1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 #include <linux/module.h> 24 25 #include <asm/irq_regs.h> 26 27 #include "tick-internal.h" 28 29 /* 30 * Per cpu nohz control structure 31 */ 32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 33 34 /* 35 * The time, when the last jiffy update happened. Protected by xtime_lock. 36 */ 37 static ktime_t last_jiffies_update; 38 39 struct tick_sched *tick_get_tick_sched(int cpu) 40 { 41 return &per_cpu(tick_cpu_sched, cpu); 42 } 43 44 /* 45 * Must be called with interrupts disabled ! 46 */ 47 static void tick_do_update_jiffies64(ktime_t now) 48 { 49 unsigned long ticks = 0; 50 ktime_t delta; 51 52 /* 53 * Do a quick check without holding xtime_lock: 54 */ 55 delta = ktime_sub(now, last_jiffies_update); 56 if (delta.tv64 < tick_period.tv64) 57 return; 58 59 /* Reevalute with xtime_lock held */ 60 write_seqlock(&xtime_lock); 61 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta.tv64 >= tick_period.tv64) { 64 65 delta = ktime_sub(delta, tick_period); 66 last_jiffies_update = ktime_add(last_jiffies_update, 67 tick_period); 68 69 /* Slow path for long timeouts */ 70 if (unlikely(delta.tv64 >= tick_period.tv64)) { 71 s64 incr = ktime_to_ns(tick_period); 72 73 ticks = ktime_divns(delta, incr); 74 75 last_jiffies_update = ktime_add_ns(last_jiffies_update, 76 incr * ticks); 77 } 78 do_timer(++ticks); 79 80 /* Keep the tick_next_period variable up to date */ 81 tick_next_period = ktime_add(last_jiffies_update, tick_period); 82 } 83 write_sequnlock(&xtime_lock); 84 } 85 86 /* 87 * Initialize and return retrieve the jiffies update. 88 */ 89 static ktime_t tick_init_jiffy_update(void) 90 { 91 ktime_t period; 92 93 write_seqlock(&xtime_lock); 94 /* Did we start the jiffies update yet ? */ 95 if (last_jiffies_update.tv64 == 0) 96 last_jiffies_update = tick_next_period; 97 period = last_jiffies_update; 98 write_sequnlock(&xtime_lock); 99 return period; 100 } 101 102 /* 103 * NOHZ - aka dynamic tick functionality 104 */ 105 #ifdef CONFIG_NO_HZ 106 /* 107 * NO HZ enabled ? 108 */ 109 static int tick_nohz_enabled __read_mostly = 1; 110 111 /* 112 * Enable / Disable tickless mode 113 */ 114 static int __init setup_tick_nohz(char *str) 115 { 116 if (!strcmp(str, "off")) 117 tick_nohz_enabled = 0; 118 else if (!strcmp(str, "on")) 119 tick_nohz_enabled = 1; 120 else 121 return 0; 122 return 1; 123 } 124 125 __setup("nohz=", setup_tick_nohz); 126 127 /** 128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 129 * 130 * Called from interrupt entry when the CPU was idle 131 * 132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 133 * must be updated. Otherwise an interrupt handler could use a stale jiffy 134 * value. We do this unconditionally on any cpu, as we don't know whether the 135 * cpu, which has the update task assigned is in a long sleep. 136 */ 137 static void tick_nohz_update_jiffies(void) 138 { 139 int cpu = smp_processor_id(); 140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 141 unsigned long flags; 142 ktime_t now; 143 144 if (!ts->tick_stopped) 145 return; 146 147 cpumask_clear_cpu(cpu, nohz_cpu_mask); 148 now = ktime_get(); 149 ts->idle_waketime = now; 150 151 local_irq_save(flags); 152 tick_do_update_jiffies64(now); 153 local_irq_restore(flags); 154 155 touch_softlockup_watchdog(); 156 } 157 158 static void tick_nohz_stop_idle(int cpu) 159 { 160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 161 162 if (ts->idle_active) { 163 ktime_t now, delta; 164 now = ktime_get(); 165 delta = ktime_sub(now, ts->idle_entrytime); 166 ts->idle_lastupdate = now; 167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 168 ts->idle_active = 0; 169 170 sched_clock_idle_wakeup_event(0); 171 } 172 } 173 174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 175 { 176 ktime_t now, delta; 177 178 now = ktime_get(); 179 if (ts->idle_active) { 180 delta = ktime_sub(now, ts->idle_entrytime); 181 ts->idle_lastupdate = now; 182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 183 } 184 ts->idle_entrytime = now; 185 ts->idle_active = 1; 186 sched_clock_idle_sleep_event(); 187 return now; 188 } 189 190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 191 { 192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 193 194 if (!tick_nohz_enabled) 195 return -1; 196 197 if (ts->idle_active) 198 *last_update_time = ktime_to_us(ts->idle_lastupdate); 199 else 200 *last_update_time = ktime_to_us(ktime_get()); 201 202 return ktime_to_us(ts->idle_sleeptime); 203 } 204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 205 206 /** 207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 208 * 209 * When the next event is more than a tick into the future, stop the idle tick 210 * Called either from the idle loop or from irq_exit() when an idle period was 211 * just interrupted by an interrupt which did not cause a reschedule. 212 */ 213 void tick_nohz_stop_sched_tick(int inidle) 214 { 215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 216 struct tick_sched *ts; 217 ktime_t last_update, expires, now; 218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 219 int cpu; 220 221 local_irq_save(flags); 222 223 cpu = smp_processor_id(); 224 ts = &per_cpu(tick_cpu_sched, cpu); 225 now = tick_nohz_start_idle(ts); 226 227 /* 228 * If this cpu is offline and it is the one which updates 229 * jiffies, then give up the assignment and let it be taken by 230 * the cpu which runs the tick timer next. If we don't drop 231 * this here the jiffies might be stale and do_timer() never 232 * invoked. 233 */ 234 if (unlikely(!cpu_online(cpu))) { 235 if (cpu == tick_do_timer_cpu) 236 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 237 } 238 239 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 240 goto end; 241 242 if (!inidle && !ts->inidle) 243 goto end; 244 245 ts->inidle = 1; 246 247 if (need_resched()) 248 goto end; 249 250 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 251 static int ratelimit; 252 253 if (ratelimit < 10) { 254 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 255 local_softirq_pending()); 256 ratelimit++; 257 } 258 goto end; 259 } 260 261 ts->idle_calls++; 262 /* Read jiffies and the time when jiffies were updated last */ 263 do { 264 seq = read_seqbegin(&xtime_lock); 265 last_update = last_jiffies_update; 266 last_jiffies = jiffies; 267 } while (read_seqretry(&xtime_lock, seq)); 268 269 /* Get the next timer wheel timer */ 270 next_jiffies = get_next_timer_interrupt(last_jiffies); 271 delta_jiffies = next_jiffies - last_jiffies; 272 273 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu)) 274 delta_jiffies = 1; 275 /* 276 * Do not stop the tick, if we are only one off 277 * or if the cpu is required for rcu 278 */ 279 if (!ts->tick_stopped && delta_jiffies == 1) 280 goto out; 281 282 /* Schedule the tick, if we are at least one jiffie off */ 283 if ((long)delta_jiffies >= 1) { 284 285 /* 286 * calculate the expiry time for the next timer wheel 287 * timer 288 */ 289 expires = ktime_add_ns(last_update, tick_period.tv64 * 290 delta_jiffies); 291 292 /* 293 * If this cpu is the one which updates jiffies, then 294 * give up the assignment and let it be taken by the 295 * cpu which runs the tick timer next, which might be 296 * this cpu as well. If we don't drop this here the 297 * jiffies might be stale and do_timer() never 298 * invoked. 299 */ 300 if (cpu == tick_do_timer_cpu) 301 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 302 303 if (delta_jiffies > 1) 304 cpumask_set_cpu(cpu, nohz_cpu_mask); 305 306 /* Skip reprogram of event if its not changed */ 307 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 308 goto out; 309 310 /* 311 * nohz_stop_sched_tick can be called several times before 312 * the nohz_restart_sched_tick is called. This happens when 313 * interrupts arrive which do not cause a reschedule. In the 314 * first call we save the current tick time, so we can restart 315 * the scheduler tick in nohz_restart_sched_tick. 316 */ 317 if (!ts->tick_stopped) { 318 if (select_nohz_load_balancer(1)) { 319 /* 320 * sched tick not stopped! 321 */ 322 cpumask_clear_cpu(cpu, nohz_cpu_mask); 323 goto out; 324 } 325 326 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 327 ts->tick_stopped = 1; 328 ts->idle_jiffies = last_jiffies; 329 rcu_enter_nohz(); 330 } 331 332 ts->idle_sleeps++; 333 334 /* 335 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 336 * there is no timer pending or at least extremly far 337 * into the future (12 days for HZ=1000). In this case 338 * we simply stop the tick timer: 339 */ 340 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 341 ts->idle_expires.tv64 = KTIME_MAX; 342 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 343 hrtimer_cancel(&ts->sched_timer); 344 goto out; 345 } 346 347 /* Mark expiries */ 348 ts->idle_expires = expires; 349 350 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 351 hrtimer_start(&ts->sched_timer, expires, 352 HRTIMER_MODE_ABS); 353 /* Check, if the timer was already in the past */ 354 if (hrtimer_active(&ts->sched_timer)) 355 goto out; 356 } else if (!tick_program_event(expires, 0)) 357 goto out; 358 /* 359 * We are past the event already. So we crossed a 360 * jiffie boundary. Update jiffies and raise the 361 * softirq. 362 */ 363 tick_do_update_jiffies64(ktime_get()); 364 cpumask_clear_cpu(cpu, nohz_cpu_mask); 365 } 366 raise_softirq_irqoff(TIMER_SOFTIRQ); 367 out: 368 ts->next_jiffies = next_jiffies; 369 ts->last_jiffies = last_jiffies; 370 ts->sleep_length = ktime_sub(dev->next_event, now); 371 end: 372 local_irq_restore(flags); 373 } 374 375 /** 376 * tick_nohz_get_sleep_length - return the length of the current sleep 377 * 378 * Called from power state control code with interrupts disabled 379 */ 380 ktime_t tick_nohz_get_sleep_length(void) 381 { 382 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 383 384 return ts->sleep_length; 385 } 386 387 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 388 { 389 hrtimer_cancel(&ts->sched_timer); 390 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 391 392 while (1) { 393 /* Forward the time to expire in the future */ 394 hrtimer_forward(&ts->sched_timer, now, tick_period); 395 396 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 397 hrtimer_start_expires(&ts->sched_timer, 398 HRTIMER_MODE_ABS); 399 /* Check, if the timer was already in the past */ 400 if (hrtimer_active(&ts->sched_timer)) 401 break; 402 } else { 403 if (!tick_program_event( 404 hrtimer_get_expires(&ts->sched_timer), 0)) 405 break; 406 } 407 /* Update jiffies and reread time */ 408 tick_do_update_jiffies64(now); 409 now = ktime_get(); 410 } 411 } 412 413 /** 414 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 415 * 416 * Restart the idle tick when the CPU is woken up from idle 417 */ 418 void tick_nohz_restart_sched_tick(void) 419 { 420 int cpu = smp_processor_id(); 421 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 422 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 423 unsigned long ticks; 424 #endif 425 ktime_t now; 426 427 local_irq_disable(); 428 tick_nohz_stop_idle(cpu); 429 430 if (!ts->inidle || !ts->tick_stopped) { 431 ts->inidle = 0; 432 local_irq_enable(); 433 return; 434 } 435 436 ts->inidle = 0; 437 438 rcu_exit_nohz(); 439 440 /* Update jiffies first */ 441 select_nohz_load_balancer(0); 442 now = ktime_get(); 443 tick_do_update_jiffies64(now); 444 cpumask_clear_cpu(cpu, nohz_cpu_mask); 445 446 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 447 /* 448 * We stopped the tick in idle. Update process times would miss the 449 * time we slept as update_process_times does only a 1 tick 450 * accounting. Enforce that this is accounted to idle ! 451 */ 452 ticks = jiffies - ts->idle_jiffies; 453 /* 454 * We might be one off. Do not randomly account a huge number of ticks! 455 */ 456 if (ticks && ticks < LONG_MAX) 457 account_idle_ticks(ticks); 458 #endif 459 460 touch_softlockup_watchdog(); 461 /* 462 * Cancel the scheduled timer and restore the tick 463 */ 464 ts->tick_stopped = 0; 465 ts->idle_exittime = now; 466 467 tick_nohz_restart(ts, now); 468 469 local_irq_enable(); 470 } 471 472 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 473 { 474 hrtimer_forward(&ts->sched_timer, now, tick_period); 475 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 476 } 477 478 /* 479 * The nohz low res interrupt handler 480 */ 481 static void tick_nohz_handler(struct clock_event_device *dev) 482 { 483 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 484 struct pt_regs *regs = get_irq_regs(); 485 int cpu = smp_processor_id(); 486 ktime_t now = ktime_get(); 487 488 dev->next_event.tv64 = KTIME_MAX; 489 490 /* 491 * Check if the do_timer duty was dropped. We don't care about 492 * concurrency: This happens only when the cpu in charge went 493 * into a long sleep. If two cpus happen to assign themself to 494 * this duty, then the jiffies update is still serialized by 495 * xtime_lock. 496 */ 497 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 498 tick_do_timer_cpu = cpu; 499 500 /* Check, if the jiffies need an update */ 501 if (tick_do_timer_cpu == cpu) 502 tick_do_update_jiffies64(now); 503 504 /* 505 * When we are idle and the tick is stopped, we have to touch 506 * the watchdog as we might not schedule for a really long 507 * time. This happens on complete idle SMP systems while 508 * waiting on the login prompt. We also increment the "start 509 * of idle" jiffy stamp so the idle accounting adjustment we 510 * do when we go busy again does not account too much ticks. 511 */ 512 if (ts->tick_stopped) { 513 touch_softlockup_watchdog(); 514 ts->idle_jiffies++; 515 } 516 517 update_process_times(user_mode(regs)); 518 profile_tick(CPU_PROFILING); 519 520 while (tick_nohz_reprogram(ts, now)) { 521 now = ktime_get(); 522 tick_do_update_jiffies64(now); 523 } 524 } 525 526 /** 527 * tick_nohz_switch_to_nohz - switch to nohz mode 528 */ 529 static void tick_nohz_switch_to_nohz(void) 530 { 531 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 532 ktime_t next; 533 534 if (!tick_nohz_enabled) 535 return; 536 537 local_irq_disable(); 538 if (tick_switch_to_oneshot(tick_nohz_handler)) { 539 local_irq_enable(); 540 return; 541 } 542 543 ts->nohz_mode = NOHZ_MODE_LOWRES; 544 545 /* 546 * Recycle the hrtimer in ts, so we can share the 547 * hrtimer_forward with the highres code. 548 */ 549 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 550 /* Get the next period */ 551 next = tick_init_jiffy_update(); 552 553 for (;;) { 554 hrtimer_set_expires(&ts->sched_timer, next); 555 if (!tick_program_event(next, 0)) 556 break; 557 next = ktime_add(next, tick_period); 558 } 559 local_irq_enable(); 560 561 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 562 smp_processor_id()); 563 } 564 565 /* 566 * When NOHZ is enabled and the tick is stopped, we need to kick the 567 * tick timer from irq_enter() so that the jiffies update is kept 568 * alive during long running softirqs. That's ugly as hell, but 569 * correctness is key even if we need to fix the offending softirq in 570 * the first place. 571 * 572 * Note, this is different to tick_nohz_restart. We just kick the 573 * timer and do not touch the other magic bits which need to be done 574 * when idle is left. 575 */ 576 static void tick_nohz_kick_tick(int cpu) 577 { 578 #if 0 579 /* Switch back to 2.6.27 behaviour */ 580 581 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 582 ktime_t delta, now; 583 584 if (!ts->tick_stopped) 585 return; 586 587 /* 588 * Do not touch the tick device, when the next expiry is either 589 * already reached or less/equal than the tick period. 590 */ 591 now = ktime_get(); 592 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 593 if (delta.tv64 <= tick_period.tv64) 594 return; 595 596 tick_nohz_restart(ts, now); 597 #endif 598 } 599 600 #else 601 602 static inline void tick_nohz_switch_to_nohz(void) { } 603 604 #endif /* NO_HZ */ 605 606 /* 607 * Called from irq_enter to notify about the possible interruption of idle() 608 */ 609 void tick_check_idle(int cpu) 610 { 611 tick_check_oneshot_broadcast(cpu); 612 #ifdef CONFIG_NO_HZ 613 tick_nohz_stop_idle(cpu); 614 tick_nohz_update_jiffies(); 615 tick_nohz_kick_tick(cpu); 616 #endif 617 } 618 619 /* 620 * High resolution timer specific code 621 */ 622 #ifdef CONFIG_HIGH_RES_TIMERS 623 /* 624 * We rearm the timer until we get disabled by the idle code. 625 * Called with interrupts disabled and timer->base->cpu_base->lock held. 626 */ 627 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 628 { 629 struct tick_sched *ts = 630 container_of(timer, struct tick_sched, sched_timer); 631 struct pt_regs *regs = get_irq_regs(); 632 ktime_t now = ktime_get(); 633 int cpu = smp_processor_id(); 634 635 #ifdef CONFIG_NO_HZ 636 /* 637 * Check if the do_timer duty was dropped. We don't care about 638 * concurrency: This happens only when the cpu in charge went 639 * into a long sleep. If two cpus happen to assign themself to 640 * this duty, then the jiffies update is still serialized by 641 * xtime_lock. 642 */ 643 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 644 tick_do_timer_cpu = cpu; 645 #endif 646 647 /* Check, if the jiffies need an update */ 648 if (tick_do_timer_cpu == cpu) 649 tick_do_update_jiffies64(now); 650 651 /* 652 * Do not call, when we are not in irq context and have 653 * no valid regs pointer 654 */ 655 if (regs) { 656 /* 657 * When we are idle and the tick is stopped, we have to touch 658 * the watchdog as we might not schedule for a really long 659 * time. This happens on complete idle SMP systems while 660 * waiting on the login prompt. We also increment the "start of 661 * idle" jiffy stamp so the idle accounting adjustment we do 662 * when we go busy again does not account too much ticks. 663 */ 664 if (ts->tick_stopped) { 665 touch_softlockup_watchdog(); 666 ts->idle_jiffies++; 667 } 668 update_process_times(user_mode(regs)); 669 profile_tick(CPU_PROFILING); 670 } 671 672 hrtimer_forward(timer, now, tick_period); 673 674 return HRTIMER_RESTART; 675 } 676 677 /** 678 * tick_setup_sched_timer - setup the tick emulation timer 679 */ 680 void tick_setup_sched_timer(void) 681 { 682 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 683 ktime_t now = ktime_get(); 684 u64 offset; 685 686 /* 687 * Emulate tick processing via per-CPU hrtimers: 688 */ 689 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 690 ts->sched_timer.function = tick_sched_timer; 691 692 /* Get the next period (per cpu) */ 693 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 694 offset = ktime_to_ns(tick_period) >> 1; 695 do_div(offset, num_possible_cpus()); 696 offset *= smp_processor_id(); 697 hrtimer_add_expires_ns(&ts->sched_timer, offset); 698 699 for (;;) { 700 hrtimer_forward(&ts->sched_timer, now, tick_period); 701 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS); 702 /* Check, if the timer was already in the past */ 703 if (hrtimer_active(&ts->sched_timer)) 704 break; 705 now = ktime_get(); 706 } 707 708 #ifdef CONFIG_NO_HZ 709 if (tick_nohz_enabled) 710 ts->nohz_mode = NOHZ_MODE_HIGHRES; 711 #endif 712 } 713 #endif /* HIGH_RES_TIMERS */ 714 715 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 716 void tick_cancel_sched_timer(int cpu) 717 { 718 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 719 720 # ifdef CONFIG_HIGH_RES_TIMERS 721 if (ts->sched_timer.base) 722 hrtimer_cancel(&ts->sched_timer); 723 # endif 724 725 ts->nohz_mode = NOHZ_MODE_INACTIVE; 726 } 727 #endif 728 729 /** 730 * Async notification about clocksource changes 731 */ 732 void tick_clock_notify(void) 733 { 734 int cpu; 735 736 for_each_possible_cpu(cpu) 737 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 738 } 739 740 /* 741 * Async notification about clock event changes 742 */ 743 void tick_oneshot_notify(void) 744 { 745 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 746 747 set_bit(0, &ts->check_clocks); 748 } 749 750 /** 751 * Check, if a change happened, which makes oneshot possible. 752 * 753 * Called cyclic from the hrtimer softirq (driven by the timer 754 * softirq) allow_nohz signals, that we can switch into low-res nohz 755 * mode, because high resolution timers are disabled (either compile 756 * or runtime). 757 */ 758 int tick_check_oneshot_change(int allow_nohz) 759 { 760 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 761 762 if (!test_and_clear_bit(0, &ts->check_clocks)) 763 return 0; 764 765 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 766 return 0; 767 768 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 769 return 0; 770 771 if (!allow_nohz) 772 return 1; 773 774 tick_nohz_switch_to_nohz(); 775 return 0; 776 } 777