1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 47 /* 48 * The time, when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64bit can do a quick check without holding jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32bit cannot do that because the store of tick_next_period 68 * consists of two 32bit stores and the first store could move it 69 * to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on jiffies_lock and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Reevaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the jiffies_seq protected job */ 118 jiffies_64 += ticks; 119 120 /* 121 * Keep the tick_next_period variable up to date. 122 */ 123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 124 125 if (IS_ENABLED(CONFIG_64BIT)) { 126 /* 127 * Pairs with smp_load_acquire() in the lockless quick 128 * check above and ensures that the update to jiffies_64 is 129 * not reordered vs. the store to tick_next_period, neither 130 * by the compiler nor by the CPU. 131 */ 132 smp_store_release(&tick_next_period, nextp); 133 } else { 134 /* 135 * A plain store is good enough on 32bit as the quick check 136 * above is protected by the sequence count. 137 */ 138 tick_next_period = nextp; 139 } 140 141 /* 142 * Release the sequence count. calc_global_load() below is not 143 * protected by it, but jiffies_lock needs to be held to prevent 144 * concurrent invocations. 145 */ 146 write_seqcount_end(&jiffies_seq); 147 148 calc_global_load(); 149 150 raw_spin_unlock(&jiffies_lock); 151 update_wall_time(); 152 } 153 154 /* 155 * Initialize and return retrieve the jiffies update. 156 */ 157 static ktime_t tick_init_jiffy_update(void) 158 { 159 ktime_t period; 160 161 raw_spin_lock(&jiffies_lock); 162 write_seqcount_begin(&jiffies_seq); 163 /* Did we start the jiffies update yet ? */ 164 if (last_jiffies_update == 0) 165 last_jiffies_update = tick_next_period; 166 period = last_jiffies_update; 167 write_seqcount_end(&jiffies_seq); 168 raw_spin_unlock(&jiffies_lock); 169 return period; 170 } 171 172 #define MAX_STALLED_JIFFIES 5 173 174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 175 { 176 int cpu = smp_processor_id(); 177 178 #ifdef CONFIG_NO_HZ_COMMON 179 /* 180 * Check if the do_timer duty was dropped. We don't care about 181 * concurrency: This happens only when the CPU in charge went 182 * into a long sleep. If two CPUs happen to assign themselves to 183 * this duty, then the jiffies update is still serialized by 184 * jiffies_lock. 185 * 186 * If nohz_full is enabled, this should not happen because the 187 * tick_do_timer_cpu never relinquishes. 188 */ 189 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 190 #ifdef CONFIG_NO_HZ_FULL 191 WARN_ON_ONCE(tick_nohz_full_running); 192 #endif 193 tick_do_timer_cpu = cpu; 194 } 195 #endif 196 197 /* Check, if the jiffies need an update */ 198 if (tick_do_timer_cpu == cpu) 199 tick_do_update_jiffies64(now); 200 201 /* 202 * If jiffies update stalled for too long (timekeeper in stop_machine() 203 * or VMEXIT'ed for several msecs), force an update. 204 */ 205 if (ts->last_tick_jiffies != jiffies) { 206 ts->stalled_jiffies = 0; 207 ts->last_tick_jiffies = READ_ONCE(jiffies); 208 } else { 209 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 210 tick_do_update_jiffies64(now); 211 ts->stalled_jiffies = 0; 212 ts->last_tick_jiffies = READ_ONCE(jiffies); 213 } 214 } 215 216 if (ts->inidle) 217 ts->got_idle_tick = 1; 218 } 219 220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 221 { 222 #ifdef CONFIG_NO_HZ_COMMON 223 /* 224 * When we are idle and the tick is stopped, we have to touch 225 * the watchdog as we might not schedule for a really long 226 * time. This happens on complete idle SMP systems while 227 * waiting on the login prompt. We also increment the "start of 228 * idle" jiffy stamp so the idle accounting adjustment we do 229 * when we go busy again does not account too much ticks. 230 */ 231 if (ts->tick_stopped) { 232 touch_softlockup_watchdog_sched(); 233 if (is_idle_task(current)) 234 ts->idle_jiffies++; 235 /* 236 * In case the current tick fired too early past its expected 237 * expiration, make sure we don't bypass the next clock reprogramming 238 * to the same deadline. 239 */ 240 ts->next_tick = 0; 241 } 242 #endif 243 update_process_times(user_mode(regs)); 244 profile_tick(CPU_PROFILING); 245 } 246 #endif 247 248 #ifdef CONFIG_NO_HZ_FULL 249 cpumask_var_t tick_nohz_full_mask; 250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 251 bool tick_nohz_full_running; 252 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 253 static atomic_t tick_dep_mask; 254 255 static bool check_tick_dependency(atomic_t *dep) 256 { 257 int val = atomic_read(dep); 258 259 if (val & TICK_DEP_MASK_POSIX_TIMER) { 260 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 261 return true; 262 } 263 264 if (val & TICK_DEP_MASK_PERF_EVENTS) { 265 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 266 return true; 267 } 268 269 if (val & TICK_DEP_MASK_SCHED) { 270 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 271 return true; 272 } 273 274 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 275 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 276 return true; 277 } 278 279 if (val & TICK_DEP_MASK_RCU) { 280 trace_tick_stop(0, TICK_DEP_MASK_RCU); 281 return true; 282 } 283 284 if (val & TICK_DEP_MASK_RCU_EXP) { 285 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); 286 return true; 287 } 288 289 return false; 290 } 291 292 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 293 { 294 lockdep_assert_irqs_disabled(); 295 296 if (unlikely(!cpu_online(cpu))) 297 return false; 298 299 if (check_tick_dependency(&tick_dep_mask)) 300 return false; 301 302 if (check_tick_dependency(&ts->tick_dep_mask)) 303 return false; 304 305 if (check_tick_dependency(¤t->tick_dep_mask)) 306 return false; 307 308 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 309 return false; 310 311 return true; 312 } 313 314 static void nohz_full_kick_func(struct irq_work *work) 315 { 316 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 317 } 318 319 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 320 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 321 322 /* 323 * Kick this CPU if it's full dynticks in order to force it to 324 * re-evaluate its dependency on the tick and restart it if necessary. 325 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 326 * is NMI safe. 327 */ 328 static void tick_nohz_full_kick(void) 329 { 330 if (!tick_nohz_full_cpu(smp_processor_id())) 331 return; 332 333 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 334 } 335 336 /* 337 * Kick the CPU if it's full dynticks in order to force it to 338 * re-evaluate its dependency on the tick and restart it if necessary. 339 */ 340 void tick_nohz_full_kick_cpu(int cpu) 341 { 342 if (!tick_nohz_full_cpu(cpu)) 343 return; 344 345 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 346 } 347 348 static void tick_nohz_kick_task(struct task_struct *tsk) 349 { 350 int cpu; 351 352 /* 353 * If the task is not running, run_posix_cpu_timers() 354 * has nothing to elapse, IPI can then be spared. 355 * 356 * activate_task() STORE p->tick_dep_mask 357 * STORE p->on_rq 358 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 359 * LOCK rq->lock LOAD p->on_rq 360 * smp_mb__after_spin_lock() 361 * tick_nohz_task_switch() 362 * LOAD p->tick_dep_mask 363 */ 364 if (!sched_task_on_rq(tsk)) 365 return; 366 367 /* 368 * If the task concurrently migrates to another CPU, 369 * we guarantee it sees the new tick dependency upon 370 * schedule. 371 * 372 * set_task_cpu(p, cpu); 373 * STORE p->cpu = @cpu 374 * __schedule() (switch to task 'p') 375 * LOCK rq->lock 376 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 377 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 378 * LOAD p->tick_dep_mask LOAD p->cpu 379 */ 380 cpu = task_cpu(tsk); 381 382 preempt_disable(); 383 if (cpu_online(cpu)) 384 tick_nohz_full_kick_cpu(cpu); 385 preempt_enable(); 386 } 387 388 /* 389 * Kick all full dynticks CPUs in order to force these to re-evaluate 390 * their dependency on the tick and restart it if necessary. 391 */ 392 static void tick_nohz_full_kick_all(void) 393 { 394 int cpu; 395 396 if (!tick_nohz_full_running) 397 return; 398 399 preempt_disable(); 400 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 401 tick_nohz_full_kick_cpu(cpu); 402 preempt_enable(); 403 } 404 405 static void tick_nohz_dep_set_all(atomic_t *dep, 406 enum tick_dep_bits bit) 407 { 408 int prev; 409 410 prev = atomic_fetch_or(BIT(bit), dep); 411 if (!prev) 412 tick_nohz_full_kick_all(); 413 } 414 415 /* 416 * Set a global tick dependency. Used by perf events that rely on freq and 417 * by unstable clock. 418 */ 419 void tick_nohz_dep_set(enum tick_dep_bits bit) 420 { 421 tick_nohz_dep_set_all(&tick_dep_mask, bit); 422 } 423 424 void tick_nohz_dep_clear(enum tick_dep_bits bit) 425 { 426 atomic_andnot(BIT(bit), &tick_dep_mask); 427 } 428 429 /* 430 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 431 * manage events throttling. 432 */ 433 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 434 { 435 int prev; 436 struct tick_sched *ts; 437 438 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 439 440 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 441 if (!prev) { 442 preempt_disable(); 443 /* Perf needs local kick that is NMI safe */ 444 if (cpu == smp_processor_id()) { 445 tick_nohz_full_kick(); 446 } else { 447 /* Remote irq work not NMI-safe */ 448 if (!WARN_ON_ONCE(in_nmi())) 449 tick_nohz_full_kick_cpu(cpu); 450 } 451 preempt_enable(); 452 } 453 } 454 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 455 456 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 457 { 458 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 459 460 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 461 } 462 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 463 464 /* 465 * Set a per-task tick dependency. RCU need this. Also posix CPU timers 466 * in order to elapse per task timers. 467 */ 468 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 469 { 470 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 471 tick_nohz_kick_task(tsk); 472 } 473 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 474 475 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 476 { 477 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 478 } 479 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 480 481 /* 482 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 483 * per process timers. 484 */ 485 void tick_nohz_dep_set_signal(struct task_struct *tsk, 486 enum tick_dep_bits bit) 487 { 488 int prev; 489 struct signal_struct *sig = tsk->signal; 490 491 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 492 if (!prev) { 493 struct task_struct *t; 494 495 lockdep_assert_held(&tsk->sighand->siglock); 496 __for_each_thread(sig, t) 497 tick_nohz_kick_task(t); 498 } 499 } 500 501 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 502 { 503 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 504 } 505 506 /* 507 * Re-evaluate the need for the tick as we switch the current task. 508 * It might need the tick due to per task/process properties: 509 * perf events, posix CPU timers, ... 510 */ 511 void __tick_nohz_task_switch(void) 512 { 513 struct tick_sched *ts; 514 515 if (!tick_nohz_full_cpu(smp_processor_id())) 516 return; 517 518 ts = this_cpu_ptr(&tick_cpu_sched); 519 520 if (ts->tick_stopped) { 521 if (atomic_read(¤t->tick_dep_mask) || 522 atomic_read(¤t->signal->tick_dep_mask)) 523 tick_nohz_full_kick(); 524 } 525 } 526 527 /* Get the boot-time nohz CPU list from the kernel parameters. */ 528 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 529 { 530 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 531 cpumask_copy(tick_nohz_full_mask, cpumask); 532 tick_nohz_full_running = true; 533 } 534 535 bool tick_nohz_cpu_hotpluggable(unsigned int cpu) 536 { 537 /* 538 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 539 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 540 * CPUs. It must remain online when nohz full is enabled. 541 */ 542 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 543 return false; 544 return true; 545 } 546 547 static int tick_nohz_cpu_down(unsigned int cpu) 548 { 549 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; 550 } 551 552 void __init tick_nohz_init(void) 553 { 554 int cpu, ret; 555 556 if (!tick_nohz_full_running) 557 return; 558 559 /* 560 * Full dynticks uses irq work to drive the tick rescheduling on safe 561 * locking contexts. But then we need irq work to raise its own 562 * interrupts to avoid circular dependency on the tick 563 */ 564 if (!arch_irq_work_has_interrupt()) { 565 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 566 cpumask_clear(tick_nohz_full_mask); 567 tick_nohz_full_running = false; 568 return; 569 } 570 571 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 572 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 573 cpu = smp_processor_id(); 574 575 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 576 pr_warn("NO_HZ: Clearing %d from nohz_full range " 577 "for timekeeping\n", cpu); 578 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 579 } 580 } 581 582 for_each_cpu(cpu, tick_nohz_full_mask) 583 ct_cpu_track_user(cpu); 584 585 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 586 "kernel/nohz:predown", NULL, 587 tick_nohz_cpu_down); 588 WARN_ON(ret < 0); 589 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 590 cpumask_pr_args(tick_nohz_full_mask)); 591 } 592 #endif 593 594 /* 595 * NOHZ - aka dynamic tick functionality 596 */ 597 #ifdef CONFIG_NO_HZ_COMMON 598 /* 599 * NO HZ enabled ? 600 */ 601 bool tick_nohz_enabled __read_mostly = true; 602 unsigned long tick_nohz_active __read_mostly; 603 /* 604 * Enable / Disable tickless mode 605 */ 606 static int __init setup_tick_nohz(char *str) 607 { 608 return (kstrtobool(str, &tick_nohz_enabled) == 0); 609 } 610 611 __setup("nohz=", setup_tick_nohz); 612 613 bool tick_nohz_tick_stopped(void) 614 { 615 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 616 617 return ts->tick_stopped; 618 } 619 620 bool tick_nohz_tick_stopped_cpu(int cpu) 621 { 622 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 623 624 return ts->tick_stopped; 625 } 626 627 /** 628 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 629 * 630 * Called from interrupt entry when the CPU was idle 631 * 632 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 633 * must be updated. Otherwise an interrupt handler could use a stale jiffy 634 * value. We do this unconditionally on any CPU, as we don't know whether the 635 * CPU, which has the update task assigned is in a long sleep. 636 */ 637 static void tick_nohz_update_jiffies(ktime_t now) 638 { 639 unsigned long flags; 640 641 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 642 643 local_irq_save(flags); 644 tick_do_update_jiffies64(now); 645 local_irq_restore(flags); 646 647 touch_softlockup_watchdog_sched(); 648 } 649 650 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 651 { 652 ktime_t delta; 653 654 if (WARN_ON_ONCE(!ts->idle_active)) 655 return; 656 657 delta = ktime_sub(now, ts->idle_entrytime); 658 659 write_seqcount_begin(&ts->idle_sleeptime_seq); 660 if (nr_iowait_cpu(smp_processor_id()) > 0) 661 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 662 else 663 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 664 665 ts->idle_entrytime = now; 666 ts->idle_active = 0; 667 write_seqcount_end(&ts->idle_sleeptime_seq); 668 669 sched_clock_idle_wakeup_event(); 670 } 671 672 static void tick_nohz_start_idle(struct tick_sched *ts) 673 { 674 write_seqcount_begin(&ts->idle_sleeptime_seq); 675 ts->idle_entrytime = ktime_get(); 676 ts->idle_active = 1; 677 write_seqcount_end(&ts->idle_sleeptime_seq); 678 679 sched_clock_idle_sleep_event(); 680 } 681 682 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, 683 bool compute_delta, u64 *last_update_time) 684 { 685 ktime_t now, idle; 686 unsigned int seq; 687 688 if (!tick_nohz_active) 689 return -1; 690 691 now = ktime_get(); 692 if (last_update_time) 693 *last_update_time = ktime_to_us(now); 694 695 do { 696 seq = read_seqcount_begin(&ts->idle_sleeptime_seq); 697 698 if (ts->idle_active && compute_delta) { 699 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 700 701 idle = ktime_add(*sleeptime, delta); 702 } else { 703 idle = *sleeptime; 704 } 705 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); 706 707 return ktime_to_us(idle); 708 709 } 710 711 /** 712 * get_cpu_idle_time_us - get the total idle time of a CPU 713 * @cpu: CPU number to query 714 * @last_update_time: variable to store update time in. Do not update 715 * counters if NULL. 716 * 717 * Return the cumulative idle time (since boot) for a given 718 * CPU, in microseconds. Note this is partially broken due to 719 * the counter of iowait tasks that can be remotely updated without 720 * any synchronization. Therefore it is possible to observe backward 721 * values within two consecutive reads. 722 * 723 * This time is measured via accounting rather than sampling, 724 * and is as accurate as ktime_get() is. 725 * 726 * This function returns -1 if NOHZ is not enabled. 727 */ 728 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 729 { 730 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 731 732 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, 733 !nr_iowait_cpu(cpu), last_update_time); 734 } 735 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 736 737 /** 738 * get_cpu_iowait_time_us - get the total iowait time of a CPU 739 * @cpu: CPU number to query 740 * @last_update_time: variable to store update time in. Do not update 741 * counters if NULL. 742 * 743 * Return the cumulative iowait time (since boot) for a given 744 * CPU, in microseconds. Note this is partially broken due to 745 * the counter of iowait tasks that can be remotely updated without 746 * any synchronization. Therefore it is possible to observe backward 747 * values within two consecutive reads. 748 * 749 * This time is measured via accounting rather than sampling, 750 * and is as accurate as ktime_get() is. 751 * 752 * This function returns -1 if NOHZ is not enabled. 753 */ 754 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 755 { 756 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 757 758 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, 759 nr_iowait_cpu(cpu), last_update_time); 760 } 761 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 762 763 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 764 { 765 hrtimer_cancel(&ts->sched_timer); 766 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 767 768 /* Forward the time to expire in the future */ 769 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 770 771 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 772 hrtimer_start_expires(&ts->sched_timer, 773 HRTIMER_MODE_ABS_PINNED_HARD); 774 } else { 775 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 776 } 777 778 /* 779 * Reset to make sure next tick stop doesn't get fooled by past 780 * cached clock deadline. 781 */ 782 ts->next_tick = 0; 783 } 784 785 static inline bool local_timer_softirq_pending(void) 786 { 787 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 788 } 789 790 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 791 { 792 u64 basemono, next_tick, delta, expires; 793 unsigned long basejiff; 794 unsigned int seq; 795 796 /* Read jiffies and the time when jiffies were updated last */ 797 do { 798 seq = read_seqcount_begin(&jiffies_seq); 799 basemono = last_jiffies_update; 800 basejiff = jiffies; 801 } while (read_seqcount_retry(&jiffies_seq, seq)); 802 ts->last_jiffies = basejiff; 803 ts->timer_expires_base = basemono; 804 805 /* 806 * Keep the periodic tick, when RCU, architecture or irq_work 807 * requests it. 808 * Aside of that check whether the local timer softirq is 809 * pending. If so its a bad idea to call get_next_timer_interrupt() 810 * because there is an already expired timer, so it will request 811 * immediate expiry, which rearms the hardware timer with a 812 * minimal delta which brings us back to this place 813 * immediately. Lather, rinse and repeat... 814 */ 815 if (rcu_needs_cpu() || arch_needs_cpu() || 816 irq_work_needs_cpu() || local_timer_softirq_pending()) { 817 next_tick = basemono + TICK_NSEC; 818 } else { 819 /* 820 * Get the next pending timer. If high resolution 821 * timers are enabled this only takes the timer wheel 822 * timers into account. If high resolution timers are 823 * disabled this also looks at the next expiring 824 * hrtimer. 825 */ 826 next_tick = get_next_timer_interrupt(basejiff, basemono); 827 ts->next_timer = next_tick; 828 } 829 830 /* 831 * If the tick is due in the next period, keep it ticking or 832 * force prod the timer. 833 */ 834 delta = next_tick - basemono; 835 if (delta <= (u64)TICK_NSEC) { 836 /* 837 * Tell the timer code that the base is not idle, i.e. undo 838 * the effect of get_next_timer_interrupt(): 839 */ 840 timer_clear_idle(); 841 /* 842 * We've not stopped the tick yet, and there's a timer in the 843 * next period, so no point in stopping it either, bail. 844 */ 845 if (!ts->tick_stopped) { 846 ts->timer_expires = 0; 847 goto out; 848 } 849 } 850 851 /* 852 * If this CPU is the one which had the do_timer() duty last, we limit 853 * the sleep time to the timekeeping max_deferment value. 854 * Otherwise we can sleep as long as we want. 855 */ 856 delta = timekeeping_max_deferment(); 857 if (cpu != tick_do_timer_cpu && 858 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 859 delta = KTIME_MAX; 860 861 /* Calculate the next expiry time */ 862 if (delta < (KTIME_MAX - basemono)) 863 expires = basemono + delta; 864 else 865 expires = KTIME_MAX; 866 867 ts->timer_expires = min_t(u64, expires, next_tick); 868 869 out: 870 return ts->timer_expires; 871 } 872 873 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 874 { 875 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 876 u64 basemono = ts->timer_expires_base; 877 u64 expires = ts->timer_expires; 878 ktime_t tick = expires; 879 880 /* Make sure we won't be trying to stop it twice in a row. */ 881 ts->timer_expires_base = 0; 882 883 /* 884 * If this CPU is the one which updates jiffies, then give up 885 * the assignment and let it be taken by the CPU which runs 886 * the tick timer next, which might be this CPU as well. If we 887 * don't drop this here the jiffies might be stale and 888 * do_timer() never invoked. Keep track of the fact that it 889 * was the one which had the do_timer() duty last. 890 */ 891 if (cpu == tick_do_timer_cpu) { 892 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 893 ts->do_timer_last = 1; 894 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 895 ts->do_timer_last = 0; 896 } 897 898 /* Skip reprogram of event if its not changed */ 899 if (ts->tick_stopped && (expires == ts->next_tick)) { 900 /* Sanity check: make sure clockevent is actually programmed */ 901 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 902 return; 903 904 WARN_ON_ONCE(1); 905 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 906 basemono, ts->next_tick, dev->next_event, 907 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 908 } 909 910 /* 911 * nohz_stop_sched_tick can be called several times before 912 * the nohz_restart_sched_tick is called. This happens when 913 * interrupts arrive which do not cause a reschedule. In the 914 * first call we save the current tick time, so we can restart 915 * the scheduler tick in nohz_restart_sched_tick. 916 */ 917 if (!ts->tick_stopped) { 918 calc_load_nohz_start(); 919 quiet_vmstat(); 920 921 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 922 ts->tick_stopped = 1; 923 trace_tick_stop(1, TICK_DEP_MASK_NONE); 924 } 925 926 ts->next_tick = tick; 927 928 /* 929 * If the expiration time == KTIME_MAX, then we simply stop 930 * the tick timer. 931 */ 932 if (unlikely(expires == KTIME_MAX)) { 933 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 934 hrtimer_cancel(&ts->sched_timer); 935 else 936 tick_program_event(KTIME_MAX, 1); 937 return; 938 } 939 940 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 941 hrtimer_start(&ts->sched_timer, tick, 942 HRTIMER_MODE_ABS_PINNED_HARD); 943 } else { 944 hrtimer_set_expires(&ts->sched_timer, tick); 945 tick_program_event(tick, 1); 946 } 947 } 948 949 static void tick_nohz_retain_tick(struct tick_sched *ts) 950 { 951 ts->timer_expires_base = 0; 952 } 953 954 #ifdef CONFIG_NO_HZ_FULL 955 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 956 { 957 if (tick_nohz_next_event(ts, cpu)) 958 tick_nohz_stop_tick(ts, cpu); 959 else 960 tick_nohz_retain_tick(ts); 961 } 962 #endif /* CONFIG_NO_HZ_FULL */ 963 964 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 965 { 966 /* Update jiffies first */ 967 tick_do_update_jiffies64(now); 968 969 /* 970 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 971 * the clock forward checks in the enqueue path: 972 */ 973 timer_clear_idle(); 974 975 calc_load_nohz_stop(); 976 touch_softlockup_watchdog_sched(); 977 /* 978 * Cancel the scheduled timer and restore the tick 979 */ 980 ts->tick_stopped = 0; 981 tick_nohz_restart(ts, now); 982 } 983 984 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 985 ktime_t now) 986 { 987 #ifdef CONFIG_NO_HZ_FULL 988 int cpu = smp_processor_id(); 989 990 if (can_stop_full_tick(cpu, ts)) 991 tick_nohz_stop_sched_tick(ts, cpu); 992 else if (ts->tick_stopped) 993 tick_nohz_restart_sched_tick(ts, now); 994 #endif 995 } 996 997 static void tick_nohz_full_update_tick(struct tick_sched *ts) 998 { 999 if (!tick_nohz_full_cpu(smp_processor_id())) 1000 return; 1001 1002 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 1003 return; 1004 1005 __tick_nohz_full_update_tick(ts, ktime_get()); 1006 } 1007 1008 /* 1009 * A pending softirq outside an IRQ (or softirq disabled section) context 1010 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1011 * reach here due to the need_resched() early check in can_stop_idle_tick(). 1012 * 1013 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1014 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1015 * triggering the below since wakep_softirqd() is ignored. 1016 * 1017 */ 1018 static bool report_idle_softirq(void) 1019 { 1020 static int ratelimit; 1021 unsigned int pending = local_softirq_pending(); 1022 1023 if (likely(!pending)) 1024 return false; 1025 1026 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1027 if (!cpu_active(smp_processor_id())) { 1028 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1029 if (!pending) 1030 return false; 1031 } 1032 1033 if (ratelimit < 10) 1034 return false; 1035 1036 /* On RT, softirqs handling may be waiting on some lock */ 1037 if (!local_bh_blocked()) 1038 return false; 1039 1040 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1041 pending); 1042 ratelimit++; 1043 1044 return true; 1045 } 1046 1047 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1048 { 1049 /* 1050 * If this CPU is offline and it is the one which updates 1051 * jiffies, then give up the assignment and let it be taken by 1052 * the CPU which runs the tick timer next. If we don't drop 1053 * this here the jiffies might be stale and do_timer() never 1054 * invoked. 1055 */ 1056 if (unlikely(!cpu_online(cpu))) { 1057 if (cpu == tick_do_timer_cpu) 1058 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1059 /* 1060 * Make sure the CPU doesn't get fooled by obsolete tick 1061 * deadline if it comes back online later. 1062 */ 1063 ts->next_tick = 0; 1064 return false; 1065 } 1066 1067 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 1068 return false; 1069 1070 if (need_resched()) 1071 return false; 1072 1073 if (unlikely(report_idle_softirq())) 1074 return false; 1075 1076 if (tick_nohz_full_enabled()) { 1077 /* 1078 * Keep the tick alive to guarantee timekeeping progression 1079 * if there are full dynticks CPUs around 1080 */ 1081 if (tick_do_timer_cpu == cpu) 1082 return false; 1083 1084 /* Should not happen for nohz-full */ 1085 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1086 return false; 1087 } 1088 1089 return true; 1090 } 1091 1092 /** 1093 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1094 * 1095 * When the next event is more than a tick into the future, stop the idle tick 1096 */ 1097 void tick_nohz_idle_stop_tick(void) 1098 { 1099 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1100 int cpu = smp_processor_id(); 1101 ktime_t expires; 1102 1103 /* 1104 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1105 * tick timer expiration time is known already. 1106 */ 1107 if (ts->timer_expires_base) 1108 expires = ts->timer_expires; 1109 else if (can_stop_idle_tick(cpu, ts)) 1110 expires = tick_nohz_next_event(ts, cpu); 1111 else 1112 return; 1113 1114 ts->idle_calls++; 1115 1116 if (expires > 0LL) { 1117 int was_stopped = ts->tick_stopped; 1118 1119 tick_nohz_stop_tick(ts, cpu); 1120 1121 ts->idle_sleeps++; 1122 ts->idle_expires = expires; 1123 1124 if (!was_stopped && ts->tick_stopped) { 1125 ts->idle_jiffies = ts->last_jiffies; 1126 nohz_balance_enter_idle(cpu); 1127 } 1128 } else { 1129 tick_nohz_retain_tick(ts); 1130 } 1131 } 1132 1133 void tick_nohz_idle_retain_tick(void) 1134 { 1135 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1136 /* 1137 * Undo the effect of get_next_timer_interrupt() called from 1138 * tick_nohz_next_event(). 1139 */ 1140 timer_clear_idle(); 1141 } 1142 1143 /** 1144 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1145 * 1146 * Called when we start the idle loop. 1147 */ 1148 void tick_nohz_idle_enter(void) 1149 { 1150 struct tick_sched *ts; 1151 1152 lockdep_assert_irqs_enabled(); 1153 1154 local_irq_disable(); 1155 1156 ts = this_cpu_ptr(&tick_cpu_sched); 1157 1158 WARN_ON_ONCE(ts->timer_expires_base); 1159 1160 ts->inidle = 1; 1161 tick_nohz_start_idle(ts); 1162 1163 local_irq_enable(); 1164 } 1165 1166 /** 1167 * tick_nohz_irq_exit - update next tick event from interrupt exit 1168 * 1169 * When an interrupt fires while we are idle and it doesn't cause 1170 * a reschedule, it may still add, modify or delete a timer, enqueue 1171 * an RCU callback, etc... 1172 * So we need to re-calculate and reprogram the next tick event. 1173 */ 1174 void tick_nohz_irq_exit(void) 1175 { 1176 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1177 1178 if (ts->inidle) 1179 tick_nohz_start_idle(ts); 1180 else 1181 tick_nohz_full_update_tick(ts); 1182 } 1183 1184 /** 1185 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1186 */ 1187 bool tick_nohz_idle_got_tick(void) 1188 { 1189 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1190 1191 if (ts->got_idle_tick) { 1192 ts->got_idle_tick = 0; 1193 return true; 1194 } 1195 return false; 1196 } 1197 1198 /** 1199 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1200 * or the tick, whatever that expires first. Note that, if the tick has been 1201 * stopped, it returns the next hrtimer. 1202 * 1203 * Called from power state control code with interrupts disabled 1204 */ 1205 ktime_t tick_nohz_get_next_hrtimer(void) 1206 { 1207 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1208 } 1209 1210 /** 1211 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1212 * @delta_next: duration until the next event if the tick cannot be stopped 1213 * 1214 * Called from power state control code with interrupts disabled. 1215 * 1216 * The return value of this function and/or the value returned by it through the 1217 * @delta_next pointer can be negative which must be taken into account by its 1218 * callers. 1219 */ 1220 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1221 { 1222 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1223 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1224 int cpu = smp_processor_id(); 1225 /* 1226 * The idle entry time is expected to be a sufficient approximation of 1227 * the current time at this point. 1228 */ 1229 ktime_t now = ts->idle_entrytime; 1230 ktime_t next_event; 1231 1232 WARN_ON_ONCE(!ts->inidle); 1233 1234 *delta_next = ktime_sub(dev->next_event, now); 1235 1236 if (!can_stop_idle_tick(cpu, ts)) 1237 return *delta_next; 1238 1239 next_event = tick_nohz_next_event(ts, cpu); 1240 if (!next_event) 1241 return *delta_next; 1242 1243 /* 1244 * If the next highres timer to expire is earlier than next_event, the 1245 * idle governor needs to know that. 1246 */ 1247 next_event = min_t(u64, next_event, 1248 hrtimer_next_event_without(&ts->sched_timer)); 1249 1250 return ktime_sub(next_event, now); 1251 } 1252 1253 /** 1254 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1255 * for a particular CPU. 1256 * 1257 * Called from the schedutil frequency scaling governor in scheduler context. 1258 */ 1259 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1260 { 1261 struct tick_sched *ts = tick_get_tick_sched(cpu); 1262 1263 return ts->idle_calls; 1264 } 1265 1266 /** 1267 * tick_nohz_get_idle_calls - return the current idle calls counter value 1268 * 1269 * Called from the schedutil frequency scaling governor in scheduler context. 1270 */ 1271 unsigned long tick_nohz_get_idle_calls(void) 1272 { 1273 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1274 1275 return ts->idle_calls; 1276 } 1277 1278 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1279 ktime_t now) 1280 { 1281 unsigned long ticks; 1282 1283 ts->idle_exittime = now; 1284 1285 if (vtime_accounting_enabled_this_cpu()) 1286 return; 1287 /* 1288 * We stopped the tick in idle. Update process times would miss the 1289 * time we slept as update_process_times does only a 1 tick 1290 * accounting. Enforce that this is accounted to idle ! 1291 */ 1292 ticks = jiffies - ts->idle_jiffies; 1293 /* 1294 * We might be one off. Do not randomly account a huge number of ticks! 1295 */ 1296 if (ticks && ticks < LONG_MAX) 1297 account_idle_ticks(ticks); 1298 } 1299 1300 void tick_nohz_idle_restart_tick(void) 1301 { 1302 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1303 1304 if (ts->tick_stopped) { 1305 ktime_t now = ktime_get(); 1306 tick_nohz_restart_sched_tick(ts, now); 1307 tick_nohz_account_idle_time(ts, now); 1308 } 1309 } 1310 1311 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1312 { 1313 if (tick_nohz_full_cpu(smp_processor_id())) 1314 __tick_nohz_full_update_tick(ts, now); 1315 else 1316 tick_nohz_restart_sched_tick(ts, now); 1317 1318 tick_nohz_account_idle_time(ts, now); 1319 } 1320 1321 /** 1322 * tick_nohz_idle_exit - restart the idle tick from the idle task 1323 * 1324 * Restart the idle tick when the CPU is woken up from idle 1325 * This also exit the RCU extended quiescent state. The CPU 1326 * can use RCU again after this function is called. 1327 */ 1328 void tick_nohz_idle_exit(void) 1329 { 1330 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1331 bool idle_active, tick_stopped; 1332 ktime_t now; 1333 1334 local_irq_disable(); 1335 1336 WARN_ON_ONCE(!ts->inidle); 1337 WARN_ON_ONCE(ts->timer_expires_base); 1338 1339 ts->inidle = 0; 1340 idle_active = ts->idle_active; 1341 tick_stopped = ts->tick_stopped; 1342 1343 if (idle_active || tick_stopped) 1344 now = ktime_get(); 1345 1346 if (idle_active) 1347 tick_nohz_stop_idle(ts, now); 1348 1349 if (tick_stopped) 1350 tick_nohz_idle_update_tick(ts, now); 1351 1352 local_irq_enable(); 1353 } 1354 1355 /* 1356 * The nohz low res interrupt handler 1357 */ 1358 static void tick_nohz_handler(struct clock_event_device *dev) 1359 { 1360 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1361 struct pt_regs *regs = get_irq_regs(); 1362 ktime_t now = ktime_get(); 1363 1364 dev->next_event = KTIME_MAX; 1365 1366 tick_sched_do_timer(ts, now); 1367 tick_sched_handle(ts, regs); 1368 1369 if (unlikely(ts->tick_stopped)) { 1370 /* 1371 * The clockevent device is not reprogrammed, so change the 1372 * clock event device to ONESHOT_STOPPED to avoid spurious 1373 * interrupts on devices which might not be truly one shot. 1374 */ 1375 tick_program_event(KTIME_MAX, 1); 1376 return; 1377 } 1378 1379 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1380 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1381 } 1382 1383 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1384 { 1385 if (!tick_nohz_enabled) 1386 return; 1387 ts->nohz_mode = mode; 1388 /* One update is enough */ 1389 if (!test_and_set_bit(0, &tick_nohz_active)) 1390 timers_update_nohz(); 1391 } 1392 1393 /** 1394 * tick_nohz_switch_to_nohz - switch to nohz mode 1395 */ 1396 static void tick_nohz_switch_to_nohz(void) 1397 { 1398 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1399 ktime_t next; 1400 1401 if (!tick_nohz_enabled) 1402 return; 1403 1404 if (tick_switch_to_oneshot(tick_nohz_handler)) 1405 return; 1406 1407 /* 1408 * Recycle the hrtimer in ts, so we can share the 1409 * hrtimer_forward with the highres code. 1410 */ 1411 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1412 /* Get the next period */ 1413 next = tick_init_jiffy_update(); 1414 1415 hrtimer_set_expires(&ts->sched_timer, next); 1416 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1417 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1418 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1419 } 1420 1421 static inline void tick_nohz_irq_enter(void) 1422 { 1423 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1424 ktime_t now; 1425 1426 if (!ts->idle_active && !ts->tick_stopped) 1427 return; 1428 now = ktime_get(); 1429 if (ts->idle_active) 1430 tick_nohz_stop_idle(ts, now); 1431 /* 1432 * If all CPUs are idle. We may need to update a stale jiffies value. 1433 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1434 * alive but it might be busy looping with interrupts disabled in some 1435 * rare case (typically stop machine). So we must make sure we have a 1436 * last resort. 1437 */ 1438 if (ts->tick_stopped) 1439 tick_nohz_update_jiffies(now); 1440 } 1441 1442 #else 1443 1444 static inline void tick_nohz_switch_to_nohz(void) { } 1445 static inline void tick_nohz_irq_enter(void) { } 1446 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1447 1448 #endif /* CONFIG_NO_HZ_COMMON */ 1449 1450 /* 1451 * Called from irq_enter to notify about the possible interruption of idle() 1452 */ 1453 void tick_irq_enter(void) 1454 { 1455 tick_check_oneshot_broadcast_this_cpu(); 1456 tick_nohz_irq_enter(); 1457 } 1458 1459 /* 1460 * High resolution timer specific code 1461 */ 1462 #ifdef CONFIG_HIGH_RES_TIMERS 1463 /* 1464 * We rearm the timer until we get disabled by the idle code. 1465 * Called with interrupts disabled. 1466 */ 1467 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1468 { 1469 struct tick_sched *ts = 1470 container_of(timer, struct tick_sched, sched_timer); 1471 struct pt_regs *regs = get_irq_regs(); 1472 ktime_t now = ktime_get(); 1473 1474 tick_sched_do_timer(ts, now); 1475 1476 /* 1477 * Do not call, when we are not in irq context and have 1478 * no valid regs pointer 1479 */ 1480 if (regs) 1481 tick_sched_handle(ts, regs); 1482 else 1483 ts->next_tick = 0; 1484 1485 /* No need to reprogram if we are in idle or full dynticks mode */ 1486 if (unlikely(ts->tick_stopped)) 1487 return HRTIMER_NORESTART; 1488 1489 hrtimer_forward(timer, now, TICK_NSEC); 1490 1491 return HRTIMER_RESTART; 1492 } 1493 1494 static int sched_skew_tick; 1495 1496 static int __init skew_tick(char *str) 1497 { 1498 get_option(&str, &sched_skew_tick); 1499 1500 return 0; 1501 } 1502 early_param("skew_tick", skew_tick); 1503 1504 /** 1505 * tick_setup_sched_timer - setup the tick emulation timer 1506 */ 1507 void tick_setup_sched_timer(void) 1508 { 1509 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1510 ktime_t now = ktime_get(); 1511 1512 /* 1513 * Emulate tick processing via per-CPU hrtimers: 1514 */ 1515 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1516 ts->sched_timer.function = tick_sched_timer; 1517 1518 /* Get the next period (per-CPU) */ 1519 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1520 1521 /* Offset the tick to avert jiffies_lock contention. */ 1522 if (sched_skew_tick) { 1523 u64 offset = TICK_NSEC >> 1; 1524 do_div(offset, num_possible_cpus()); 1525 offset *= smp_processor_id(); 1526 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1527 } 1528 1529 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1530 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1531 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1532 } 1533 #endif /* HIGH_RES_TIMERS */ 1534 1535 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1536 void tick_cancel_sched_timer(int cpu) 1537 { 1538 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1539 1540 # ifdef CONFIG_HIGH_RES_TIMERS 1541 if (ts->sched_timer.base) 1542 hrtimer_cancel(&ts->sched_timer); 1543 # endif 1544 1545 memset(ts, 0, sizeof(*ts)); 1546 } 1547 #endif 1548 1549 /* 1550 * Async notification about clocksource changes 1551 */ 1552 void tick_clock_notify(void) 1553 { 1554 int cpu; 1555 1556 for_each_possible_cpu(cpu) 1557 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1558 } 1559 1560 /* 1561 * Async notification about clock event changes 1562 */ 1563 void tick_oneshot_notify(void) 1564 { 1565 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1566 1567 set_bit(0, &ts->check_clocks); 1568 } 1569 1570 /* 1571 * Check, if a change happened, which makes oneshot possible. 1572 * 1573 * Called cyclic from the hrtimer softirq (driven by the timer 1574 * softirq) allow_nohz signals, that we can switch into low-res nohz 1575 * mode, because high resolution timers are disabled (either compile 1576 * or runtime). Called with interrupts disabled. 1577 */ 1578 int tick_check_oneshot_change(int allow_nohz) 1579 { 1580 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1581 1582 if (!test_and_clear_bit(0, &ts->check_clocks)) 1583 return 0; 1584 1585 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1586 return 0; 1587 1588 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1589 return 0; 1590 1591 if (!allow_nohz) 1592 return 1; 1593 1594 tick_nohz_switch_to_nohz(); 1595 return 0; 1596 } 1597