xref: /openbmc/linux/kernel/time/tick-sched.c (revision 9014c45d)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 /*
32  * Per cpu nohz control structure
33  */
34 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
35 
36 /*
37  * The time, when the last jiffy update happened. Protected by jiffies_lock.
38  */
39 static ktime_t last_jiffies_update;
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 /*
47  * Must be called with interrupts disabled !
48  */
49 static void tick_do_update_jiffies64(ktime_t now)
50 {
51 	unsigned long ticks = 0;
52 	ktime_t delta;
53 
54 	/*
55 	 * Do a quick check without holding jiffies_lock:
56 	 */
57 	delta = ktime_sub(now, last_jiffies_update);
58 	if (delta.tv64 < tick_period.tv64)
59 		return;
60 
61 	/* Reevalute with jiffies_lock held */
62 	write_seqlock(&jiffies_lock);
63 
64 	delta = ktime_sub(now, last_jiffies_update);
65 	if (delta.tv64 >= tick_period.tv64) {
66 
67 		delta = ktime_sub(delta, tick_period);
68 		last_jiffies_update = ktime_add(last_jiffies_update,
69 						tick_period);
70 
71 		/* Slow path for long timeouts */
72 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
73 			s64 incr = ktime_to_ns(tick_period);
74 
75 			ticks = ktime_divns(delta, incr);
76 
77 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
78 							   incr * ticks);
79 		}
80 		do_timer(++ticks);
81 
82 		/* Keep the tick_next_period variable up to date */
83 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
84 	}
85 	write_sequnlock(&jiffies_lock);
86 }
87 
88 /*
89  * Initialize and return retrieve the jiffies update.
90  */
91 static ktime_t tick_init_jiffy_update(void)
92 {
93 	ktime_t period;
94 
95 	write_seqlock(&jiffies_lock);
96 	/* Did we start the jiffies update yet ? */
97 	if (last_jiffies_update.tv64 == 0)
98 		last_jiffies_update = tick_next_period;
99 	period = last_jiffies_update;
100 	write_sequnlock(&jiffies_lock);
101 	return period;
102 }
103 
104 
105 static void tick_sched_do_timer(ktime_t now)
106 {
107 	int cpu = smp_processor_id();
108 
109 #ifdef CONFIG_NO_HZ_COMMON
110 	/*
111 	 * Check if the do_timer duty was dropped. We don't care about
112 	 * concurrency: This happens only when the cpu in charge went
113 	 * into a long sleep. If two cpus happen to assign themself to
114 	 * this duty, then the jiffies update is still serialized by
115 	 * jiffies_lock.
116 	 */
117 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
118 	    && !tick_nohz_full_cpu(cpu))
119 		tick_do_timer_cpu = cpu;
120 #endif
121 
122 	/* Check, if the jiffies need an update */
123 	if (tick_do_timer_cpu == cpu)
124 		tick_do_update_jiffies64(now);
125 }
126 
127 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
128 {
129 #ifdef CONFIG_NO_HZ_COMMON
130 	/*
131 	 * When we are idle and the tick is stopped, we have to touch
132 	 * the watchdog as we might not schedule for a really long
133 	 * time. This happens on complete idle SMP systems while
134 	 * waiting on the login prompt. We also increment the "start of
135 	 * idle" jiffy stamp so the idle accounting adjustment we do
136 	 * when we go busy again does not account too much ticks.
137 	 */
138 	if (ts->tick_stopped) {
139 		touch_softlockup_watchdog();
140 		if (is_idle_task(current))
141 			ts->idle_jiffies++;
142 	}
143 #endif
144 	update_process_times(user_mode(regs));
145 	profile_tick(CPU_PROFILING);
146 }
147 
148 #ifdef CONFIG_NO_HZ_FULL
149 static cpumask_var_t nohz_full_mask;
150 bool have_nohz_full_mask;
151 
152 static bool can_stop_full_tick(void)
153 {
154 	WARN_ON_ONCE(!irqs_disabled());
155 
156 	if (!sched_can_stop_tick())
157 		return false;
158 
159 	if (!posix_cpu_timers_can_stop_tick(current))
160 		return false;
161 
162 	if (!perf_event_can_stop_tick())
163 		return false;
164 
165 	/* sched_clock_tick() needs us? */
166 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
167 	/*
168 	 * TODO: kick full dynticks CPUs when
169 	 * sched_clock_stable is set.
170 	 */
171 	if (!sched_clock_stable)
172 		return false;
173 #endif
174 
175 	return true;
176 }
177 
178 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
179 
180 /*
181  * Re-evaluate the need for the tick on the current CPU
182  * and restart it if necessary.
183  */
184 void tick_nohz_full_check(void)
185 {
186 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
187 
188 	if (tick_nohz_full_cpu(smp_processor_id())) {
189 		if (ts->tick_stopped && !is_idle_task(current)) {
190 			if (!can_stop_full_tick())
191 				tick_nohz_restart_sched_tick(ts, ktime_get());
192 		}
193 	}
194 }
195 
196 static void nohz_full_kick_work_func(struct irq_work *work)
197 {
198 	tick_nohz_full_check();
199 }
200 
201 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
202 	.func = nohz_full_kick_work_func,
203 };
204 
205 /*
206  * Kick the current CPU if it's full dynticks in order to force it to
207  * re-evaluate its dependency on the tick and restart it if necessary.
208  */
209 void tick_nohz_full_kick(void)
210 {
211 	if (tick_nohz_full_cpu(smp_processor_id()))
212 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
213 }
214 
215 static void nohz_full_kick_ipi(void *info)
216 {
217 	tick_nohz_full_check();
218 }
219 
220 /*
221  * Kick all full dynticks CPUs in order to force these to re-evaluate
222  * their dependency on the tick and restart it if necessary.
223  */
224 void tick_nohz_full_kick_all(void)
225 {
226 	if (!have_nohz_full_mask)
227 		return;
228 
229 	preempt_disable();
230 	smp_call_function_many(nohz_full_mask,
231 			       nohz_full_kick_ipi, NULL, false);
232 	preempt_enable();
233 }
234 
235 int tick_nohz_full_cpu(int cpu)
236 {
237 	if (!have_nohz_full_mask)
238 		return 0;
239 
240 	return cpumask_test_cpu(cpu, nohz_full_mask);
241 }
242 
243 /* Parse the boot-time nohz CPU list from the kernel parameters. */
244 static int __init tick_nohz_full_setup(char *str)
245 {
246 	int cpu;
247 
248 	alloc_bootmem_cpumask_var(&nohz_full_mask);
249 	if (cpulist_parse(str, nohz_full_mask) < 0) {
250 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
251 		return 1;
252 	}
253 
254 	cpu = smp_processor_id();
255 	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
256 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
257 		cpumask_clear_cpu(cpu, nohz_full_mask);
258 	}
259 	have_nohz_full_mask = true;
260 
261 	return 1;
262 }
263 __setup("nohz_full=", tick_nohz_full_setup);
264 
265 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
266 						 unsigned long action,
267 						 void *hcpu)
268 {
269 	unsigned int cpu = (unsigned long)hcpu;
270 
271 	switch (action & ~CPU_TASKS_FROZEN) {
272 	case CPU_DOWN_PREPARE:
273 		/*
274 		 * If we handle the timekeeping duty for full dynticks CPUs,
275 		 * we can't safely shutdown that CPU.
276 		 */
277 		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
278 			return -EINVAL;
279 		break;
280 	}
281 	return NOTIFY_OK;
282 }
283 
284 /*
285  * Worst case string length in chunks of CPU range seems 2 steps
286  * separations: 0,2,4,6,...
287  * This is NR_CPUS + sizeof('\0')
288  */
289 static char __initdata nohz_full_buf[NR_CPUS + 1];
290 
291 static int tick_nohz_init_all(void)
292 {
293 	int err = -1;
294 
295 #ifdef CONFIG_NO_HZ_FULL_ALL
296 	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
297 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
298 		return err;
299 	}
300 	err = 0;
301 	cpumask_setall(nohz_full_mask);
302 	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
303 	have_nohz_full_mask = true;
304 #endif
305 	return err;
306 }
307 
308 void __init tick_nohz_init(void)
309 {
310 	int cpu;
311 
312 	if (!have_nohz_full_mask) {
313 		if (tick_nohz_init_all() < 0)
314 			return;
315 	}
316 
317 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
318 
319 	/* Make sure full dynticks CPU are also RCU nocbs */
320 	for_each_cpu(cpu, nohz_full_mask) {
321 		if (!rcu_is_nocb_cpu(cpu)) {
322 			pr_warning("NO_HZ: CPU %d is not RCU nocb: "
323 				   "cleared from nohz_full range", cpu);
324 			cpumask_clear_cpu(cpu, nohz_full_mask);
325 		}
326 	}
327 
328 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
329 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
330 }
331 #else
332 #define have_nohz_full_mask (0)
333 #endif
334 
335 /*
336  * NOHZ - aka dynamic tick functionality
337  */
338 #ifdef CONFIG_NO_HZ_COMMON
339 /*
340  * NO HZ enabled ?
341  */
342 int tick_nohz_enabled __read_mostly  = 1;
343 
344 /*
345  * Enable / Disable tickless mode
346  */
347 static int __init setup_tick_nohz(char *str)
348 {
349 	if (!strcmp(str, "off"))
350 		tick_nohz_enabled = 0;
351 	else if (!strcmp(str, "on"))
352 		tick_nohz_enabled = 1;
353 	else
354 		return 0;
355 	return 1;
356 }
357 
358 __setup("nohz=", setup_tick_nohz);
359 
360 /**
361  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
362  *
363  * Called from interrupt entry when the CPU was idle
364  *
365  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
366  * must be updated. Otherwise an interrupt handler could use a stale jiffy
367  * value. We do this unconditionally on any cpu, as we don't know whether the
368  * cpu, which has the update task assigned is in a long sleep.
369  */
370 static void tick_nohz_update_jiffies(ktime_t now)
371 {
372 	int cpu = smp_processor_id();
373 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
374 	unsigned long flags;
375 
376 	ts->idle_waketime = now;
377 
378 	local_irq_save(flags);
379 	tick_do_update_jiffies64(now);
380 	local_irq_restore(flags);
381 
382 	touch_softlockup_watchdog();
383 }
384 
385 /*
386  * Updates the per cpu time idle statistics counters
387  */
388 static void
389 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
390 {
391 	ktime_t delta;
392 
393 	if (ts->idle_active) {
394 		delta = ktime_sub(now, ts->idle_entrytime);
395 		if (nr_iowait_cpu(cpu) > 0)
396 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
397 		else
398 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
399 		ts->idle_entrytime = now;
400 	}
401 
402 	if (last_update_time)
403 		*last_update_time = ktime_to_us(now);
404 
405 }
406 
407 static void tick_nohz_stop_idle(int cpu, ktime_t now)
408 {
409 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
410 
411 	update_ts_time_stats(cpu, ts, now, NULL);
412 	ts->idle_active = 0;
413 
414 	sched_clock_idle_wakeup_event(0);
415 }
416 
417 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
418 {
419 	ktime_t now = ktime_get();
420 
421 	ts->idle_entrytime = now;
422 	ts->idle_active = 1;
423 	sched_clock_idle_sleep_event();
424 	return now;
425 }
426 
427 /**
428  * get_cpu_idle_time_us - get the total idle time of a cpu
429  * @cpu: CPU number to query
430  * @last_update_time: variable to store update time in. Do not update
431  * counters if NULL.
432  *
433  * Return the cummulative idle time (since boot) for a given
434  * CPU, in microseconds.
435  *
436  * This time is measured via accounting rather than sampling,
437  * and is as accurate as ktime_get() is.
438  *
439  * This function returns -1 if NOHZ is not enabled.
440  */
441 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
442 {
443 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
444 	ktime_t now, idle;
445 
446 	if (!tick_nohz_enabled)
447 		return -1;
448 
449 	now = ktime_get();
450 	if (last_update_time) {
451 		update_ts_time_stats(cpu, ts, now, last_update_time);
452 		idle = ts->idle_sleeptime;
453 	} else {
454 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
455 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
456 
457 			idle = ktime_add(ts->idle_sleeptime, delta);
458 		} else {
459 			idle = ts->idle_sleeptime;
460 		}
461 	}
462 
463 	return ktime_to_us(idle);
464 
465 }
466 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
467 
468 /**
469  * get_cpu_iowait_time_us - get the total iowait time of a cpu
470  * @cpu: CPU number to query
471  * @last_update_time: variable to store update time in. Do not update
472  * counters if NULL.
473  *
474  * Return the cummulative iowait time (since boot) for a given
475  * CPU, in microseconds.
476  *
477  * This time is measured via accounting rather than sampling,
478  * and is as accurate as ktime_get() is.
479  *
480  * This function returns -1 if NOHZ is not enabled.
481  */
482 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
483 {
484 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
485 	ktime_t now, iowait;
486 
487 	if (!tick_nohz_enabled)
488 		return -1;
489 
490 	now = ktime_get();
491 	if (last_update_time) {
492 		update_ts_time_stats(cpu, ts, now, last_update_time);
493 		iowait = ts->iowait_sleeptime;
494 	} else {
495 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
496 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
497 
498 			iowait = ktime_add(ts->iowait_sleeptime, delta);
499 		} else {
500 			iowait = ts->iowait_sleeptime;
501 		}
502 	}
503 
504 	return ktime_to_us(iowait);
505 }
506 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
507 
508 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
509 					 ktime_t now, int cpu)
510 {
511 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
512 	ktime_t last_update, expires, ret = { .tv64 = 0 };
513 	unsigned long rcu_delta_jiffies;
514 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
515 	u64 time_delta;
516 
517 	/* Read jiffies and the time when jiffies were updated last */
518 	do {
519 		seq = read_seqbegin(&jiffies_lock);
520 		last_update = last_jiffies_update;
521 		last_jiffies = jiffies;
522 		time_delta = timekeeping_max_deferment();
523 	} while (read_seqretry(&jiffies_lock, seq));
524 
525 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
526 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
527 		next_jiffies = last_jiffies + 1;
528 		delta_jiffies = 1;
529 	} else {
530 		/* Get the next timer wheel timer */
531 		next_jiffies = get_next_timer_interrupt(last_jiffies);
532 		delta_jiffies = next_jiffies - last_jiffies;
533 		if (rcu_delta_jiffies < delta_jiffies) {
534 			next_jiffies = last_jiffies + rcu_delta_jiffies;
535 			delta_jiffies = rcu_delta_jiffies;
536 		}
537 	}
538 	/*
539 	 * Do not stop the tick, if we are only one off
540 	 * or if the cpu is required for rcu
541 	 */
542 	if (!ts->tick_stopped && delta_jiffies == 1)
543 		goto out;
544 
545 	/* Schedule the tick, if we are at least one jiffie off */
546 	if ((long)delta_jiffies >= 1) {
547 
548 		/*
549 		 * If this cpu is the one which updates jiffies, then
550 		 * give up the assignment and let it be taken by the
551 		 * cpu which runs the tick timer next, which might be
552 		 * this cpu as well. If we don't drop this here the
553 		 * jiffies might be stale and do_timer() never
554 		 * invoked. Keep track of the fact that it was the one
555 		 * which had the do_timer() duty last. If this cpu is
556 		 * the one which had the do_timer() duty last, we
557 		 * limit the sleep time to the timekeeping
558 		 * max_deferement value which we retrieved
559 		 * above. Otherwise we can sleep as long as we want.
560 		 */
561 		if (cpu == tick_do_timer_cpu) {
562 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
563 			ts->do_timer_last = 1;
564 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
565 			time_delta = KTIME_MAX;
566 			ts->do_timer_last = 0;
567 		} else if (!ts->do_timer_last) {
568 			time_delta = KTIME_MAX;
569 		}
570 
571 		/*
572 		 * calculate the expiry time for the next timer wheel
573 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
574 		 * that there is no timer pending or at least extremely
575 		 * far into the future (12 days for HZ=1000). In this
576 		 * case we set the expiry to the end of time.
577 		 */
578 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
579 			/*
580 			 * Calculate the time delta for the next timer event.
581 			 * If the time delta exceeds the maximum time delta
582 			 * permitted by the current clocksource then adjust
583 			 * the time delta accordingly to ensure the
584 			 * clocksource does not wrap.
585 			 */
586 			time_delta = min_t(u64, time_delta,
587 					   tick_period.tv64 * delta_jiffies);
588 		}
589 
590 		if (time_delta < KTIME_MAX)
591 			expires = ktime_add_ns(last_update, time_delta);
592 		else
593 			expires.tv64 = KTIME_MAX;
594 
595 		/* Skip reprogram of event if its not changed */
596 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
597 			goto out;
598 
599 		ret = expires;
600 
601 		/*
602 		 * nohz_stop_sched_tick can be called several times before
603 		 * the nohz_restart_sched_tick is called. This happens when
604 		 * interrupts arrive which do not cause a reschedule. In the
605 		 * first call we save the current tick time, so we can restart
606 		 * the scheduler tick in nohz_restart_sched_tick.
607 		 */
608 		if (!ts->tick_stopped) {
609 			nohz_balance_enter_idle(cpu);
610 			calc_load_enter_idle();
611 
612 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
613 			ts->tick_stopped = 1;
614 		}
615 
616 		/*
617 		 * If the expiration time == KTIME_MAX, then
618 		 * in this case we simply stop the tick timer.
619 		 */
620 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
621 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
622 				hrtimer_cancel(&ts->sched_timer);
623 			goto out;
624 		}
625 
626 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
627 			hrtimer_start(&ts->sched_timer, expires,
628 				      HRTIMER_MODE_ABS_PINNED);
629 			/* Check, if the timer was already in the past */
630 			if (hrtimer_active(&ts->sched_timer))
631 				goto out;
632 		} else if (!tick_program_event(expires, 0))
633 				goto out;
634 		/*
635 		 * We are past the event already. So we crossed a
636 		 * jiffie boundary. Update jiffies and raise the
637 		 * softirq.
638 		 */
639 		tick_do_update_jiffies64(ktime_get());
640 	}
641 	raise_softirq_irqoff(TIMER_SOFTIRQ);
642 out:
643 	ts->next_jiffies = next_jiffies;
644 	ts->last_jiffies = last_jiffies;
645 	ts->sleep_length = ktime_sub(dev->next_event, now);
646 
647 	return ret;
648 }
649 
650 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
651 {
652 	/*
653 	 * If this cpu is offline and it is the one which updates
654 	 * jiffies, then give up the assignment and let it be taken by
655 	 * the cpu which runs the tick timer next. If we don't drop
656 	 * this here the jiffies might be stale and do_timer() never
657 	 * invoked.
658 	 */
659 	if (unlikely(!cpu_online(cpu))) {
660 		if (cpu == tick_do_timer_cpu)
661 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
662 	}
663 
664 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
665 		return false;
666 
667 	if (need_resched())
668 		return false;
669 
670 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
671 		static int ratelimit;
672 
673 		if (ratelimit < 10 &&
674 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
675 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
676 			       (unsigned int) local_softirq_pending());
677 			ratelimit++;
678 		}
679 		return false;
680 	}
681 
682 	if (have_nohz_full_mask) {
683 		/*
684 		 * Keep the tick alive to guarantee timekeeping progression
685 		 * if there are full dynticks CPUs around
686 		 */
687 		if (tick_do_timer_cpu == cpu)
688 			return false;
689 		/*
690 		 * Boot safety: make sure the timekeeping duty has been
691 		 * assigned before entering dyntick-idle mode,
692 		 */
693 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
694 			return false;
695 	}
696 
697 	return true;
698 }
699 
700 static void __tick_nohz_idle_enter(struct tick_sched *ts)
701 {
702 	ktime_t now, expires;
703 	int cpu = smp_processor_id();
704 
705 	now = tick_nohz_start_idle(cpu, ts);
706 
707 	if (can_stop_idle_tick(cpu, ts)) {
708 		int was_stopped = ts->tick_stopped;
709 
710 		ts->idle_calls++;
711 
712 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
713 		if (expires.tv64 > 0LL) {
714 			ts->idle_sleeps++;
715 			ts->idle_expires = expires;
716 		}
717 
718 		if (!was_stopped && ts->tick_stopped)
719 			ts->idle_jiffies = ts->last_jiffies;
720 	}
721 }
722 
723 /**
724  * tick_nohz_idle_enter - stop the idle tick from the idle task
725  *
726  * When the next event is more than a tick into the future, stop the idle tick
727  * Called when we start the idle loop.
728  *
729  * The arch is responsible of calling:
730  *
731  * - rcu_idle_enter() after its last use of RCU before the CPU is put
732  *  to sleep.
733  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
734  */
735 void tick_nohz_idle_enter(void)
736 {
737 	struct tick_sched *ts;
738 
739 	WARN_ON_ONCE(irqs_disabled());
740 
741 	/*
742  	 * Update the idle state in the scheduler domain hierarchy
743  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
744  	 * State will be updated to busy during the first busy tick after
745  	 * exiting idle.
746  	 */
747 	set_cpu_sd_state_idle();
748 
749 	local_irq_disable();
750 
751 	ts = &__get_cpu_var(tick_cpu_sched);
752 	/*
753 	 * set ts->inidle unconditionally. even if the system did not
754 	 * switch to nohz mode the cpu frequency governers rely on the
755 	 * update of the idle time accounting in tick_nohz_start_idle().
756 	 */
757 	ts->inidle = 1;
758 	__tick_nohz_idle_enter(ts);
759 
760 	local_irq_enable();
761 }
762 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
763 
764 /**
765  * tick_nohz_irq_exit - update next tick event from interrupt exit
766  *
767  * When an interrupt fires while we are idle and it doesn't cause
768  * a reschedule, it may still add, modify or delete a timer, enqueue
769  * an RCU callback, etc...
770  * So we need to re-calculate and reprogram the next tick event.
771  */
772 void tick_nohz_irq_exit(void)
773 {
774 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
775 
776 	if (!ts->inidle)
777 		return;
778 
779 	/* Cancel the timer because CPU already waken up from the C-states*/
780 	menu_hrtimer_cancel();
781 	__tick_nohz_idle_enter(ts);
782 }
783 
784 /**
785  * tick_nohz_get_sleep_length - return the length of the current sleep
786  *
787  * Called from power state control code with interrupts disabled
788  */
789 ktime_t tick_nohz_get_sleep_length(void)
790 {
791 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
792 
793 	return ts->sleep_length;
794 }
795 
796 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
797 {
798 	hrtimer_cancel(&ts->sched_timer);
799 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
800 
801 	while (1) {
802 		/* Forward the time to expire in the future */
803 		hrtimer_forward(&ts->sched_timer, now, tick_period);
804 
805 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
806 			hrtimer_start_expires(&ts->sched_timer,
807 					      HRTIMER_MODE_ABS_PINNED);
808 			/* Check, if the timer was already in the past */
809 			if (hrtimer_active(&ts->sched_timer))
810 				break;
811 		} else {
812 			if (!tick_program_event(
813 				hrtimer_get_expires(&ts->sched_timer), 0))
814 				break;
815 		}
816 		/* Reread time and update jiffies */
817 		now = ktime_get();
818 		tick_do_update_jiffies64(now);
819 	}
820 }
821 
822 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
823 {
824 	/* Update jiffies first */
825 	tick_do_update_jiffies64(now);
826 	update_cpu_load_nohz();
827 
828 	calc_load_exit_idle();
829 	touch_softlockup_watchdog();
830 	/*
831 	 * Cancel the scheduled timer and restore the tick
832 	 */
833 	ts->tick_stopped  = 0;
834 	ts->idle_exittime = now;
835 
836 	tick_nohz_restart(ts, now);
837 }
838 
839 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
840 {
841 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
842 	unsigned long ticks;
843 
844 	if (vtime_accounting_enabled())
845 		return;
846 	/*
847 	 * We stopped the tick in idle. Update process times would miss the
848 	 * time we slept as update_process_times does only a 1 tick
849 	 * accounting. Enforce that this is accounted to idle !
850 	 */
851 	ticks = jiffies - ts->idle_jiffies;
852 	/*
853 	 * We might be one off. Do not randomly account a huge number of ticks!
854 	 */
855 	if (ticks && ticks < LONG_MAX)
856 		account_idle_ticks(ticks);
857 #endif
858 }
859 
860 /**
861  * tick_nohz_idle_exit - restart the idle tick from the idle task
862  *
863  * Restart the idle tick when the CPU is woken up from idle
864  * This also exit the RCU extended quiescent state. The CPU
865  * can use RCU again after this function is called.
866  */
867 void tick_nohz_idle_exit(void)
868 {
869 	int cpu = smp_processor_id();
870 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
871 	ktime_t now;
872 
873 	local_irq_disable();
874 
875 	WARN_ON_ONCE(!ts->inidle);
876 
877 	ts->inidle = 0;
878 
879 	/* Cancel the timer because CPU already waken up from the C-states*/
880 	menu_hrtimer_cancel();
881 	if (ts->idle_active || ts->tick_stopped)
882 		now = ktime_get();
883 
884 	if (ts->idle_active)
885 		tick_nohz_stop_idle(cpu, now);
886 
887 	if (ts->tick_stopped) {
888 		tick_nohz_restart_sched_tick(ts, now);
889 		tick_nohz_account_idle_ticks(ts);
890 	}
891 
892 	local_irq_enable();
893 }
894 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
895 
896 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
897 {
898 	hrtimer_forward(&ts->sched_timer, now, tick_period);
899 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
900 }
901 
902 /*
903  * The nohz low res interrupt handler
904  */
905 static void tick_nohz_handler(struct clock_event_device *dev)
906 {
907 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
908 	struct pt_regs *regs = get_irq_regs();
909 	ktime_t now = ktime_get();
910 
911 	dev->next_event.tv64 = KTIME_MAX;
912 
913 	tick_sched_do_timer(now);
914 	tick_sched_handle(ts, regs);
915 
916 	while (tick_nohz_reprogram(ts, now)) {
917 		now = ktime_get();
918 		tick_do_update_jiffies64(now);
919 	}
920 }
921 
922 /**
923  * tick_nohz_switch_to_nohz - switch to nohz mode
924  */
925 static void tick_nohz_switch_to_nohz(void)
926 {
927 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
928 	ktime_t next;
929 
930 	if (!tick_nohz_enabled)
931 		return;
932 
933 	local_irq_disable();
934 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
935 		local_irq_enable();
936 		return;
937 	}
938 
939 	ts->nohz_mode = NOHZ_MODE_LOWRES;
940 
941 	/*
942 	 * Recycle the hrtimer in ts, so we can share the
943 	 * hrtimer_forward with the highres code.
944 	 */
945 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
946 	/* Get the next period */
947 	next = tick_init_jiffy_update();
948 
949 	for (;;) {
950 		hrtimer_set_expires(&ts->sched_timer, next);
951 		if (!tick_program_event(next, 0))
952 			break;
953 		next = ktime_add(next, tick_period);
954 	}
955 	local_irq_enable();
956 }
957 
958 /*
959  * When NOHZ is enabled and the tick is stopped, we need to kick the
960  * tick timer from irq_enter() so that the jiffies update is kept
961  * alive during long running softirqs. That's ugly as hell, but
962  * correctness is key even if we need to fix the offending softirq in
963  * the first place.
964  *
965  * Note, this is different to tick_nohz_restart. We just kick the
966  * timer and do not touch the other magic bits which need to be done
967  * when idle is left.
968  */
969 static void tick_nohz_kick_tick(int cpu, ktime_t now)
970 {
971 #if 0
972 	/* Switch back to 2.6.27 behaviour */
973 
974 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
975 	ktime_t delta;
976 
977 	/*
978 	 * Do not touch the tick device, when the next expiry is either
979 	 * already reached or less/equal than the tick period.
980 	 */
981 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
982 	if (delta.tv64 <= tick_period.tv64)
983 		return;
984 
985 	tick_nohz_restart(ts, now);
986 #endif
987 }
988 
989 static inline void tick_check_nohz(int cpu)
990 {
991 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
992 	ktime_t now;
993 
994 	if (!ts->idle_active && !ts->tick_stopped)
995 		return;
996 	now = ktime_get();
997 	if (ts->idle_active)
998 		tick_nohz_stop_idle(cpu, now);
999 	if (ts->tick_stopped) {
1000 		tick_nohz_update_jiffies(now);
1001 		tick_nohz_kick_tick(cpu, now);
1002 	}
1003 }
1004 
1005 #else
1006 
1007 static inline void tick_nohz_switch_to_nohz(void) { }
1008 static inline void tick_check_nohz(int cpu) { }
1009 
1010 #endif /* CONFIG_NO_HZ_COMMON */
1011 
1012 /*
1013  * Called from irq_enter to notify about the possible interruption of idle()
1014  */
1015 void tick_check_idle(int cpu)
1016 {
1017 	tick_check_oneshot_broadcast(cpu);
1018 	tick_check_nohz(cpu);
1019 }
1020 
1021 /*
1022  * High resolution timer specific code
1023  */
1024 #ifdef CONFIG_HIGH_RES_TIMERS
1025 /*
1026  * We rearm the timer until we get disabled by the idle code.
1027  * Called with interrupts disabled.
1028  */
1029 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1030 {
1031 	struct tick_sched *ts =
1032 		container_of(timer, struct tick_sched, sched_timer);
1033 	struct pt_regs *regs = get_irq_regs();
1034 	ktime_t now = ktime_get();
1035 
1036 	tick_sched_do_timer(now);
1037 
1038 	/*
1039 	 * Do not call, when we are not in irq context and have
1040 	 * no valid regs pointer
1041 	 */
1042 	if (regs)
1043 		tick_sched_handle(ts, regs);
1044 
1045 	hrtimer_forward(timer, now, tick_period);
1046 
1047 	return HRTIMER_RESTART;
1048 }
1049 
1050 static int sched_skew_tick;
1051 
1052 static int __init skew_tick(char *str)
1053 {
1054 	get_option(&str, &sched_skew_tick);
1055 
1056 	return 0;
1057 }
1058 early_param("skew_tick", skew_tick);
1059 
1060 /**
1061  * tick_setup_sched_timer - setup the tick emulation timer
1062  */
1063 void tick_setup_sched_timer(void)
1064 {
1065 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1066 	ktime_t now = ktime_get();
1067 
1068 	/*
1069 	 * Emulate tick processing via per-CPU hrtimers:
1070 	 */
1071 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1072 	ts->sched_timer.function = tick_sched_timer;
1073 
1074 	/* Get the next period (per cpu) */
1075 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1076 
1077 	/* Offset the tick to avert jiffies_lock contention. */
1078 	if (sched_skew_tick) {
1079 		u64 offset = ktime_to_ns(tick_period) >> 1;
1080 		do_div(offset, num_possible_cpus());
1081 		offset *= smp_processor_id();
1082 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1083 	}
1084 
1085 	for (;;) {
1086 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1087 		hrtimer_start_expires(&ts->sched_timer,
1088 				      HRTIMER_MODE_ABS_PINNED);
1089 		/* Check, if the timer was already in the past */
1090 		if (hrtimer_active(&ts->sched_timer))
1091 			break;
1092 		now = ktime_get();
1093 	}
1094 
1095 #ifdef CONFIG_NO_HZ_COMMON
1096 	if (tick_nohz_enabled)
1097 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1098 #endif
1099 }
1100 #endif /* HIGH_RES_TIMERS */
1101 
1102 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1103 void tick_cancel_sched_timer(int cpu)
1104 {
1105 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1106 
1107 # ifdef CONFIG_HIGH_RES_TIMERS
1108 	if (ts->sched_timer.base)
1109 		hrtimer_cancel(&ts->sched_timer);
1110 # endif
1111 
1112 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
1113 }
1114 #endif
1115 
1116 /**
1117  * Async notification about clocksource changes
1118  */
1119 void tick_clock_notify(void)
1120 {
1121 	int cpu;
1122 
1123 	for_each_possible_cpu(cpu)
1124 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1125 }
1126 
1127 /*
1128  * Async notification about clock event changes
1129  */
1130 void tick_oneshot_notify(void)
1131 {
1132 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1133 
1134 	set_bit(0, &ts->check_clocks);
1135 }
1136 
1137 /**
1138  * Check, if a change happened, which makes oneshot possible.
1139  *
1140  * Called cyclic from the hrtimer softirq (driven by the timer
1141  * softirq) allow_nohz signals, that we can switch into low-res nohz
1142  * mode, because high resolution timers are disabled (either compile
1143  * or runtime).
1144  */
1145 int tick_check_oneshot_change(int allow_nohz)
1146 {
1147 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1148 
1149 	if (!test_and_clear_bit(0, &ts->check_clocks))
1150 		return 0;
1151 
1152 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1153 		return 0;
1154 
1155 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1156 		return 0;
1157 
1158 	if (!allow_nohz)
1159 		return 1;
1160 
1161 	tick_nohz_switch_to_nohz();
1162 	return 0;
1163 }
1164