xref: /openbmc/linux/kernel/time/tick-sched.c (revision 857f3fd7)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 	}
79 	write_sequnlock(&xtime_lock);
80 }
81 
82 /*
83  * Initialize and return retrieve the jiffies update.
84  */
85 static ktime_t tick_init_jiffy_update(void)
86 {
87 	ktime_t period;
88 
89 	write_seqlock(&xtime_lock);
90 	/* Did we start the jiffies update yet ? */
91 	if (last_jiffies_update.tv64 == 0)
92 		last_jiffies_update = tick_next_period;
93 	period = last_jiffies_update;
94 	write_sequnlock(&xtime_lock);
95 	return period;
96 }
97 
98 /*
99  * NOHZ - aka dynamic tick functionality
100  */
101 #ifdef CONFIG_NO_HZ
102 /*
103  * NO HZ enabled ?
104  */
105 static int tick_nohz_enabled __read_mostly  = 1;
106 
107 /*
108  * Enable / Disable tickless mode
109  */
110 static int __init setup_tick_nohz(char *str)
111 {
112 	if (!strcmp(str, "off"))
113 		tick_nohz_enabled = 0;
114 	else if (!strcmp(str, "on"))
115 		tick_nohz_enabled = 1;
116 	else
117 		return 0;
118 	return 1;
119 }
120 
121 __setup("nohz=", setup_tick_nohz);
122 
123 /**
124  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
125  *
126  * Called from interrupt entry when the CPU was idle
127  *
128  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
129  * must be updated. Otherwise an interrupt handler could use a stale jiffy
130  * value. We do this unconditionally on any cpu, as we don't know whether the
131  * cpu, which has the update task assigned is in a long sleep.
132  */
133 void tick_nohz_update_jiffies(void)
134 {
135 	int cpu = smp_processor_id();
136 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
137 	unsigned long flags;
138 	ktime_t now;
139 
140 	if (!ts->tick_stopped)
141 		return;
142 
143 	touch_softlockup_watchdog();
144 
145 	cpu_clear(cpu, nohz_cpu_mask);
146 	now = ktime_get();
147 	ts->idle_waketime = now;
148 
149 	local_irq_save(flags);
150 	tick_do_update_jiffies64(now);
151 	local_irq_restore(flags);
152 }
153 
154 void tick_nohz_stop_idle(int cpu)
155 {
156 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
157 
158 	if (ts->idle_active) {
159 		ktime_t now, delta;
160 		now = ktime_get();
161 		delta = ktime_sub(now, ts->idle_entrytime);
162 		ts->idle_lastupdate = now;
163 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 		ts->idle_active = 0;
165 	}
166 }
167 
168 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
169 {
170 	ktime_t now, delta;
171 
172 	now = ktime_get();
173 	if (ts->idle_active) {
174 		delta = ktime_sub(now, ts->idle_entrytime);
175 		ts->idle_lastupdate = now;
176 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
177 	}
178 	ts->idle_entrytime = now;
179 	ts->idle_active = 1;
180 	return now;
181 }
182 
183 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
184 {
185 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
186 
187 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
188 	return ktime_to_us(ts->idle_sleeptime);
189 }
190 
191 /**
192  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
193  *
194  * When the next event is more than a tick into the future, stop the idle tick
195  * Called either from the idle loop or from irq_exit() when an idle period was
196  * just interrupted by an interrupt which did not cause a reschedule.
197  */
198 void tick_nohz_stop_sched_tick(void)
199 {
200 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
201 	struct tick_sched *ts;
202 	ktime_t last_update, expires, now;
203 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
204 	int cpu;
205 
206 	local_irq_save(flags);
207 
208 	cpu = smp_processor_id();
209 	ts = &per_cpu(tick_cpu_sched, cpu);
210 	now = tick_nohz_start_idle(ts);
211 
212 	/*
213 	 * If this cpu is offline and it is the one which updates
214 	 * jiffies, then give up the assignment and let it be taken by
215 	 * the cpu which runs the tick timer next. If we don't drop
216 	 * this here the jiffies might be stale and do_timer() never
217 	 * invoked.
218 	 */
219 	if (unlikely(!cpu_online(cpu))) {
220 		if (cpu == tick_do_timer_cpu)
221 			tick_do_timer_cpu = -1;
222 	}
223 
224 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
225 		goto end;
226 
227 	if (need_resched())
228 		goto end;
229 
230 	if (unlikely(local_softirq_pending())) {
231 		static int ratelimit;
232 
233 		if (ratelimit < 10) {
234 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
235 			       local_softirq_pending());
236 			ratelimit++;
237 		}
238 		goto end;
239 	}
240 
241 	ts->idle_calls++;
242 	/* Read jiffies and the time when jiffies were updated last */
243 	do {
244 		seq = read_seqbegin(&xtime_lock);
245 		last_update = last_jiffies_update;
246 		last_jiffies = jiffies;
247 	} while (read_seqretry(&xtime_lock, seq));
248 
249 	/* Get the next timer wheel timer */
250 	next_jiffies = get_next_timer_interrupt(last_jiffies);
251 	delta_jiffies = next_jiffies - last_jiffies;
252 
253 	if (rcu_needs_cpu(cpu))
254 		delta_jiffies = 1;
255 	/*
256 	 * Do not stop the tick, if we are only one off
257 	 * or if the cpu is required for rcu
258 	 */
259 	if (!ts->tick_stopped && delta_jiffies == 1)
260 		goto out;
261 
262 	/* Schedule the tick, if we are at least one jiffie off */
263 	if ((long)delta_jiffies >= 1) {
264 
265 		if (delta_jiffies > 1)
266 			cpu_set(cpu, nohz_cpu_mask);
267 		/*
268 		 * nohz_stop_sched_tick can be called several times before
269 		 * the nohz_restart_sched_tick is called. This happens when
270 		 * interrupts arrive which do not cause a reschedule. In the
271 		 * first call we save the current tick time, so we can restart
272 		 * the scheduler tick in nohz_restart_sched_tick.
273 		 */
274 		if (!ts->tick_stopped) {
275 			if (select_nohz_load_balancer(1)) {
276 				/*
277 				 * sched tick not stopped!
278 				 */
279 				cpu_clear(cpu, nohz_cpu_mask);
280 				goto out;
281 			}
282 
283 			ts->idle_tick = ts->sched_timer.expires;
284 			ts->tick_stopped = 1;
285 			ts->idle_jiffies = last_jiffies;
286 			rcu_enter_nohz();
287 		}
288 
289 		/*
290 		 * If this cpu is the one which updates jiffies, then
291 		 * give up the assignment and let it be taken by the
292 		 * cpu which runs the tick timer next, which might be
293 		 * this cpu as well. If we don't drop this here the
294 		 * jiffies might be stale and do_timer() never
295 		 * invoked.
296 		 */
297 		if (cpu == tick_do_timer_cpu)
298 			tick_do_timer_cpu = -1;
299 
300 		ts->idle_sleeps++;
301 
302 		/*
303 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
304 		 * there is no timer pending or at least extremly far
305 		 * into the future (12 days for HZ=1000). In this case
306 		 * we simply stop the tick timer:
307 		 */
308 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
309 			ts->idle_expires.tv64 = KTIME_MAX;
310 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
311 				hrtimer_cancel(&ts->sched_timer);
312 			goto out;
313 		}
314 
315 		/*
316 		 * calculate the expiry time for the next timer wheel
317 		 * timer
318 		 */
319 		expires = ktime_add_ns(last_update, tick_period.tv64 *
320 				       delta_jiffies);
321 		ts->idle_expires = expires;
322 
323 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
324 			hrtimer_start(&ts->sched_timer, expires,
325 				      HRTIMER_MODE_ABS);
326 			/* Check, if the timer was already in the past */
327 			if (hrtimer_active(&ts->sched_timer))
328 				goto out;
329 		} else if (!tick_program_event(expires, 0))
330 				goto out;
331 		/*
332 		 * We are past the event already. So we crossed a
333 		 * jiffie boundary. Update jiffies and raise the
334 		 * softirq.
335 		 */
336 		tick_do_update_jiffies64(ktime_get());
337 		cpu_clear(cpu, nohz_cpu_mask);
338 	}
339 	raise_softirq_irqoff(TIMER_SOFTIRQ);
340 out:
341 	ts->next_jiffies = next_jiffies;
342 	ts->last_jiffies = last_jiffies;
343 	ts->sleep_length = ktime_sub(dev->next_event, now);
344 end:
345 	local_irq_restore(flags);
346 }
347 
348 /**
349  * tick_nohz_get_sleep_length - return the length of the current sleep
350  *
351  * Called from power state control code with interrupts disabled
352  */
353 ktime_t tick_nohz_get_sleep_length(void)
354 {
355 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
356 
357 	return ts->sleep_length;
358 }
359 
360 /**
361  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
362  *
363  * Restart the idle tick when the CPU is woken up from idle
364  */
365 void tick_nohz_restart_sched_tick(void)
366 {
367 	int cpu = smp_processor_id();
368 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
369 	unsigned long ticks;
370 	ktime_t now;
371 
372 	local_irq_disable();
373 	tick_nohz_stop_idle(cpu);
374 
375 	if (!ts->tick_stopped) {
376 		local_irq_enable();
377 		return;
378 	}
379 
380 	rcu_exit_nohz();
381 
382 	/* Update jiffies first */
383 	select_nohz_load_balancer(0);
384 	now = ktime_get();
385 	tick_do_update_jiffies64(now);
386 	cpu_clear(cpu, nohz_cpu_mask);
387 
388 	/*
389 	 * We stopped the tick in idle. Update process times would miss the
390 	 * time we slept as update_process_times does only a 1 tick
391 	 * accounting. Enforce that this is accounted to idle !
392 	 */
393 	ticks = jiffies - ts->idle_jiffies;
394 	/*
395 	 * We might be one off. Do not randomly account a huge number of ticks!
396 	 */
397 	if (ticks && ticks < LONG_MAX) {
398 		add_preempt_count(HARDIRQ_OFFSET);
399 		account_system_time(current, HARDIRQ_OFFSET,
400 				    jiffies_to_cputime(ticks));
401 		sub_preempt_count(HARDIRQ_OFFSET);
402 	}
403 
404 	touch_softlockup_watchdog();
405 	/*
406 	 * Cancel the scheduled timer and restore the tick
407 	 */
408 	ts->tick_stopped  = 0;
409 	ts->idle_exittime = now;
410 	hrtimer_cancel(&ts->sched_timer);
411 	ts->sched_timer.expires = ts->idle_tick;
412 
413 	while (1) {
414 		/* Forward the time to expire in the future */
415 		hrtimer_forward(&ts->sched_timer, now, tick_period);
416 
417 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
418 			hrtimer_start(&ts->sched_timer,
419 				      ts->sched_timer.expires,
420 				      HRTIMER_MODE_ABS);
421 			/* Check, if the timer was already in the past */
422 			if (hrtimer_active(&ts->sched_timer))
423 				break;
424 		} else {
425 			if (!tick_program_event(ts->sched_timer.expires, 0))
426 				break;
427 		}
428 		/* Update jiffies and reread time */
429 		tick_do_update_jiffies64(now);
430 		now = ktime_get();
431 	}
432 	local_irq_enable();
433 }
434 
435 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
436 {
437 	hrtimer_forward(&ts->sched_timer, now, tick_period);
438 	return tick_program_event(ts->sched_timer.expires, 0);
439 }
440 
441 /*
442  * The nohz low res interrupt handler
443  */
444 static void tick_nohz_handler(struct clock_event_device *dev)
445 {
446 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
447 	struct pt_regs *regs = get_irq_regs();
448 	int cpu = smp_processor_id();
449 	ktime_t now = ktime_get();
450 
451 	dev->next_event.tv64 = KTIME_MAX;
452 
453 	/*
454 	 * Check if the do_timer duty was dropped. We don't care about
455 	 * concurrency: This happens only when the cpu in charge went
456 	 * into a long sleep. If two cpus happen to assign themself to
457 	 * this duty, then the jiffies update is still serialized by
458 	 * xtime_lock.
459 	 */
460 	if (unlikely(tick_do_timer_cpu == -1))
461 		tick_do_timer_cpu = cpu;
462 
463 	/* Check, if the jiffies need an update */
464 	if (tick_do_timer_cpu == cpu)
465 		tick_do_update_jiffies64(now);
466 
467 	/*
468 	 * When we are idle and the tick is stopped, we have to touch
469 	 * the watchdog as we might not schedule for a really long
470 	 * time. This happens on complete idle SMP systems while
471 	 * waiting on the login prompt. We also increment the "start
472 	 * of idle" jiffy stamp so the idle accounting adjustment we
473 	 * do when we go busy again does not account too much ticks.
474 	 */
475 	if (ts->tick_stopped) {
476 		touch_softlockup_watchdog();
477 		ts->idle_jiffies++;
478 	}
479 
480 	update_process_times(user_mode(regs));
481 	profile_tick(CPU_PROFILING);
482 
483 	/* Do not restart, when we are in the idle loop */
484 	if (ts->tick_stopped)
485 		return;
486 
487 	while (tick_nohz_reprogram(ts, now)) {
488 		now = ktime_get();
489 		tick_do_update_jiffies64(now);
490 	}
491 }
492 
493 /**
494  * tick_nohz_switch_to_nohz - switch to nohz mode
495  */
496 static void tick_nohz_switch_to_nohz(void)
497 {
498 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
499 	ktime_t next;
500 
501 	if (!tick_nohz_enabled)
502 		return;
503 
504 	local_irq_disable();
505 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
506 		local_irq_enable();
507 		return;
508 	}
509 
510 	ts->nohz_mode = NOHZ_MODE_LOWRES;
511 
512 	/*
513 	 * Recycle the hrtimer in ts, so we can share the
514 	 * hrtimer_forward with the highres code.
515 	 */
516 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
517 	/* Get the next period */
518 	next = tick_init_jiffy_update();
519 
520 	for (;;) {
521 		ts->sched_timer.expires = next;
522 		if (!tick_program_event(next, 0))
523 			break;
524 		next = ktime_add(next, tick_period);
525 	}
526 	local_irq_enable();
527 
528 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
529 	       smp_processor_id());
530 }
531 
532 #else
533 
534 static inline void tick_nohz_switch_to_nohz(void) { }
535 
536 #endif /* NO_HZ */
537 
538 /*
539  * High resolution timer specific code
540  */
541 #ifdef CONFIG_HIGH_RES_TIMERS
542 /*
543  * We rearm the timer until we get disabled by the idle code.
544  * Called with interrupts disabled and timer->base->cpu_base->lock held.
545  */
546 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
547 {
548 	struct tick_sched *ts =
549 		container_of(timer, struct tick_sched, sched_timer);
550 	struct pt_regs *regs = get_irq_regs();
551 	ktime_t now = ktime_get();
552 	int cpu = smp_processor_id();
553 
554 #ifdef CONFIG_NO_HZ
555 	/*
556 	 * Check if the do_timer duty was dropped. We don't care about
557 	 * concurrency: This happens only when the cpu in charge went
558 	 * into a long sleep. If two cpus happen to assign themself to
559 	 * this duty, then the jiffies update is still serialized by
560 	 * xtime_lock.
561 	 */
562 	if (unlikely(tick_do_timer_cpu == -1))
563 		tick_do_timer_cpu = cpu;
564 #endif
565 
566 	/* Check, if the jiffies need an update */
567 	if (tick_do_timer_cpu == cpu)
568 		tick_do_update_jiffies64(now);
569 
570 	/*
571 	 * Do not call, when we are not in irq context and have
572 	 * no valid regs pointer
573 	 */
574 	if (regs) {
575 		/*
576 		 * When we are idle and the tick is stopped, we have to touch
577 		 * the watchdog as we might not schedule for a really long
578 		 * time. This happens on complete idle SMP systems while
579 		 * waiting on the login prompt. We also increment the "start of
580 		 * idle" jiffy stamp so the idle accounting adjustment we do
581 		 * when we go busy again does not account too much ticks.
582 		 */
583 		if (ts->tick_stopped) {
584 			touch_softlockup_watchdog();
585 			ts->idle_jiffies++;
586 		}
587 		update_process_times(user_mode(regs));
588 		profile_tick(CPU_PROFILING);
589 	}
590 
591 	/* Do not restart, when we are in the idle loop */
592 	if (ts->tick_stopped)
593 		return HRTIMER_NORESTART;
594 
595 	hrtimer_forward(timer, now, tick_period);
596 
597 	return HRTIMER_RESTART;
598 }
599 
600 /**
601  * tick_setup_sched_timer - setup the tick emulation timer
602  */
603 void tick_setup_sched_timer(void)
604 {
605 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
606 	ktime_t now = ktime_get();
607 	u64 offset;
608 
609 	/*
610 	 * Emulate tick processing via per-CPU hrtimers:
611 	 */
612 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
613 	ts->sched_timer.function = tick_sched_timer;
614 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
615 
616 	/* Get the next period (per cpu) */
617 	ts->sched_timer.expires = tick_init_jiffy_update();
618 	offset = ktime_to_ns(tick_period) >> 1;
619 	do_div(offset, num_possible_cpus());
620 	offset *= smp_processor_id();
621 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
622 
623 	for (;;) {
624 		hrtimer_forward(&ts->sched_timer, now, tick_period);
625 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
626 			      HRTIMER_MODE_ABS);
627 		/* Check, if the timer was already in the past */
628 		if (hrtimer_active(&ts->sched_timer))
629 			break;
630 		now = ktime_get();
631 	}
632 
633 #ifdef CONFIG_NO_HZ
634 	if (tick_nohz_enabled)
635 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
636 #endif
637 }
638 
639 void tick_cancel_sched_timer(int cpu)
640 {
641 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
642 
643 	if (ts->sched_timer.base)
644 		hrtimer_cancel(&ts->sched_timer);
645 
646 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
647 }
648 #endif /* HIGH_RES_TIMERS */
649 
650 /**
651  * Async notification about clocksource changes
652  */
653 void tick_clock_notify(void)
654 {
655 	int cpu;
656 
657 	for_each_possible_cpu(cpu)
658 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
659 }
660 
661 /*
662  * Async notification about clock event changes
663  */
664 void tick_oneshot_notify(void)
665 {
666 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
667 
668 	set_bit(0, &ts->check_clocks);
669 }
670 
671 /**
672  * Check, if a change happened, which makes oneshot possible.
673  *
674  * Called cyclic from the hrtimer softirq (driven by the timer
675  * softirq) allow_nohz signals, that we can switch into low-res nohz
676  * mode, because high resolution timers are disabled (either compile
677  * or runtime).
678  */
679 int tick_check_oneshot_change(int allow_nohz)
680 {
681 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
682 
683 	if (!test_and_clear_bit(0, &ts->check_clocks))
684 		return 0;
685 
686 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
687 		return 0;
688 
689 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
690 		return 0;
691 
692 	if (!allow_nohz)
693 		return 1;
694 
695 	tick_nohz_switch_to_nohz();
696 	return 0;
697 }
698