xref: /openbmc/linux/kernel/time/tick-sched.c (revision 93d90ad7)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick this CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231  * is NMI safe.
232  */
233 void tick_nohz_full_kick(void)
234 {
235 	if (!tick_nohz_full_cpu(smp_processor_id()))
236 		return;
237 
238 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239 }
240 
241 /*
242  * Kick the CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 	if (!tick_nohz_full_cpu(cpu))
248 		return;
249 
250 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252 
253 static void nohz_full_kick_ipi(void *info)
254 {
255 	__tick_nohz_full_check();
256 }
257 
258 /*
259  * Kick all full dynticks CPUs in order to force these to re-evaluate
260  * their dependency on the tick and restart it if necessary.
261  */
262 void tick_nohz_full_kick_all(void)
263 {
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	smp_call_function_many(tick_nohz_full_mask,
269 			       nohz_full_kick_ipi, NULL, false);
270 	tick_nohz_full_kick();
271 	preempt_enable();
272 }
273 
274 /*
275  * Re-evaluate the need for the tick as we switch the current task.
276  * It might need the tick due to per task/process properties:
277  * perf events, posix cpu timers, ...
278  */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 	unsigned long flags;
282 
283 	local_irq_save(flags);
284 
285 	if (!tick_nohz_full_cpu(smp_processor_id()))
286 		goto out;
287 
288 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 		tick_nohz_full_kick();
290 
291 out:
292 	local_irq_restore(flags);
293 }
294 
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 		free_bootmem_cpumask_var(tick_nohz_full_mask);
302 		return 1;
303 	}
304 	tick_nohz_full_running = true;
305 
306 	return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309 
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 						 unsigned long action,
312 						 void *hcpu)
313 {
314 	unsigned int cpu = (unsigned long)hcpu;
315 
316 	switch (action & ~CPU_TASKS_FROZEN) {
317 	case CPU_DOWN_PREPARE:
318 		/*
319 		 * If we handle the timekeeping duty for full dynticks CPUs,
320 		 * we can't safely shutdown that CPU.
321 		 */
322 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 			return NOTIFY_BAD;
324 		break;
325 	}
326 	return NOTIFY_OK;
327 }
328 
329 /*
330  * Worst case string length in chunks of CPU range seems 2 steps
331  * separations: 0,2,4,6,...
332  * This is NR_CPUS + sizeof('\0')
333  */
334 static char __initdata nohz_full_buf[NR_CPUS + 1];
335 
336 static int tick_nohz_init_all(void)
337 {
338 	int err = -1;
339 
340 #ifdef CONFIG_NO_HZ_FULL_ALL
341 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
342 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
343 		return err;
344 	}
345 	err = 0;
346 	cpumask_setall(tick_nohz_full_mask);
347 	tick_nohz_full_running = true;
348 #endif
349 	return err;
350 }
351 
352 void __init tick_nohz_init(void)
353 {
354 	int cpu;
355 
356 	if (!tick_nohz_full_running) {
357 		if (tick_nohz_init_all() < 0)
358 			return;
359 	}
360 
361 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
362 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
363 		cpumask_clear(tick_nohz_full_mask);
364 		tick_nohz_full_running = false;
365 		return;
366 	}
367 
368 	/*
369 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
370 	 * locking contexts. But then we need irq work to raise its own
371 	 * interrupts to avoid circular dependency on the tick
372 	 */
373 	if (!arch_irq_work_has_interrupt()) {
374 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
375 			   "support irq work self-IPIs\n");
376 		cpumask_clear(tick_nohz_full_mask);
377 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
378 		tick_nohz_full_running = false;
379 		return;
380 	}
381 
382 	cpu = smp_processor_id();
383 
384 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
385 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
386 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
387 	}
388 
389 	cpumask_andnot(housekeeping_mask,
390 		       cpu_possible_mask, tick_nohz_full_mask);
391 
392 	for_each_cpu(cpu, tick_nohz_full_mask)
393 		context_tracking_cpu_set(cpu);
394 
395 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
396 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
397 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
398 }
399 #endif
400 
401 /*
402  * NOHZ - aka dynamic tick functionality
403  */
404 #ifdef CONFIG_NO_HZ_COMMON
405 /*
406  * NO HZ enabled ?
407  */
408 static int tick_nohz_enabled __read_mostly  = 1;
409 int tick_nohz_active  __read_mostly;
410 /*
411  * Enable / Disable tickless mode
412  */
413 static int __init setup_tick_nohz(char *str)
414 {
415 	if (!strcmp(str, "off"))
416 		tick_nohz_enabled = 0;
417 	else if (!strcmp(str, "on"))
418 		tick_nohz_enabled = 1;
419 	else
420 		return 0;
421 	return 1;
422 }
423 
424 __setup("nohz=", setup_tick_nohz);
425 
426 /**
427  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
428  *
429  * Called from interrupt entry when the CPU was idle
430  *
431  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
432  * must be updated. Otherwise an interrupt handler could use a stale jiffy
433  * value. We do this unconditionally on any cpu, as we don't know whether the
434  * cpu, which has the update task assigned is in a long sleep.
435  */
436 static void tick_nohz_update_jiffies(ktime_t now)
437 {
438 	unsigned long flags;
439 
440 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
441 
442 	local_irq_save(flags);
443 	tick_do_update_jiffies64(now);
444 	local_irq_restore(flags);
445 
446 	touch_softlockup_watchdog();
447 }
448 
449 /*
450  * Updates the per cpu time idle statistics counters
451  */
452 static void
453 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
454 {
455 	ktime_t delta;
456 
457 	if (ts->idle_active) {
458 		delta = ktime_sub(now, ts->idle_entrytime);
459 		if (nr_iowait_cpu(cpu) > 0)
460 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
461 		else
462 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
463 		ts->idle_entrytime = now;
464 	}
465 
466 	if (last_update_time)
467 		*last_update_time = ktime_to_us(now);
468 
469 }
470 
471 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
472 {
473 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
474 	ts->idle_active = 0;
475 
476 	sched_clock_idle_wakeup_event(0);
477 }
478 
479 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
480 {
481 	ktime_t now = ktime_get();
482 
483 	ts->idle_entrytime = now;
484 	ts->idle_active = 1;
485 	sched_clock_idle_sleep_event();
486 	return now;
487 }
488 
489 /**
490  * get_cpu_idle_time_us - get the total idle time of a cpu
491  * @cpu: CPU number to query
492  * @last_update_time: variable to store update time in. Do not update
493  * counters if NULL.
494  *
495  * Return the cummulative idle time (since boot) for a given
496  * CPU, in microseconds.
497  *
498  * This time is measured via accounting rather than sampling,
499  * and is as accurate as ktime_get() is.
500  *
501  * This function returns -1 if NOHZ is not enabled.
502  */
503 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
504 {
505 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
506 	ktime_t now, idle;
507 
508 	if (!tick_nohz_active)
509 		return -1;
510 
511 	now = ktime_get();
512 	if (last_update_time) {
513 		update_ts_time_stats(cpu, ts, now, last_update_time);
514 		idle = ts->idle_sleeptime;
515 	} else {
516 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
517 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
518 
519 			idle = ktime_add(ts->idle_sleeptime, delta);
520 		} else {
521 			idle = ts->idle_sleeptime;
522 		}
523 	}
524 
525 	return ktime_to_us(idle);
526 
527 }
528 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
529 
530 /**
531  * get_cpu_iowait_time_us - get the total iowait time of a cpu
532  * @cpu: CPU number to query
533  * @last_update_time: variable to store update time in. Do not update
534  * counters if NULL.
535  *
536  * Return the cummulative iowait time (since boot) for a given
537  * CPU, in microseconds.
538  *
539  * This time is measured via accounting rather than sampling,
540  * and is as accurate as ktime_get() is.
541  *
542  * This function returns -1 if NOHZ is not enabled.
543  */
544 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
545 {
546 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
547 	ktime_t now, iowait;
548 
549 	if (!tick_nohz_active)
550 		return -1;
551 
552 	now = ktime_get();
553 	if (last_update_time) {
554 		update_ts_time_stats(cpu, ts, now, last_update_time);
555 		iowait = ts->iowait_sleeptime;
556 	} else {
557 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
558 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
559 
560 			iowait = ktime_add(ts->iowait_sleeptime, delta);
561 		} else {
562 			iowait = ts->iowait_sleeptime;
563 		}
564 	}
565 
566 	return ktime_to_us(iowait);
567 }
568 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
569 
570 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
571 					 ktime_t now, int cpu)
572 {
573 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
574 	ktime_t last_update, expires, ret = { .tv64 = 0 };
575 	unsigned long rcu_delta_jiffies;
576 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
577 	u64 time_delta;
578 
579 	time_delta = timekeeping_max_deferment();
580 
581 	/* Read jiffies and the time when jiffies were updated last */
582 	do {
583 		seq = read_seqbegin(&jiffies_lock);
584 		last_update = last_jiffies_update;
585 		last_jiffies = jiffies;
586 	} while (read_seqretry(&jiffies_lock, seq));
587 
588 	if (rcu_needs_cpu(&rcu_delta_jiffies) ||
589 	    arch_needs_cpu() || irq_work_needs_cpu()) {
590 		next_jiffies = last_jiffies + 1;
591 		delta_jiffies = 1;
592 	} else {
593 		/* Get the next timer wheel timer */
594 		next_jiffies = get_next_timer_interrupt(last_jiffies);
595 		delta_jiffies = next_jiffies - last_jiffies;
596 		if (rcu_delta_jiffies < delta_jiffies) {
597 			next_jiffies = last_jiffies + rcu_delta_jiffies;
598 			delta_jiffies = rcu_delta_jiffies;
599 		}
600 	}
601 
602 	/*
603 	 * Do not stop the tick, if we are only one off (or less)
604 	 * or if the cpu is required for RCU:
605 	 */
606 	if (!ts->tick_stopped && delta_jiffies <= 1)
607 		goto out;
608 
609 	/* Schedule the tick, if we are at least one jiffie off */
610 	if ((long)delta_jiffies >= 1) {
611 
612 		/*
613 		 * If this cpu is the one which updates jiffies, then
614 		 * give up the assignment and let it be taken by the
615 		 * cpu which runs the tick timer next, which might be
616 		 * this cpu as well. If we don't drop this here the
617 		 * jiffies might be stale and do_timer() never
618 		 * invoked. Keep track of the fact that it was the one
619 		 * which had the do_timer() duty last. If this cpu is
620 		 * the one which had the do_timer() duty last, we
621 		 * limit the sleep time to the timekeeping
622 		 * max_deferement value which we retrieved
623 		 * above. Otherwise we can sleep as long as we want.
624 		 */
625 		if (cpu == tick_do_timer_cpu) {
626 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
627 			ts->do_timer_last = 1;
628 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
629 			time_delta = KTIME_MAX;
630 			ts->do_timer_last = 0;
631 		} else if (!ts->do_timer_last) {
632 			time_delta = KTIME_MAX;
633 		}
634 
635 #ifdef CONFIG_NO_HZ_FULL
636 		if (!ts->inidle) {
637 			time_delta = min(time_delta,
638 					 scheduler_tick_max_deferment());
639 		}
640 #endif
641 
642 		/*
643 		 * calculate the expiry time for the next timer wheel
644 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
645 		 * that there is no timer pending or at least extremely
646 		 * far into the future (12 days for HZ=1000). In this
647 		 * case we set the expiry to the end of time.
648 		 */
649 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
650 			/*
651 			 * Calculate the time delta for the next timer event.
652 			 * If the time delta exceeds the maximum time delta
653 			 * permitted by the current clocksource then adjust
654 			 * the time delta accordingly to ensure the
655 			 * clocksource does not wrap.
656 			 */
657 			time_delta = min_t(u64, time_delta,
658 					   tick_period.tv64 * delta_jiffies);
659 		}
660 
661 		if (time_delta < KTIME_MAX)
662 			expires = ktime_add_ns(last_update, time_delta);
663 		else
664 			expires.tv64 = KTIME_MAX;
665 
666 		/* Skip reprogram of event if its not changed */
667 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
668 			goto out;
669 
670 		ret = expires;
671 
672 		/*
673 		 * nohz_stop_sched_tick can be called several times before
674 		 * the nohz_restart_sched_tick is called. This happens when
675 		 * interrupts arrive which do not cause a reschedule. In the
676 		 * first call we save the current tick time, so we can restart
677 		 * the scheduler tick in nohz_restart_sched_tick.
678 		 */
679 		if (!ts->tick_stopped) {
680 			nohz_balance_enter_idle(cpu);
681 			calc_load_enter_idle();
682 
683 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684 			ts->tick_stopped = 1;
685 			trace_tick_stop(1, " ");
686 		}
687 
688 		/*
689 		 * If the expiration time == KTIME_MAX, then
690 		 * in this case we simply stop the tick timer.
691 		 */
692 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
693 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 				hrtimer_cancel(&ts->sched_timer);
695 			goto out;
696 		}
697 
698 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
699 			hrtimer_start(&ts->sched_timer, expires,
700 				      HRTIMER_MODE_ABS_PINNED);
701 			/* Check, if the timer was already in the past */
702 			if (hrtimer_active(&ts->sched_timer))
703 				goto out;
704 		} else if (!tick_program_event(expires, 0))
705 				goto out;
706 		/*
707 		 * We are past the event already. So we crossed a
708 		 * jiffie boundary. Update jiffies and raise the
709 		 * softirq.
710 		 */
711 		tick_do_update_jiffies64(ktime_get());
712 	}
713 	raise_softirq_irqoff(TIMER_SOFTIRQ);
714 out:
715 	ts->next_jiffies = next_jiffies;
716 	ts->last_jiffies = last_jiffies;
717 	ts->sleep_length = ktime_sub(dev->next_event, now);
718 
719 	return ret;
720 }
721 
722 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
723 {
724 #ifdef CONFIG_NO_HZ_FULL
725 	int cpu = smp_processor_id();
726 
727 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
728 		return;
729 
730 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
731 		return;
732 
733 	if (!can_stop_full_tick())
734 		return;
735 
736 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
737 #endif
738 }
739 
740 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
741 {
742 	/*
743 	 * If this cpu is offline and it is the one which updates
744 	 * jiffies, then give up the assignment and let it be taken by
745 	 * the cpu which runs the tick timer next. If we don't drop
746 	 * this here the jiffies might be stale and do_timer() never
747 	 * invoked.
748 	 */
749 	if (unlikely(!cpu_online(cpu))) {
750 		if (cpu == tick_do_timer_cpu)
751 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
752 		return false;
753 	}
754 
755 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
756 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
757 		return false;
758 	}
759 
760 	if (need_resched())
761 		return false;
762 
763 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
764 		static int ratelimit;
765 
766 		if (ratelimit < 10 &&
767 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
768 			pr_warn("NOHZ: local_softirq_pending %02x\n",
769 				(unsigned int) local_softirq_pending());
770 			ratelimit++;
771 		}
772 		return false;
773 	}
774 
775 	if (tick_nohz_full_enabled()) {
776 		/*
777 		 * Keep the tick alive to guarantee timekeeping progression
778 		 * if there are full dynticks CPUs around
779 		 */
780 		if (tick_do_timer_cpu == cpu)
781 			return false;
782 		/*
783 		 * Boot safety: make sure the timekeeping duty has been
784 		 * assigned before entering dyntick-idle mode,
785 		 */
786 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
787 			return false;
788 	}
789 
790 	return true;
791 }
792 
793 static void __tick_nohz_idle_enter(struct tick_sched *ts)
794 {
795 	ktime_t now, expires;
796 	int cpu = smp_processor_id();
797 
798 	now = tick_nohz_start_idle(ts);
799 
800 	if (can_stop_idle_tick(cpu, ts)) {
801 		int was_stopped = ts->tick_stopped;
802 
803 		ts->idle_calls++;
804 
805 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
806 		if (expires.tv64 > 0LL) {
807 			ts->idle_sleeps++;
808 			ts->idle_expires = expires;
809 		}
810 
811 		if (!was_stopped && ts->tick_stopped)
812 			ts->idle_jiffies = ts->last_jiffies;
813 	}
814 }
815 
816 /**
817  * tick_nohz_idle_enter - stop the idle tick from the idle task
818  *
819  * When the next event is more than a tick into the future, stop the idle tick
820  * Called when we start the idle loop.
821  *
822  * The arch is responsible of calling:
823  *
824  * - rcu_idle_enter() after its last use of RCU before the CPU is put
825  *  to sleep.
826  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
827  */
828 void tick_nohz_idle_enter(void)
829 {
830 	struct tick_sched *ts;
831 
832 	WARN_ON_ONCE(irqs_disabled());
833 
834 	/*
835  	 * Update the idle state in the scheduler domain hierarchy
836  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
837  	 * State will be updated to busy during the first busy tick after
838  	 * exiting idle.
839  	 */
840 	set_cpu_sd_state_idle();
841 
842 	local_irq_disable();
843 
844 	ts = this_cpu_ptr(&tick_cpu_sched);
845 	ts->inidle = 1;
846 	__tick_nohz_idle_enter(ts);
847 
848 	local_irq_enable();
849 }
850 
851 /**
852  * tick_nohz_irq_exit - update next tick event from interrupt exit
853  *
854  * When an interrupt fires while we are idle and it doesn't cause
855  * a reschedule, it may still add, modify or delete a timer, enqueue
856  * an RCU callback, etc...
857  * So we need to re-calculate and reprogram the next tick event.
858  */
859 void tick_nohz_irq_exit(void)
860 {
861 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
862 
863 	if (ts->inidle)
864 		__tick_nohz_idle_enter(ts);
865 	else
866 		tick_nohz_full_stop_tick(ts);
867 }
868 
869 /**
870  * tick_nohz_get_sleep_length - return the length of the current sleep
871  *
872  * Called from power state control code with interrupts disabled
873  */
874 ktime_t tick_nohz_get_sleep_length(void)
875 {
876 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
877 
878 	return ts->sleep_length;
879 }
880 
881 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
882 {
883 	hrtimer_cancel(&ts->sched_timer);
884 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
885 
886 	while (1) {
887 		/* Forward the time to expire in the future */
888 		hrtimer_forward(&ts->sched_timer, now, tick_period);
889 
890 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
891 			hrtimer_start_expires(&ts->sched_timer,
892 					      HRTIMER_MODE_ABS_PINNED);
893 			/* Check, if the timer was already in the past */
894 			if (hrtimer_active(&ts->sched_timer))
895 				break;
896 		} else {
897 			if (!tick_program_event(
898 				hrtimer_get_expires(&ts->sched_timer), 0))
899 				break;
900 		}
901 		/* Reread time and update jiffies */
902 		now = ktime_get();
903 		tick_do_update_jiffies64(now);
904 	}
905 }
906 
907 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
908 {
909 	/* Update jiffies first */
910 	tick_do_update_jiffies64(now);
911 	update_cpu_load_nohz();
912 
913 	calc_load_exit_idle();
914 	touch_softlockup_watchdog();
915 	/*
916 	 * Cancel the scheduled timer and restore the tick
917 	 */
918 	ts->tick_stopped  = 0;
919 	ts->idle_exittime = now;
920 
921 	tick_nohz_restart(ts, now);
922 }
923 
924 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
925 {
926 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
927 	unsigned long ticks;
928 
929 	if (vtime_accounting_enabled())
930 		return;
931 	/*
932 	 * We stopped the tick in idle. Update process times would miss the
933 	 * time we slept as update_process_times does only a 1 tick
934 	 * accounting. Enforce that this is accounted to idle !
935 	 */
936 	ticks = jiffies - ts->idle_jiffies;
937 	/*
938 	 * We might be one off. Do not randomly account a huge number of ticks!
939 	 */
940 	if (ticks && ticks < LONG_MAX)
941 		account_idle_ticks(ticks);
942 #endif
943 }
944 
945 /**
946  * tick_nohz_idle_exit - restart the idle tick from the idle task
947  *
948  * Restart the idle tick when the CPU is woken up from idle
949  * This also exit the RCU extended quiescent state. The CPU
950  * can use RCU again after this function is called.
951  */
952 void tick_nohz_idle_exit(void)
953 {
954 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
955 	ktime_t now;
956 
957 	local_irq_disable();
958 
959 	WARN_ON_ONCE(!ts->inidle);
960 
961 	ts->inidle = 0;
962 
963 	if (ts->idle_active || ts->tick_stopped)
964 		now = ktime_get();
965 
966 	if (ts->idle_active)
967 		tick_nohz_stop_idle(ts, now);
968 
969 	if (ts->tick_stopped) {
970 		tick_nohz_restart_sched_tick(ts, now);
971 		tick_nohz_account_idle_ticks(ts);
972 	}
973 
974 	local_irq_enable();
975 }
976 
977 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
978 {
979 	hrtimer_forward(&ts->sched_timer, now, tick_period);
980 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
981 }
982 
983 /*
984  * The nohz low res interrupt handler
985  */
986 static void tick_nohz_handler(struct clock_event_device *dev)
987 {
988 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
989 	struct pt_regs *regs = get_irq_regs();
990 	ktime_t now = ktime_get();
991 
992 	dev->next_event.tv64 = KTIME_MAX;
993 
994 	tick_sched_do_timer(now);
995 	tick_sched_handle(ts, regs);
996 
997 	/* No need to reprogram if we are running tickless  */
998 	if (unlikely(ts->tick_stopped))
999 		return;
1000 
1001 	while (tick_nohz_reprogram(ts, now)) {
1002 		now = ktime_get();
1003 		tick_do_update_jiffies64(now);
1004 	}
1005 }
1006 
1007 /**
1008  * tick_nohz_switch_to_nohz - switch to nohz mode
1009  */
1010 static void tick_nohz_switch_to_nohz(void)
1011 {
1012 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013 	ktime_t next;
1014 
1015 	if (!tick_nohz_enabled)
1016 		return;
1017 
1018 	local_irq_disable();
1019 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
1020 		local_irq_enable();
1021 		return;
1022 	}
1023 	tick_nohz_active = 1;
1024 	ts->nohz_mode = NOHZ_MODE_LOWRES;
1025 
1026 	/*
1027 	 * Recycle the hrtimer in ts, so we can share the
1028 	 * hrtimer_forward with the highres code.
1029 	 */
1030 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1031 	/* Get the next period */
1032 	next = tick_init_jiffy_update();
1033 
1034 	for (;;) {
1035 		hrtimer_set_expires(&ts->sched_timer, next);
1036 		if (!tick_program_event(next, 0))
1037 			break;
1038 		next = ktime_add(next, tick_period);
1039 	}
1040 	local_irq_enable();
1041 }
1042 
1043 /*
1044  * When NOHZ is enabled and the tick is stopped, we need to kick the
1045  * tick timer from irq_enter() so that the jiffies update is kept
1046  * alive during long running softirqs. That's ugly as hell, but
1047  * correctness is key even if we need to fix the offending softirq in
1048  * the first place.
1049  *
1050  * Note, this is different to tick_nohz_restart. We just kick the
1051  * timer and do not touch the other magic bits which need to be done
1052  * when idle is left.
1053  */
1054 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1055 {
1056 #if 0
1057 	/* Switch back to 2.6.27 behaviour */
1058 	ktime_t delta;
1059 
1060 	/*
1061 	 * Do not touch the tick device, when the next expiry is either
1062 	 * already reached or less/equal than the tick period.
1063 	 */
1064 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1065 	if (delta.tv64 <= tick_period.tv64)
1066 		return;
1067 
1068 	tick_nohz_restart(ts, now);
1069 #endif
1070 }
1071 
1072 static inline void tick_nohz_irq_enter(void)
1073 {
1074 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1075 	ktime_t now;
1076 
1077 	if (!ts->idle_active && !ts->tick_stopped)
1078 		return;
1079 	now = ktime_get();
1080 	if (ts->idle_active)
1081 		tick_nohz_stop_idle(ts, now);
1082 	if (ts->tick_stopped) {
1083 		tick_nohz_update_jiffies(now);
1084 		tick_nohz_kick_tick(ts, now);
1085 	}
1086 }
1087 
1088 #else
1089 
1090 static inline void tick_nohz_switch_to_nohz(void) { }
1091 static inline void tick_nohz_irq_enter(void) { }
1092 
1093 #endif /* CONFIG_NO_HZ_COMMON */
1094 
1095 /*
1096  * Called from irq_enter to notify about the possible interruption of idle()
1097  */
1098 void tick_irq_enter(void)
1099 {
1100 	tick_check_oneshot_broadcast_this_cpu();
1101 	tick_nohz_irq_enter();
1102 }
1103 
1104 /*
1105  * High resolution timer specific code
1106  */
1107 #ifdef CONFIG_HIGH_RES_TIMERS
1108 /*
1109  * We rearm the timer until we get disabled by the idle code.
1110  * Called with interrupts disabled.
1111  */
1112 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1113 {
1114 	struct tick_sched *ts =
1115 		container_of(timer, struct tick_sched, sched_timer);
1116 	struct pt_regs *regs = get_irq_regs();
1117 	ktime_t now = ktime_get();
1118 
1119 	tick_sched_do_timer(now);
1120 
1121 	/*
1122 	 * Do not call, when we are not in irq context and have
1123 	 * no valid regs pointer
1124 	 */
1125 	if (regs)
1126 		tick_sched_handle(ts, regs);
1127 
1128 	/* No need to reprogram if we are in idle or full dynticks mode */
1129 	if (unlikely(ts->tick_stopped))
1130 		return HRTIMER_NORESTART;
1131 
1132 	hrtimer_forward(timer, now, tick_period);
1133 
1134 	return HRTIMER_RESTART;
1135 }
1136 
1137 static int sched_skew_tick;
1138 
1139 static int __init skew_tick(char *str)
1140 {
1141 	get_option(&str, &sched_skew_tick);
1142 
1143 	return 0;
1144 }
1145 early_param("skew_tick", skew_tick);
1146 
1147 /**
1148  * tick_setup_sched_timer - setup the tick emulation timer
1149  */
1150 void tick_setup_sched_timer(void)
1151 {
1152 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1153 	ktime_t now = ktime_get();
1154 
1155 	/*
1156 	 * Emulate tick processing via per-CPU hrtimers:
1157 	 */
1158 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1159 	ts->sched_timer.function = tick_sched_timer;
1160 
1161 	/* Get the next period (per cpu) */
1162 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1163 
1164 	/* Offset the tick to avert jiffies_lock contention. */
1165 	if (sched_skew_tick) {
1166 		u64 offset = ktime_to_ns(tick_period) >> 1;
1167 		do_div(offset, num_possible_cpus());
1168 		offset *= smp_processor_id();
1169 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1170 	}
1171 
1172 	for (;;) {
1173 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1174 		hrtimer_start_expires(&ts->sched_timer,
1175 				      HRTIMER_MODE_ABS_PINNED);
1176 		/* Check, if the timer was already in the past */
1177 		if (hrtimer_active(&ts->sched_timer))
1178 			break;
1179 		now = ktime_get();
1180 	}
1181 
1182 #ifdef CONFIG_NO_HZ_COMMON
1183 	if (tick_nohz_enabled) {
1184 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1185 		tick_nohz_active = 1;
1186 	}
1187 #endif
1188 }
1189 #endif /* HIGH_RES_TIMERS */
1190 
1191 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1192 void tick_cancel_sched_timer(int cpu)
1193 {
1194 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1195 
1196 # ifdef CONFIG_HIGH_RES_TIMERS
1197 	if (ts->sched_timer.base)
1198 		hrtimer_cancel(&ts->sched_timer);
1199 # endif
1200 
1201 	memset(ts, 0, sizeof(*ts));
1202 }
1203 #endif
1204 
1205 /**
1206  * Async notification about clocksource changes
1207  */
1208 void tick_clock_notify(void)
1209 {
1210 	int cpu;
1211 
1212 	for_each_possible_cpu(cpu)
1213 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1214 }
1215 
1216 /*
1217  * Async notification about clock event changes
1218  */
1219 void tick_oneshot_notify(void)
1220 {
1221 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1222 
1223 	set_bit(0, &ts->check_clocks);
1224 }
1225 
1226 /**
1227  * Check, if a change happened, which makes oneshot possible.
1228  *
1229  * Called cyclic from the hrtimer softirq (driven by the timer
1230  * softirq) allow_nohz signals, that we can switch into low-res nohz
1231  * mode, because high resolution timers are disabled (either compile
1232  * or runtime).
1233  */
1234 int tick_check_oneshot_change(int allow_nohz)
1235 {
1236 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1237 
1238 	if (!test_and_clear_bit(0, &ts->check_clocks))
1239 		return 0;
1240 
1241 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1242 		return 0;
1243 
1244 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1245 		return 0;
1246 
1247 	if (!allow_nohz)
1248 		return 1;
1249 
1250 	tick_nohz_switch_to_nohz();
1251 	return 0;
1252 }
1253