1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by jiffies_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding jiffies_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with jiffies_lock held */ 60 write_seqlock(&jiffies_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&jiffies_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&jiffies_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&jiffies_lock); 99 return period; 100 } 101 102 103 static void tick_sched_do_timer(ktime_t now) 104 { 105 int cpu = smp_processor_id(); 106 107 #ifdef CONFIG_NO_HZ 108 /* 109 * Check if the do_timer duty was dropped. We don't care about 110 * concurrency: This happens only when the cpu in charge went 111 * into a long sleep. If two cpus happen to assign themself to 112 * this duty, then the jiffies update is still serialized by 113 * jiffies_lock. 114 */ 115 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 116 tick_do_timer_cpu = cpu; 117 #endif 118 119 /* Check, if the jiffies need an update */ 120 if (tick_do_timer_cpu == cpu) 121 tick_do_update_jiffies64(now); 122 } 123 124 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 125 { 126 #ifdef CONFIG_NO_HZ 127 /* 128 * When we are idle and the tick is stopped, we have to touch 129 * the watchdog as we might not schedule for a really long 130 * time. This happens on complete idle SMP systems while 131 * waiting on the login prompt. We also increment the "start of 132 * idle" jiffy stamp so the idle accounting adjustment we do 133 * when we go busy again does not account too much ticks. 134 */ 135 if (ts->tick_stopped) { 136 touch_softlockup_watchdog(); 137 if (is_idle_task(current)) 138 ts->idle_jiffies++; 139 } 140 #endif 141 update_process_times(user_mode(regs)); 142 profile_tick(CPU_PROFILING); 143 } 144 145 /* 146 * NOHZ - aka dynamic tick functionality 147 */ 148 #ifdef CONFIG_NO_HZ 149 /* 150 * NO HZ enabled ? 151 */ 152 int tick_nohz_enabled __read_mostly = 1; 153 154 /* 155 * Enable / Disable tickless mode 156 */ 157 static int __init setup_tick_nohz(char *str) 158 { 159 if (!strcmp(str, "off")) 160 tick_nohz_enabled = 0; 161 else if (!strcmp(str, "on")) 162 tick_nohz_enabled = 1; 163 else 164 return 0; 165 return 1; 166 } 167 168 __setup("nohz=", setup_tick_nohz); 169 170 /** 171 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 172 * 173 * Called from interrupt entry when the CPU was idle 174 * 175 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 176 * must be updated. Otherwise an interrupt handler could use a stale jiffy 177 * value. We do this unconditionally on any cpu, as we don't know whether the 178 * cpu, which has the update task assigned is in a long sleep. 179 */ 180 static void tick_nohz_update_jiffies(ktime_t now) 181 { 182 int cpu = smp_processor_id(); 183 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 184 unsigned long flags; 185 186 ts->idle_waketime = now; 187 188 local_irq_save(flags); 189 tick_do_update_jiffies64(now); 190 local_irq_restore(flags); 191 192 touch_softlockup_watchdog(); 193 } 194 195 /* 196 * Updates the per cpu time idle statistics counters 197 */ 198 static void 199 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 200 { 201 ktime_t delta; 202 203 if (ts->idle_active) { 204 delta = ktime_sub(now, ts->idle_entrytime); 205 if (nr_iowait_cpu(cpu) > 0) 206 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 207 else 208 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 209 ts->idle_entrytime = now; 210 } 211 212 if (last_update_time) 213 *last_update_time = ktime_to_us(now); 214 215 } 216 217 static void tick_nohz_stop_idle(int cpu, ktime_t now) 218 { 219 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 220 221 update_ts_time_stats(cpu, ts, now, NULL); 222 ts->idle_active = 0; 223 224 sched_clock_idle_wakeup_event(0); 225 } 226 227 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 228 { 229 ktime_t now = ktime_get(); 230 231 ts->idle_entrytime = now; 232 ts->idle_active = 1; 233 sched_clock_idle_sleep_event(); 234 return now; 235 } 236 237 /** 238 * get_cpu_idle_time_us - get the total idle time of a cpu 239 * @cpu: CPU number to query 240 * @last_update_time: variable to store update time in. Do not update 241 * counters if NULL. 242 * 243 * Return the cummulative idle time (since boot) for a given 244 * CPU, in microseconds. 245 * 246 * This time is measured via accounting rather than sampling, 247 * and is as accurate as ktime_get() is. 248 * 249 * This function returns -1 if NOHZ is not enabled. 250 */ 251 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 252 { 253 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 254 ktime_t now, idle; 255 256 if (!tick_nohz_enabled) 257 return -1; 258 259 now = ktime_get(); 260 if (last_update_time) { 261 update_ts_time_stats(cpu, ts, now, last_update_time); 262 idle = ts->idle_sleeptime; 263 } else { 264 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 265 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 266 267 idle = ktime_add(ts->idle_sleeptime, delta); 268 } else { 269 idle = ts->idle_sleeptime; 270 } 271 } 272 273 return ktime_to_us(idle); 274 275 } 276 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 277 278 /** 279 * get_cpu_iowait_time_us - get the total iowait time of a cpu 280 * @cpu: CPU number to query 281 * @last_update_time: variable to store update time in. Do not update 282 * counters if NULL. 283 * 284 * Return the cummulative iowait time (since boot) for a given 285 * CPU, in microseconds. 286 * 287 * This time is measured via accounting rather than sampling, 288 * and is as accurate as ktime_get() is. 289 * 290 * This function returns -1 if NOHZ is not enabled. 291 */ 292 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 293 { 294 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 295 ktime_t now, iowait; 296 297 if (!tick_nohz_enabled) 298 return -1; 299 300 now = ktime_get(); 301 if (last_update_time) { 302 update_ts_time_stats(cpu, ts, now, last_update_time); 303 iowait = ts->iowait_sleeptime; 304 } else { 305 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 306 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 307 308 iowait = ktime_add(ts->iowait_sleeptime, delta); 309 } else { 310 iowait = ts->iowait_sleeptime; 311 } 312 } 313 314 return ktime_to_us(iowait); 315 } 316 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 317 318 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 319 ktime_t now, int cpu) 320 { 321 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 322 ktime_t last_update, expires, ret = { .tv64 = 0 }; 323 unsigned long rcu_delta_jiffies; 324 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 325 u64 time_delta; 326 327 /* Read jiffies and the time when jiffies were updated last */ 328 do { 329 seq = read_seqbegin(&jiffies_lock); 330 last_update = last_jiffies_update; 331 last_jiffies = jiffies; 332 time_delta = timekeeping_max_deferment(); 333 } while (read_seqretry(&jiffies_lock, seq)); 334 335 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 336 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 337 next_jiffies = last_jiffies + 1; 338 delta_jiffies = 1; 339 } else { 340 /* Get the next timer wheel timer */ 341 next_jiffies = get_next_timer_interrupt(last_jiffies); 342 delta_jiffies = next_jiffies - last_jiffies; 343 if (rcu_delta_jiffies < delta_jiffies) { 344 next_jiffies = last_jiffies + rcu_delta_jiffies; 345 delta_jiffies = rcu_delta_jiffies; 346 } 347 } 348 /* 349 * Do not stop the tick, if we are only one off 350 * or if the cpu is required for rcu 351 */ 352 if (!ts->tick_stopped && delta_jiffies == 1) 353 goto out; 354 355 /* Schedule the tick, if we are at least one jiffie off */ 356 if ((long)delta_jiffies >= 1) { 357 358 /* 359 * If this cpu is the one which updates jiffies, then 360 * give up the assignment and let it be taken by the 361 * cpu which runs the tick timer next, which might be 362 * this cpu as well. If we don't drop this here the 363 * jiffies might be stale and do_timer() never 364 * invoked. Keep track of the fact that it was the one 365 * which had the do_timer() duty last. If this cpu is 366 * the one which had the do_timer() duty last, we 367 * limit the sleep time to the timekeeping 368 * max_deferement value which we retrieved 369 * above. Otherwise we can sleep as long as we want. 370 */ 371 if (cpu == tick_do_timer_cpu) { 372 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 373 ts->do_timer_last = 1; 374 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 375 time_delta = KTIME_MAX; 376 ts->do_timer_last = 0; 377 } else if (!ts->do_timer_last) { 378 time_delta = KTIME_MAX; 379 } 380 381 /* 382 * calculate the expiry time for the next timer wheel 383 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 384 * that there is no timer pending or at least extremely 385 * far into the future (12 days for HZ=1000). In this 386 * case we set the expiry to the end of time. 387 */ 388 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 389 /* 390 * Calculate the time delta for the next timer event. 391 * If the time delta exceeds the maximum time delta 392 * permitted by the current clocksource then adjust 393 * the time delta accordingly to ensure the 394 * clocksource does not wrap. 395 */ 396 time_delta = min_t(u64, time_delta, 397 tick_period.tv64 * delta_jiffies); 398 } 399 400 if (time_delta < KTIME_MAX) 401 expires = ktime_add_ns(last_update, time_delta); 402 else 403 expires.tv64 = KTIME_MAX; 404 405 /* Skip reprogram of event if its not changed */ 406 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 407 goto out; 408 409 ret = expires; 410 411 /* 412 * nohz_stop_sched_tick can be called several times before 413 * the nohz_restart_sched_tick is called. This happens when 414 * interrupts arrive which do not cause a reschedule. In the 415 * first call we save the current tick time, so we can restart 416 * the scheduler tick in nohz_restart_sched_tick. 417 */ 418 if (!ts->tick_stopped) { 419 nohz_balance_enter_idle(cpu); 420 calc_load_enter_idle(); 421 422 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 423 ts->tick_stopped = 1; 424 } 425 426 /* 427 * If the expiration time == KTIME_MAX, then 428 * in this case we simply stop the tick timer. 429 */ 430 if (unlikely(expires.tv64 == KTIME_MAX)) { 431 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 432 hrtimer_cancel(&ts->sched_timer); 433 goto out; 434 } 435 436 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 437 hrtimer_start(&ts->sched_timer, expires, 438 HRTIMER_MODE_ABS_PINNED); 439 /* Check, if the timer was already in the past */ 440 if (hrtimer_active(&ts->sched_timer)) 441 goto out; 442 } else if (!tick_program_event(expires, 0)) 443 goto out; 444 /* 445 * We are past the event already. So we crossed a 446 * jiffie boundary. Update jiffies and raise the 447 * softirq. 448 */ 449 tick_do_update_jiffies64(ktime_get()); 450 } 451 raise_softirq_irqoff(TIMER_SOFTIRQ); 452 out: 453 ts->next_jiffies = next_jiffies; 454 ts->last_jiffies = last_jiffies; 455 ts->sleep_length = ktime_sub(dev->next_event, now); 456 457 return ret; 458 } 459 460 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 461 { 462 /* 463 * If this cpu is offline and it is the one which updates 464 * jiffies, then give up the assignment and let it be taken by 465 * the cpu which runs the tick timer next. If we don't drop 466 * this here the jiffies might be stale and do_timer() never 467 * invoked. 468 */ 469 if (unlikely(!cpu_online(cpu))) { 470 if (cpu == tick_do_timer_cpu) 471 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 472 } 473 474 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 475 return false; 476 477 if (need_resched()) 478 return false; 479 480 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 481 static int ratelimit; 482 483 if (ratelimit < 10 && 484 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 485 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 486 (unsigned int) local_softirq_pending()); 487 ratelimit++; 488 } 489 return false; 490 } 491 492 return true; 493 } 494 495 static void __tick_nohz_idle_enter(struct tick_sched *ts) 496 { 497 ktime_t now, expires; 498 int cpu = smp_processor_id(); 499 500 now = tick_nohz_start_idle(cpu, ts); 501 502 if (can_stop_idle_tick(cpu, ts)) { 503 int was_stopped = ts->tick_stopped; 504 505 ts->idle_calls++; 506 507 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 508 if (expires.tv64 > 0LL) { 509 ts->idle_sleeps++; 510 ts->idle_expires = expires; 511 } 512 513 if (!was_stopped && ts->tick_stopped) 514 ts->idle_jiffies = ts->last_jiffies; 515 } 516 } 517 518 /** 519 * tick_nohz_idle_enter - stop the idle tick from the idle task 520 * 521 * When the next event is more than a tick into the future, stop the idle tick 522 * Called when we start the idle loop. 523 * 524 * The arch is responsible of calling: 525 * 526 * - rcu_idle_enter() after its last use of RCU before the CPU is put 527 * to sleep. 528 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 529 */ 530 void tick_nohz_idle_enter(void) 531 { 532 struct tick_sched *ts; 533 534 WARN_ON_ONCE(irqs_disabled()); 535 536 /* 537 * Update the idle state in the scheduler domain hierarchy 538 * when tick_nohz_stop_sched_tick() is called from the idle loop. 539 * State will be updated to busy during the first busy tick after 540 * exiting idle. 541 */ 542 set_cpu_sd_state_idle(); 543 544 local_irq_disable(); 545 546 ts = &__get_cpu_var(tick_cpu_sched); 547 /* 548 * set ts->inidle unconditionally. even if the system did not 549 * switch to nohz mode the cpu frequency governers rely on the 550 * update of the idle time accounting in tick_nohz_start_idle(). 551 */ 552 ts->inidle = 1; 553 __tick_nohz_idle_enter(ts); 554 555 local_irq_enable(); 556 } 557 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 558 559 /** 560 * tick_nohz_irq_exit - update next tick event from interrupt exit 561 * 562 * When an interrupt fires while we are idle and it doesn't cause 563 * a reschedule, it may still add, modify or delete a timer, enqueue 564 * an RCU callback, etc... 565 * So we need to re-calculate and reprogram the next tick event. 566 */ 567 void tick_nohz_irq_exit(void) 568 { 569 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 570 571 if (!ts->inidle) 572 return; 573 574 /* Cancel the timer because CPU already waken up from the C-states*/ 575 menu_hrtimer_cancel(); 576 __tick_nohz_idle_enter(ts); 577 } 578 579 /** 580 * tick_nohz_get_sleep_length - return the length of the current sleep 581 * 582 * Called from power state control code with interrupts disabled 583 */ 584 ktime_t tick_nohz_get_sleep_length(void) 585 { 586 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 587 588 return ts->sleep_length; 589 } 590 591 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 592 { 593 hrtimer_cancel(&ts->sched_timer); 594 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 595 596 while (1) { 597 /* Forward the time to expire in the future */ 598 hrtimer_forward(&ts->sched_timer, now, tick_period); 599 600 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 601 hrtimer_start_expires(&ts->sched_timer, 602 HRTIMER_MODE_ABS_PINNED); 603 /* Check, if the timer was already in the past */ 604 if (hrtimer_active(&ts->sched_timer)) 605 break; 606 } else { 607 if (!tick_program_event( 608 hrtimer_get_expires(&ts->sched_timer), 0)) 609 break; 610 } 611 /* Reread time and update jiffies */ 612 now = ktime_get(); 613 tick_do_update_jiffies64(now); 614 } 615 } 616 617 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 618 { 619 /* Update jiffies first */ 620 tick_do_update_jiffies64(now); 621 update_cpu_load_nohz(); 622 623 calc_load_exit_idle(); 624 touch_softlockup_watchdog(); 625 /* 626 * Cancel the scheduled timer and restore the tick 627 */ 628 ts->tick_stopped = 0; 629 ts->idle_exittime = now; 630 631 tick_nohz_restart(ts, now); 632 } 633 634 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 635 { 636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 637 unsigned long ticks; 638 639 if (vtime_accounting_enabled()) 640 return; 641 /* 642 * We stopped the tick in idle. Update process times would miss the 643 * time we slept as update_process_times does only a 1 tick 644 * accounting. Enforce that this is accounted to idle ! 645 */ 646 ticks = jiffies - ts->idle_jiffies; 647 /* 648 * We might be one off. Do not randomly account a huge number of ticks! 649 */ 650 if (ticks && ticks < LONG_MAX) 651 account_idle_ticks(ticks); 652 #endif 653 } 654 655 /** 656 * tick_nohz_idle_exit - restart the idle tick from the idle task 657 * 658 * Restart the idle tick when the CPU is woken up from idle 659 * This also exit the RCU extended quiescent state. The CPU 660 * can use RCU again after this function is called. 661 */ 662 void tick_nohz_idle_exit(void) 663 { 664 int cpu = smp_processor_id(); 665 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 666 ktime_t now; 667 668 local_irq_disable(); 669 670 WARN_ON_ONCE(!ts->inidle); 671 672 ts->inidle = 0; 673 674 /* Cancel the timer because CPU already waken up from the C-states*/ 675 menu_hrtimer_cancel(); 676 if (ts->idle_active || ts->tick_stopped) 677 now = ktime_get(); 678 679 if (ts->idle_active) 680 tick_nohz_stop_idle(cpu, now); 681 682 if (ts->tick_stopped) { 683 tick_nohz_restart_sched_tick(ts, now); 684 tick_nohz_account_idle_ticks(ts); 685 } 686 687 local_irq_enable(); 688 } 689 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 690 691 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 692 { 693 hrtimer_forward(&ts->sched_timer, now, tick_period); 694 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 695 } 696 697 /* 698 * The nohz low res interrupt handler 699 */ 700 static void tick_nohz_handler(struct clock_event_device *dev) 701 { 702 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 703 struct pt_regs *regs = get_irq_regs(); 704 ktime_t now = ktime_get(); 705 706 dev->next_event.tv64 = KTIME_MAX; 707 708 tick_sched_do_timer(now); 709 tick_sched_handle(ts, regs); 710 711 while (tick_nohz_reprogram(ts, now)) { 712 now = ktime_get(); 713 tick_do_update_jiffies64(now); 714 } 715 } 716 717 /** 718 * tick_nohz_switch_to_nohz - switch to nohz mode 719 */ 720 static void tick_nohz_switch_to_nohz(void) 721 { 722 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 723 ktime_t next; 724 725 if (!tick_nohz_enabled) 726 return; 727 728 local_irq_disable(); 729 if (tick_switch_to_oneshot(tick_nohz_handler)) { 730 local_irq_enable(); 731 return; 732 } 733 734 ts->nohz_mode = NOHZ_MODE_LOWRES; 735 736 /* 737 * Recycle the hrtimer in ts, so we can share the 738 * hrtimer_forward with the highres code. 739 */ 740 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 741 /* Get the next period */ 742 next = tick_init_jiffy_update(); 743 744 for (;;) { 745 hrtimer_set_expires(&ts->sched_timer, next); 746 if (!tick_program_event(next, 0)) 747 break; 748 next = ktime_add(next, tick_period); 749 } 750 local_irq_enable(); 751 } 752 753 /* 754 * When NOHZ is enabled and the tick is stopped, we need to kick the 755 * tick timer from irq_enter() so that the jiffies update is kept 756 * alive during long running softirqs. That's ugly as hell, but 757 * correctness is key even if we need to fix the offending softirq in 758 * the first place. 759 * 760 * Note, this is different to tick_nohz_restart. We just kick the 761 * timer and do not touch the other magic bits which need to be done 762 * when idle is left. 763 */ 764 static void tick_nohz_kick_tick(int cpu, ktime_t now) 765 { 766 #if 0 767 /* Switch back to 2.6.27 behaviour */ 768 769 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 770 ktime_t delta; 771 772 /* 773 * Do not touch the tick device, when the next expiry is either 774 * already reached or less/equal than the tick period. 775 */ 776 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 777 if (delta.tv64 <= tick_period.tv64) 778 return; 779 780 tick_nohz_restart(ts, now); 781 #endif 782 } 783 784 static inline void tick_check_nohz(int cpu) 785 { 786 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 787 ktime_t now; 788 789 if (!ts->idle_active && !ts->tick_stopped) 790 return; 791 now = ktime_get(); 792 if (ts->idle_active) 793 tick_nohz_stop_idle(cpu, now); 794 if (ts->tick_stopped) { 795 tick_nohz_update_jiffies(now); 796 tick_nohz_kick_tick(cpu, now); 797 } 798 } 799 800 #else 801 802 static inline void tick_nohz_switch_to_nohz(void) { } 803 static inline void tick_check_nohz(int cpu) { } 804 805 #endif /* NO_HZ */ 806 807 /* 808 * Called from irq_enter to notify about the possible interruption of idle() 809 */ 810 void tick_check_idle(int cpu) 811 { 812 tick_check_oneshot_broadcast(cpu); 813 tick_check_nohz(cpu); 814 } 815 816 /* 817 * High resolution timer specific code 818 */ 819 #ifdef CONFIG_HIGH_RES_TIMERS 820 /* 821 * We rearm the timer until we get disabled by the idle code. 822 * Called with interrupts disabled. 823 */ 824 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 825 { 826 struct tick_sched *ts = 827 container_of(timer, struct tick_sched, sched_timer); 828 struct pt_regs *regs = get_irq_regs(); 829 ktime_t now = ktime_get(); 830 831 tick_sched_do_timer(now); 832 833 /* 834 * Do not call, when we are not in irq context and have 835 * no valid regs pointer 836 */ 837 if (regs) 838 tick_sched_handle(ts, regs); 839 840 hrtimer_forward(timer, now, tick_period); 841 842 return HRTIMER_RESTART; 843 } 844 845 static int sched_skew_tick; 846 847 static int __init skew_tick(char *str) 848 { 849 get_option(&str, &sched_skew_tick); 850 851 return 0; 852 } 853 early_param("skew_tick", skew_tick); 854 855 /** 856 * tick_setup_sched_timer - setup the tick emulation timer 857 */ 858 void tick_setup_sched_timer(void) 859 { 860 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 861 ktime_t now = ktime_get(); 862 863 /* 864 * Emulate tick processing via per-CPU hrtimers: 865 */ 866 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 867 ts->sched_timer.function = tick_sched_timer; 868 869 /* Get the next period (per cpu) */ 870 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 871 872 /* Offset the tick to avert jiffies_lock contention. */ 873 if (sched_skew_tick) { 874 u64 offset = ktime_to_ns(tick_period) >> 1; 875 do_div(offset, num_possible_cpus()); 876 offset *= smp_processor_id(); 877 hrtimer_add_expires_ns(&ts->sched_timer, offset); 878 } 879 880 for (;;) { 881 hrtimer_forward(&ts->sched_timer, now, tick_period); 882 hrtimer_start_expires(&ts->sched_timer, 883 HRTIMER_MODE_ABS_PINNED); 884 /* Check, if the timer was already in the past */ 885 if (hrtimer_active(&ts->sched_timer)) 886 break; 887 now = ktime_get(); 888 } 889 890 #ifdef CONFIG_NO_HZ 891 if (tick_nohz_enabled) 892 ts->nohz_mode = NOHZ_MODE_HIGHRES; 893 #endif 894 } 895 #endif /* HIGH_RES_TIMERS */ 896 897 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 898 void tick_cancel_sched_timer(int cpu) 899 { 900 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 901 902 # ifdef CONFIG_HIGH_RES_TIMERS 903 if (ts->sched_timer.base) 904 hrtimer_cancel(&ts->sched_timer); 905 # endif 906 907 ts->nohz_mode = NOHZ_MODE_INACTIVE; 908 } 909 #endif 910 911 /** 912 * Async notification about clocksource changes 913 */ 914 void tick_clock_notify(void) 915 { 916 int cpu; 917 918 for_each_possible_cpu(cpu) 919 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 920 } 921 922 /* 923 * Async notification about clock event changes 924 */ 925 void tick_oneshot_notify(void) 926 { 927 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 928 929 set_bit(0, &ts->check_clocks); 930 } 931 932 /** 933 * Check, if a change happened, which makes oneshot possible. 934 * 935 * Called cyclic from the hrtimer softirq (driven by the timer 936 * softirq) allow_nohz signals, that we can switch into low-res nohz 937 * mode, because high resolution timers are disabled (either compile 938 * or runtime). 939 */ 940 int tick_check_oneshot_change(int allow_nohz) 941 { 942 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 943 944 if (!test_and_clear_bit(0, &ts->check_clocks)) 945 return 0; 946 947 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 948 return 0; 949 950 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 951 return 0; 952 953 if (!allow_nohz) 954 return 1; 955 956 tick_nohz_switch_to_nohz(); 957 return 0; 958 } 959