu_idle_time_us - get the total idle time of a CPU
554  * @cpu: CPU number to query
555  * @last_update_time: variable to store update time in. Do not update
556  * counters if NULL.
557  *
558  * Return the cumulative idle time (since boot) for a given
559  * CPU, in microseconds.
560  *
561  * This time is measured via accounting rather than sampling,
562  * and is as accurate as ktime_get() is.
563  *
564  * This function returns -1 if NOHZ is not enabled.
565  */
566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567 {
568 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 	ktime_t now, idle;
570 
571 	if (!tick_nohz_active)
572 		return -1;
573 
574 	now = ktime_get();
575 	if (last_update_time) {
576 		update_ts_time_stats(cpu, ts, now, last_update_time);
577 		idle = ts->idle_sleeptime;
578 	} else {
579 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581 
582 			idle = ktime_add(ts->idle_sleeptime, delta);
583 		} else {
584 			idle = ts->idle_sleeptime;
585 		}
586 	}
587 
588 	return ktime_to_us(idle);
589 
590 }
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592 
593 /**
594  * get_cpu_iowait_time_us - get the total iowait time of a CPU
595  * @cpu: CPU number to query
596  * @last_update_time: variable to store update time in. Do not update
597  * counters if NULL.
598  *
599  * Return the cumulative iowait time (since boot) for a given
600  * CPU, in microseconds.
601  *
602  * This time is measured via accounting rather than sampling,
603  * and is as accurate as ktime_get() is.
604  *
605  * This function returns -1 if NOHZ is not enabled.
606  */
607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608 {
609 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 	ktime_t now, iowait;
611 
612 	if (!tick_nohz_active)
613 		return -1;
614 
615 	now = ktime_get();
616 	if (last_update_time) {
617 		update_ts_time_stats(cpu, ts, now, last_update_time);
618 		iowait = ts->iowait_sleeptime;
619 	} else {
620 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622 
623 			iowait = ktime_add(ts->iowait_sleeptime, delta);
624 		} else {
625 			iowait = ts->iowait_sleeptime;
626 		}
627 	}
628 
629 	return ktime_to_us(iowait);
630 }
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632 
633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 {
635 	hrtimer_cancel(&ts->sched_timer);
636 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637 
638 	/* Forward the time to expire in the future */
639 	hrtimer_forward(&ts->sched_timer, now, tick_period);
640 
641 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
642 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
643 	else
644 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
645 
646 	/*
647 	 * Reset to make sure next tick stop doesn't get fooled by past
648 	 * cached clock deadline.
649 	 */
650 	ts->next_tick = 0;
651 }
652 
653 static inline bool local_timer_softirq_pending(void)
654 {
655 	return local_softirq_pending() & TIMER_SOFTIRQ;
656 }
657 
658 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
659 					 ktime_t now, int cpu)
660 {
661 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
662 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 	unsigned long seq, basejiff;
664 	ktime_t	tick;
665 
666 	/* Read jiffies and the time when jiffies were updated last */
667 	do {
668 		seq = read_seqbegin(&jiffies_lock);
669 		basemono = last_jiffies_update;
670 		basejiff = jiffies;
671 	} while (read_seqretry(&jiffies_lock, seq));
672 	ts->last_jiffies = basejiff;
673 
674 	/*
675 	 * Keep the periodic tick, when RCU, architecture or irq_work
676 	 * requests it.
677 	 * Aside of that check whether the local timer softirq is
678 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
679 	 * because there is an already expired timer, so it will request
680 	 * immeditate expiry, which rearms the hardware timer with a
681 	 * minimal delta which brings us back to this place
682 	 * immediately. Lather, rinse and repeat...
683 	 */
684 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
685 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
686 		next_tick = basemono + TICK_NSEC;
687 	} else {
688 		/*
689 		 * Get the next pending timer. If high resolution
690 		 * timers are enabled this only takes the timer wheel
691 		 * timers into account. If high resolution timers are
692 		 * disabled this also looks at the next expiring
693 		 * hrtimer.
694 		 */
695 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
696 		ts->next_timer = next_tmr;
697 		/* Take the next rcu event into account */
698 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
699 	}
700 
701 	/*
702 	 * If the tick is due in the next period, keep it ticking or
703 	 * force prod the timer.
704 	 */
705 	delta = next_tick - basemono;
706 	if (delta <= (u64)TICK_NSEC) {
707 		/*
708 		 * Tell the timer code that the base is not idle, i.e. undo
709 		 * the effect of get_next_timer_interrupt():
710 		 */
711 		timer_clear_idle();
712 		/*
713 		 * We've not stopped the tick yet, and there's a timer in the
714 		 * next period, so no point in stopping it either, bail.
715 		 */
716 		if (!ts->tick_stopped) {
717 			tick = 0;
718 			goto out;
719 		}
720 	}
721 
722 	/*
723 	 * If this CPU is the one which updates jiffies, then give up
724 	 * the assignment and let it be taken by the CPU which runs
725 	 * the tick timer next, which might be this CPU as well. If we
726 	 * don't drop this here the jiffies might be stale and
727 	 * do_timer() never invoked. Keep track of the fact that it
728 	 * was the one which had the do_timer() duty last. If this CPU
729 	 * is the one which had the do_timer() duty last, we limit the
730 	 * sleep time to the timekeeping max_deferment value.
731 	 * Otherwise we can sleep as long as we want.
732 	 */
733 	delta = timekeeping_max_deferment();
734 	if (cpu == tick_do_timer_cpu) {
735 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
736 		ts->do_timer_last = 1;
737 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
738 		delta = KTIME_MAX;
739 		ts->do_timer_last = 0;
740 	} else if (!ts->do_timer_last) {
741 		delta = KTIME_MAX;
742 	}
743 
744 #ifdef CONFIG_NO_HZ_FULL
745 	/* Limit the tick delta to the maximum scheduler deferment */
746 	if (!ts->inidle)
747 		delta = min(delta, scheduler_tick_max_deferment());
748 #endif
749 
750 	/* Calculate the next expiry time */
751 	if (delta < (KTIME_MAX - basemono))
752 		expires = basemono + delta;
753 	else
754 		expires = KTIME_MAX;
755 
756 	expires = min_t(u64, expires, next_tick);
757 	tick = expires;
758 
759 	/* Skip reprogram of event if its not changed */
760 	if (ts->tick_stopped && (expires == ts->next_tick)) {
761 		/* Sanity check: make sure clockevent is actually programmed */
762 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
763 			goto out;
764 
765 		WARN_ON_ONCE(1);
766 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
767 			    basemono, ts->next_tick, dev->next_event,
768 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
769 	}
770 
771 	/*
772 	 * nohz_stop_sched_tick can be called several times before
773 	 * the nohz_restart_sched_tick is called. This happens when
774 	 * interrupts arrive which do not cause a reschedule. In the
775 	 * first call we save the current tick time, so we can restart
776 	 * the scheduler tick in nohz_restart_sched_tick.
777 	 */
778 	if (!ts->tick_stopped) {
779 		calc_load_nohz_start();
780 		cpu_load_update_nohz_start();
781 		quiet_vmstat();
782 
783 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
784 		ts->tick_stopped = 1;
785 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
786 	}
787 
788 	ts->next_tick = tick;
789 
790 	/*
791 	 * If the expiration time == KTIME_MAX, then we simply stop
792 	 * the tick timer.
793 	 */
794 	if (unlikely(expires == KTIME_MAX)) {
795 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
796 			hrtimer_cancel(&ts->sched_timer);
797 		goto out;
798 	}
799 
800 	hrtimer_set_expires(&ts->sched_timer, tick);
801 
802 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
804 	else
805 		tick_program_event(tick, 1);
806 out:
807 	/*
808 	 * Update the estimated sleep length until the next timer
809 	 * (not only the tick).
810 	 */
811 	ts->sleep_length = ktime_sub(dev->next_event, now);
812 	return tick;
813 }
814 
815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
816 {
817 	/* Update jiffies first */
818 	tick_do_update_jiffies64(now);
819 	cpu_load_update_nohz_stop();
820 
821 	/*
822 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
823 	 * the clock forward checks in the enqueue path:
824 	 */
825 	timer_clear_idle();
826 
827 	calc_load_nohz_stop();
828 	touch_softlockup_watchdog_sched();
829 	/*
830 	 * Cancel the scheduled timer and restore the tick
831 	 */
832 	ts->tick_stopped  = 0;
833 	ts->idle_exittime = now;
834 
835 	tick_nohz_restart(ts, now);
836 }
837 
838 static void tick_nohz_full_update_tick(struct tick_sched *ts)
839 {
840 #ifdef CONFIG_NO_HZ_FULL
841 	int cpu = smp_processor_id();
842 
843 	if (!tick_nohz_full_cpu(cpu))
844 		return;
845 
846 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
847 		return;
848 
849 	if (can_stop_full_tick(cpu, ts))
850 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
851 	else if (ts->tick_stopped)
852 		tick_nohz_restart_sched_tick(ts, ktime_get());
853 #endif
854 }
855 
856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
857 {
858 	/*
859 	 * If this CPU is offline and it is the one which updates
860 	 * jiffies, then give up the assignment and let it be taken by
861 	 * the CPU which runs the tick timer next. If we don't drop
862 	 * this here the jiffies might be stale and do_timer() never
863 	 * invoked.
864 	 */
865 	if (unlikely(!cpu_online(cpu))) {
866 		if (cpu == tick_do_timer_cpu)
867 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
868 		/*
869 		 * Make sure the CPU doesn't get fooled by obsolete tick
870 		 * deadline if it comes back online later.
871 		 */
872 		ts->next_tick = 0;
873 		return false;
874 	}
875 
876 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
877 		ts->sleep_length = NSEC_PER_SEC / HZ;
878 		return false;
879 	}
880 
881 	if (need_resched())
882 		return false;
883 
884 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
885 		static int ratelimit;
886 
887 		if (ratelimit < 10 &&
888 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
889 			pr_warn("NOHZ: local_softirq_pending %02x\n",
890 				(unsigned int) local_softirq_pending());
891 			ratelimit++;
892 		}
893 		return false;
894 	}
895 
896 	if (tick_nohz_full_enabled()) {
897 		/*
898 		 * Keep the tick alive to guarantee timekeeping progression
899 		 * if there are full dynticks CPUs around
900 		 */
901 		if (tick_do_timer_cpu == cpu)
902 			return false;
903 		/*
904 		 * Boot safety: make sure the timekeeping duty has been
905 		 * assigned before entering dyntick-idle mode,
906 		 */
907 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
908 			return false;
909 	}
910 
911 	return true;
912 }
913 
914 static void __tick_nohz_idle_enter(struct tick_sched *ts)
915 {
916 	ktime_t now, expires;
917 	int cpu = smp_processor_id();
918 
919 	now = tick_nohz_start_idle(ts);
920 
921 	if (can_stop_idle_tick(cpu, ts)) {
922 		int was_stopped = ts->tick_stopped;
923 
924 		ts->idle_calls++;
925 
926 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
927 		if (expires > 0LL) {
928 			ts->idle_sleeps++;
929 			ts->idle_expires = expires;
930 		}
931 
932 		if (!was_stopped && ts->tick_stopped) {
933 			ts->idle_jiffies = ts->last_jiffies;
934 			nohz_balance_enter_idle(cpu);
935 		}
936 	}
937 }
938 
939 /**
940  * tick_nohz_idle_enter - stop the idle tick from the idle task
941  *
942  * When the next event is more than a tick into the future, stop the idle tick
943  * Called when we start the idle loop.
944  *
945  * The arch is responsible of calling:
946  *
947  * - rcu_idle_enter() after its last use of RCU before the CPU is put
948  *  to sleep.
949  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
950  */
951 void tick_nohz_idle_enter(void)
952 {
953 	struct tick_sched *ts;
954 
955 	lockdep_assert_irqs_enabled();
956 	/*
957 	 * Update the idle state in the scheduler domain hierarchy
958 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
959 	 * State will be updated to busy during the first busy tick after
960 	 * exiting idle.
961 	 */
962 	set_cpu_sd_state_idle();
963 
964 	local_irq_disable();
965 
966 	ts = this_cpu_ptr(&tick_cpu_sched);
967 	ts->inidle = 1;
968 	__tick_nohz_idle_enter(ts);
969 
970 	local_irq_enable();
971 }
972 
973 /**
974  * tick_nohz_irq_exit - update next tick event from interrupt exit
975  *
976  * When an interrupt fires while we are idle and it doesn't cause
977  * a reschedule, it may still add, modify or delete a timer, enqueue
978  * an RCU callback, etc...
979  * So we need to re-calculate and reprogram the next tick event.
980  */
981 void tick_nohz_irq_exit(void)
982 {
983 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984 
985 	if (ts->inidle)
986 		__tick_nohz_idle_enter(ts);
987 	else
988 		tick_nohz_full_update_tick(ts);
989 }
990 
991 /**
992  * tick_nohz_get_sleep_length - return the length of the current sleep
993  *
994  * Called from power state control code with interrupts disabled
995  */
996 ktime_t tick_nohz_get_sleep_length(void)
997 {
998 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
999 
1000 	return ts->sleep_length;
1001 }
1002 
1003 /**
1004  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1005  * for a particular CPU.
1006  *
1007  * Called from the schedutil frequency scaling governor in scheduler context.
1008  */
1009 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1010 {
1011 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1012 
1013 	return ts->idle_calls;
1014 }
1015 
1016 /**
1017  * tick_nohz_get_idle_calls - return the current idle calls counter value
1018  *
1019  * Called from the schedutil frequency scaling governor in scheduler context.
1020  */
1021 unsigned long tick_nohz_get_idle_calls(void)
1022 {
1023 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024 
1025 	return ts->idle_calls;
1026 }
1027 
1028 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1029 {
1030 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1031 	unsigned long ticks;
1032 
1033 	if (vtime_accounting_cpu_enabled())
1034 		return;
1035 	/*
1036 	 * We stopped the tick in idle. Update process times would miss the
1037 	 * time we slept as update_process_times does only a 1 tick
1038 	 * accounting. Enforce that this is accounted to idle !
1039 	 */
1040 	ticks = jiffies - ts->idle_jiffies;
1041 	/*
1042 	 * We might be one off. Do not randomly account a huge number of ticks!
1043 	 */
1044 	if (ticks && ticks < LONG_MAX)
1045 		account_idle_ticks(ticks);
1046 #endif
1047 }
1048 
1049 /**
1050  * tick_nohz_idle_exit - restart the idle tick from the idle task
1051  *
1052  * Restart the idle tick when the CPU is woken up from idle
1053  * This also exit the RCU extended quiescent state. The CPU
1054  * can use RCU again after this function is called.
1055  */
1056 void tick_nohz_idle_exit(void)
1057 {
1058 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1059 	ktime_t now;
1060 
1061 	local_irq_disable();
1062 
1063 	WARN_ON_ONCE(!ts->inidle);
1064 
1065 	ts->inidle = 0;
1066 
1067 	if (ts->idle_active || ts->tick_stopped)
1068 		now = ktime_get();
1069 
1070 	if (ts->idle_active)
1071 		tick_nohz_stop_idle(ts, now);
1072 
1073 	if (ts->tick_stopped) {
1074 		tick_nohz_restart_sched_tick(ts, now);
1075 		tick_nohz_account_idle_ticks(ts);
1076 	}
1077 
1078 	local_irq_enable();
1079 }
1080 
1081 /*
1082  * The nohz low res interrupt handler
1083  */
1084 static void tick_nohz_handler(struct clock_event_device *dev)
1085 {
1086 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1087 	struct pt_regs *regs = get_irq_regs();
1088 	ktime_t now = ktime_get();
1089 
1090 	dev->next_event = KTIME_MAX;
1091 
1092 	tick_sched_do_timer(now);
1093 	tick_sched_handle(ts, regs);
1094 
1095 	/* No need to reprogram if we are running tickless  */
1096 	if (unlikely(ts->tick_stopped))
1097 		return;
1098 
1099 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1100 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1101 }
1102 
1103 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1104 {
1105 	if (!tick_nohz_enabled)
1106 		return;
1107 	ts->nohz_mode = mode;
1108 	/* One update is enough */
1109 	if (!test_and_set_bit(0, &tick_nohz_active))
1110 		timers_update_nohz();
1111 }
1112 
1113 /**
1114  * tick_nohz_switch_to_nohz - switch to nohz mode
1115  */
1116 static void tick_nohz_switch_to_nohz(void)
1117 {
1118 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1119 	ktime_t next;
1120 
1121 	if (!tick_nohz_enabled)
1122 		return;
1123 
1124 	if (tick_switch_to_oneshot(tick_nohz_handler))
1125 		return;
1126 
1127 	/*
1128 	 * Recycle the hrtimer in ts, so we can share the
1129 	 * hrtimer_forward with the highres code.
1130 	 */
1131 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1132 	/* Get the next period */
1133 	next = tick_init_jiffy_update();
1134 
1135 	hrtimer_set_expires(&ts->sched_timer, next);
1136 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1137 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1138 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1139 }
1140 
1141 static inline void tick_nohz_irq_enter(void)
1142 {
1143 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1144 	ktime_t now;
1145 
1146 	if (!ts->idle_active && !ts->tick_stopped)
1147 		return;
1148 	now = ktime_get();
1149 	if (ts->idle_active)
1150 		tick_nohz_stop_idle(ts, now);
1151 	if (ts->tick_stopped)
1152 		tick_nohz_update_jiffies(now);
1153 }
1154 
1155 #else
1156 
1157 static inline void tick_nohz_switch_to_nohz(void) { }
1158 static inline void tick_nohz_irq_enter(void) { }
1159 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1160 
1161 #endif /* CONFIG_NO_HZ_COMMON */
1162 
1163 /*
1164  * Called from irq_enter to notify about the possible interruption of idle()
1165  */
1166 void tick_irq_enter(void)
1167 {
1168 	tick_check_oneshot_broadcast_this_cpu();
1169 	tick_nohz_irq_enter();
1170 }
1171 
1172 /*
1173  * High resolution timer specific code
1174  */
1175 #ifdef CONFIG_HIGH_RES_TIMERS
1176 /*
1177  * We rearm the timer until we get disabled by the idle code.
1178  * Called with interrupts disabled.
1179  */
1180 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1181 {
1182 	struct tick_sched *ts =
1183 		container_of(timer, struct tick_sched, sched_timer);
1184 	struct pt_regs *regs = get_irq_regs();
1185 	ktime_t now = ktime_get();
1186 
1187 	tick_sched_do_timer(now);
1188 
1189 	/*
1190 	 * Do not call, when we are not in irq context and have
1191 	 * no valid regs pointer
1192 	 */
1193 	if (regs)
1194 		tick_sched_handle(ts, regs);
1195 	else
1196 		ts->next_tick = 0;
1197 
1198 	/* No need to reprogram if we are in idle or full dynticks mode */
1199 	if (unlikely(ts->tick_stopped))
1200 		return HRTIMER_NORESTART;
1201 
1202 	hrtimer_forward(timer, now, tick_period);
1203 
1204 	return HRTIMER_RESTART;
1205 }
1206 
1207 static int sched_skew_tick;
1208 
1209 static int __init skew_tick(char *str)
1210 {
1211 	get_option(&str, &sched_skew_tick);
1212 
1213 	return 0;
1214 }
1215 early_param("skew_tick", skew_tick);
1216 
1217 /**
1218  * tick_setup_sched_timer - setup the tick emulation timer
1219  */
1220 void tick_setup_sched_timer(void)
1221 {
1222 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 	ktime_t now = ktime_get();
1224 
1225 	/*
1226 	 * Emulate tick processing via per-CPU hrtimers:
1227 	 */
1228 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1229 	ts->sched_timer.function = tick_sched_timer;
1230 
1231 	/* Get the next period (per-CPU) */
1232 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1233 
1234 	/* Offset the tick to avert jiffies_lock contention. */
1235 	if (sched_skew_tick) {
1236 		u64 offset = ktime_to_ns(tick_period) >> 1;
1237 		do_div(offset, num_possible_cpus());
1238 		offset *= smp_processor_id();
1239 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1240 	}
1241 
1242 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1243 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1244 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1245 }
1246 #endif /* HIGH_RES_TIMERS */
1247 
1248 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1249 void tick_cancel_sched_timer(int cpu)
1250 {
1251 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1252 
1253 # ifdef CONFIG_HIGH_RES_TIMERS
1254 	if (ts->sched_timer.base)
1255 		hrtimer_cancel(&ts->sched_timer);
1256 # endif
1257 
1258 	memset(ts, 0, sizeof(*ts));
1259 }
1260 #endif
1261 
1262 /**
1263  * Async notification about clocksource changes
1264  */
1265 void tick_clock_notify(void)
1266 {
1267 	int cpu;
1268 
1269 	for_each_possible_cpu(cpu)
1270 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1271 }
1272 
1273 /*
1274  * Async notification about clock event changes
1275  */
1276 void tick_oneshot_notify(void)
1277 {
1278 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1279 
1280 	set_bit(0, &ts->check_clocks);
1281 }
1282 
1283 /**
1284  * Check, if a change happened, which makes oneshot possible.
1285  *
1286  * Called cyclic from the hrtimer softirq (driven by the timer
1287  * softirq) allow_nohz signals, that we can switch into low-res nohz
1288  * mode, because high resolution timers are disabled (either compile
1289  * or runtime). Called with interrupts disabled.
1290  */
1291 int tick_check_oneshot_change(int allow_nohz)
1292 {
1293 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1294 
1295 	if (!test_and_clear_bit(0, &ts->check_clocks))
1296 		return 0;
1297 
1298 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1299 		return 0;
1300 
1301 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1302 		return 0;
1303 
1304 	if (!allow_nohz)
1305 		return 1;
1306 
1307 	tick_nohz_switch_to_nohz();
1308 	return 0;
1309 }
1310