xref: /openbmc/linux/kernel/time/tick-sched.c (revision 7fe2f639)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
143 	ts->idle_waketime = now;
144 
145 	local_irq_save(flags);
146 	tick_do_update_jiffies64(now);
147 	local_irq_restore(flags);
148 
149 	touch_softlockup_watchdog();
150 }
151 
152 /*
153  * Updates the per cpu time idle statistics counters
154  */
155 static void
156 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157 {
158 	ktime_t delta;
159 
160 	if (ts->idle_active) {
161 		delta = ktime_sub(now, ts->idle_entrytime);
162 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
163 		if (nr_iowait_cpu(cpu) > 0)
164 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now;
186 
187 	now = ktime_get();
188 
189 	update_ts_time_stats(cpu, ts, now, NULL);
190 
191 	ts->idle_entrytime = now;
192 	ts->idle_active = 1;
193 	sched_clock_idle_sleep_event();
194 	return now;
195 }
196 
197 /**
198  * get_cpu_idle_time_us - get the total idle time of a cpu
199  * @cpu: CPU number to query
200  * @last_update_time: variable to store update time in
201  *
202  * Return the cummulative idle time (since boot) for a given
203  * CPU, in microseconds. The idle time returned includes
204  * the iowait time (unlike what "top" and co report).
205  *
206  * This time is measured via accounting rather than sampling,
207  * and is as accurate as ktime_get() is.
208  *
209  * This function returns -1 if NOHZ is not enabled.
210  */
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212 {
213 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 
215 	if (!tick_nohz_enabled)
216 		return -1;
217 
218 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
219 
220 	return ktime_to_us(ts->idle_sleeptime);
221 }
222 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
223 
224 /*
225  * get_cpu_iowait_time_us - get the total iowait time of a cpu
226  * @cpu: CPU number to query
227  * @last_update_time: variable to store update time in
228  *
229  * Return the cummulative iowait time (since boot) for a given
230  * CPU, in microseconds.
231  *
232  * This time is measured via accounting rather than sampling,
233  * and is as accurate as ktime_get() is.
234  *
235  * This function returns -1 if NOHZ is not enabled.
236  */
237 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
238 {
239 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
240 
241 	if (!tick_nohz_enabled)
242 		return -1;
243 
244 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
245 
246 	return ktime_to_us(ts->iowait_sleeptime);
247 }
248 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
249 
250 /**
251  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
252  *
253  * When the next event is more than a tick into the future, stop the idle tick
254  * Called either from the idle loop or from irq_exit() when an idle period was
255  * just interrupted by an interrupt which did not cause a reschedule.
256  */
257 void tick_nohz_stop_sched_tick(int inidle)
258 {
259 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
260 	struct tick_sched *ts;
261 	ktime_t last_update, expires, now;
262 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
263 	u64 time_delta;
264 	int cpu;
265 
266 	local_irq_save(flags);
267 
268 	cpu = smp_processor_id();
269 	ts = &per_cpu(tick_cpu_sched, cpu);
270 
271 	/*
272 	 * Call to tick_nohz_start_idle stops the last_update_time from being
273 	 * updated. Thus, it must not be called in the event we are called from
274 	 * irq_exit() with the prior state different than idle.
275 	 */
276 	if (!inidle && !ts->inidle)
277 		goto end;
278 
279 	/*
280 	 * Set ts->inidle unconditionally. Even if the system did not
281 	 * switch to NOHZ mode the cpu frequency governers rely on the
282 	 * update of the idle time accounting in tick_nohz_start_idle().
283 	 */
284 	ts->inidle = 1;
285 
286 	now = tick_nohz_start_idle(cpu, ts);
287 
288 	/*
289 	 * If this cpu is offline and it is the one which updates
290 	 * jiffies, then give up the assignment and let it be taken by
291 	 * the cpu which runs the tick timer next. If we don't drop
292 	 * this here the jiffies might be stale and do_timer() never
293 	 * invoked.
294 	 */
295 	if (unlikely(!cpu_online(cpu))) {
296 		if (cpu == tick_do_timer_cpu)
297 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
298 	}
299 
300 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301 		goto end;
302 
303 	if (need_resched())
304 		goto end;
305 
306 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307 		static int ratelimit;
308 
309 		if (ratelimit < 10) {
310 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311 			       (unsigned int) local_softirq_pending());
312 			ratelimit++;
313 		}
314 		goto end;
315 	}
316 
317 	ts->idle_calls++;
318 	/* Read jiffies and the time when jiffies were updated last */
319 	do {
320 		seq = read_seqbegin(&xtime_lock);
321 		last_update = last_jiffies_update;
322 		last_jiffies = jiffies;
323 		time_delta = timekeeping_max_deferment();
324 	} while (read_seqretry(&xtime_lock, seq));
325 
326 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
327 	    arch_needs_cpu(cpu)) {
328 		next_jiffies = last_jiffies + 1;
329 		delta_jiffies = 1;
330 	} else {
331 		/* Get the next timer wheel timer */
332 		next_jiffies = get_next_timer_interrupt(last_jiffies);
333 		delta_jiffies = next_jiffies - last_jiffies;
334 	}
335 	/*
336 	 * Do not stop the tick, if we are only one off
337 	 * or if the cpu is required for rcu
338 	 */
339 	if (!ts->tick_stopped && delta_jiffies == 1)
340 		goto out;
341 
342 	/* Schedule the tick, if we are at least one jiffie off */
343 	if ((long)delta_jiffies >= 1) {
344 
345 		/*
346 		 * If this cpu is the one which updates jiffies, then
347 		 * give up the assignment and let it be taken by the
348 		 * cpu which runs the tick timer next, which might be
349 		 * this cpu as well. If we don't drop this here the
350 		 * jiffies might be stale and do_timer() never
351 		 * invoked. Keep track of the fact that it was the one
352 		 * which had the do_timer() duty last. If this cpu is
353 		 * the one which had the do_timer() duty last, we
354 		 * limit the sleep time to the timekeeping
355 		 * max_deferement value which we retrieved
356 		 * above. Otherwise we can sleep as long as we want.
357 		 */
358 		if (cpu == tick_do_timer_cpu) {
359 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
360 			ts->do_timer_last = 1;
361 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
362 			time_delta = KTIME_MAX;
363 			ts->do_timer_last = 0;
364 		} else if (!ts->do_timer_last) {
365 			time_delta = KTIME_MAX;
366 		}
367 
368 		/*
369 		 * calculate the expiry time for the next timer wheel
370 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
371 		 * that there is no timer pending or at least extremely
372 		 * far into the future (12 days for HZ=1000). In this
373 		 * case we set the expiry to the end of time.
374 		 */
375 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
376 			/*
377 			 * Calculate the time delta for the next timer event.
378 			 * If the time delta exceeds the maximum time delta
379 			 * permitted by the current clocksource then adjust
380 			 * the time delta accordingly to ensure the
381 			 * clocksource does not wrap.
382 			 */
383 			time_delta = min_t(u64, time_delta,
384 					   tick_period.tv64 * delta_jiffies);
385 		}
386 
387 		if (time_delta < KTIME_MAX)
388 			expires = ktime_add_ns(last_update, time_delta);
389 		else
390 			expires.tv64 = KTIME_MAX;
391 
392 		if (delta_jiffies > 1)
393 			cpumask_set_cpu(cpu, nohz_cpu_mask);
394 
395 		/* Skip reprogram of event if its not changed */
396 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397 			goto out;
398 
399 		/*
400 		 * nohz_stop_sched_tick can be called several times before
401 		 * the nohz_restart_sched_tick is called. This happens when
402 		 * interrupts arrive which do not cause a reschedule. In the
403 		 * first call we save the current tick time, so we can restart
404 		 * the scheduler tick in nohz_restart_sched_tick.
405 		 */
406 		if (!ts->tick_stopped) {
407 			select_nohz_load_balancer(1);
408 
409 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 			ts->tick_stopped = 1;
411 			ts->idle_jiffies = last_jiffies;
412 			rcu_enter_nohz();
413 		}
414 
415 		ts->idle_sleeps++;
416 
417 		/* Mark expires */
418 		ts->idle_expires = expires;
419 
420 		/*
421 		 * If the expiration time == KTIME_MAX, then
422 		 * in this case we simply stop the tick timer.
423 		 */
424 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
425 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426 				hrtimer_cancel(&ts->sched_timer);
427 			goto out;
428 		}
429 
430 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 			hrtimer_start(&ts->sched_timer, expires,
432 				      HRTIMER_MODE_ABS_PINNED);
433 			/* Check, if the timer was already in the past */
434 			if (hrtimer_active(&ts->sched_timer))
435 				goto out;
436 		} else if (!tick_program_event(expires, 0))
437 				goto out;
438 		/*
439 		 * We are past the event already. So we crossed a
440 		 * jiffie boundary. Update jiffies and raise the
441 		 * softirq.
442 		 */
443 		tick_do_update_jiffies64(ktime_get());
444 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
445 	}
446 	raise_softirq_irqoff(TIMER_SOFTIRQ);
447 out:
448 	ts->next_jiffies = next_jiffies;
449 	ts->last_jiffies = last_jiffies;
450 	ts->sleep_length = ktime_sub(dev->next_event, now);
451 end:
452 	local_irq_restore(flags);
453 }
454 
455 /**
456  * tick_nohz_get_sleep_length - return the length of the current sleep
457  *
458  * Called from power state control code with interrupts disabled
459  */
460 ktime_t tick_nohz_get_sleep_length(void)
461 {
462 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
463 
464 	return ts->sleep_length;
465 }
466 
467 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
468 {
469 	hrtimer_cancel(&ts->sched_timer);
470 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
471 
472 	while (1) {
473 		/* Forward the time to expire in the future */
474 		hrtimer_forward(&ts->sched_timer, now, tick_period);
475 
476 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
477 			hrtimer_start_expires(&ts->sched_timer,
478 					      HRTIMER_MODE_ABS_PINNED);
479 			/* Check, if the timer was already in the past */
480 			if (hrtimer_active(&ts->sched_timer))
481 				break;
482 		} else {
483 			if (!tick_program_event(
484 				hrtimer_get_expires(&ts->sched_timer), 0))
485 				break;
486 		}
487 		/* Update jiffies and reread time */
488 		tick_do_update_jiffies64(now);
489 		now = ktime_get();
490 	}
491 }
492 
493 /**
494  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
495  *
496  * Restart the idle tick when the CPU is woken up from idle
497  */
498 void tick_nohz_restart_sched_tick(void)
499 {
500 	int cpu = smp_processor_id();
501 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
502 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
503 	unsigned long ticks;
504 #endif
505 	ktime_t now;
506 
507 	local_irq_disable();
508 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
509 		now = ktime_get();
510 
511 	if (ts->idle_active)
512 		tick_nohz_stop_idle(cpu, now);
513 
514 	if (!ts->inidle || !ts->tick_stopped) {
515 		ts->inidle = 0;
516 		local_irq_enable();
517 		return;
518 	}
519 
520 	ts->inidle = 0;
521 
522 	rcu_exit_nohz();
523 
524 	/* Update jiffies first */
525 	select_nohz_load_balancer(0);
526 	tick_do_update_jiffies64(now);
527 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
528 
529 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
530 	/*
531 	 * We stopped the tick in idle. Update process times would miss the
532 	 * time we slept as update_process_times does only a 1 tick
533 	 * accounting. Enforce that this is accounted to idle !
534 	 */
535 	ticks = jiffies - ts->idle_jiffies;
536 	/*
537 	 * We might be one off. Do not randomly account a huge number of ticks!
538 	 */
539 	if (ticks && ticks < LONG_MAX)
540 		account_idle_ticks(ticks);
541 #endif
542 
543 	touch_softlockup_watchdog();
544 	/*
545 	 * Cancel the scheduled timer and restore the tick
546 	 */
547 	ts->tick_stopped  = 0;
548 	ts->idle_exittime = now;
549 
550 	tick_nohz_restart(ts, now);
551 
552 	local_irq_enable();
553 }
554 
555 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
556 {
557 	hrtimer_forward(&ts->sched_timer, now, tick_period);
558 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
559 }
560 
561 /*
562  * The nohz low res interrupt handler
563  */
564 static void tick_nohz_handler(struct clock_event_device *dev)
565 {
566 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
567 	struct pt_regs *regs = get_irq_regs();
568 	int cpu = smp_processor_id();
569 	ktime_t now = ktime_get();
570 
571 	dev->next_event.tv64 = KTIME_MAX;
572 
573 	/*
574 	 * Check if the do_timer duty was dropped. We don't care about
575 	 * concurrency: This happens only when the cpu in charge went
576 	 * into a long sleep. If two cpus happen to assign themself to
577 	 * this duty, then the jiffies update is still serialized by
578 	 * xtime_lock.
579 	 */
580 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
581 		tick_do_timer_cpu = cpu;
582 
583 	/* Check, if the jiffies need an update */
584 	if (tick_do_timer_cpu == cpu)
585 		tick_do_update_jiffies64(now);
586 
587 	/*
588 	 * When we are idle and the tick is stopped, we have to touch
589 	 * the watchdog as we might not schedule for a really long
590 	 * time. This happens on complete idle SMP systems while
591 	 * waiting on the login prompt. We also increment the "start
592 	 * of idle" jiffy stamp so the idle accounting adjustment we
593 	 * do when we go busy again does not account too much ticks.
594 	 */
595 	if (ts->tick_stopped) {
596 		touch_softlockup_watchdog();
597 		ts->idle_jiffies++;
598 	}
599 
600 	update_process_times(user_mode(regs));
601 	profile_tick(CPU_PROFILING);
602 
603 	while (tick_nohz_reprogram(ts, now)) {
604 		now = ktime_get();
605 		tick_do_update_jiffies64(now);
606 	}
607 }
608 
609 /**
610  * tick_nohz_switch_to_nohz - switch to nohz mode
611  */
612 static void tick_nohz_switch_to_nohz(void)
613 {
614 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
615 	ktime_t next;
616 
617 	if (!tick_nohz_enabled)
618 		return;
619 
620 	local_irq_disable();
621 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
622 		local_irq_enable();
623 		return;
624 	}
625 
626 	ts->nohz_mode = NOHZ_MODE_LOWRES;
627 
628 	/*
629 	 * Recycle the hrtimer in ts, so we can share the
630 	 * hrtimer_forward with the highres code.
631 	 */
632 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633 	/* Get the next period */
634 	next = tick_init_jiffy_update();
635 
636 	for (;;) {
637 		hrtimer_set_expires(&ts->sched_timer, next);
638 		if (!tick_program_event(next, 0))
639 			break;
640 		next = ktime_add(next, tick_period);
641 	}
642 	local_irq_enable();
643 
644 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
645 }
646 
647 /*
648  * When NOHZ is enabled and the tick is stopped, we need to kick the
649  * tick timer from irq_enter() so that the jiffies update is kept
650  * alive during long running softirqs. That's ugly as hell, but
651  * correctness is key even if we need to fix the offending softirq in
652  * the first place.
653  *
654  * Note, this is different to tick_nohz_restart. We just kick the
655  * timer and do not touch the other magic bits which need to be done
656  * when idle is left.
657  */
658 static void tick_nohz_kick_tick(int cpu, ktime_t now)
659 {
660 #if 0
661 	/* Switch back to 2.6.27 behaviour */
662 
663 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
664 	ktime_t delta;
665 
666 	/*
667 	 * Do not touch the tick device, when the next expiry is either
668 	 * already reached or less/equal than the tick period.
669 	 */
670 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
671 	if (delta.tv64 <= tick_period.tv64)
672 		return;
673 
674 	tick_nohz_restart(ts, now);
675 #endif
676 }
677 
678 static inline void tick_check_nohz(int cpu)
679 {
680 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
681 	ktime_t now;
682 
683 	if (!ts->idle_active && !ts->tick_stopped)
684 		return;
685 	now = ktime_get();
686 	if (ts->idle_active)
687 		tick_nohz_stop_idle(cpu, now);
688 	if (ts->tick_stopped) {
689 		tick_nohz_update_jiffies(now);
690 		tick_nohz_kick_tick(cpu, now);
691 	}
692 }
693 
694 #else
695 
696 static inline void tick_nohz_switch_to_nohz(void) { }
697 static inline void tick_check_nohz(int cpu) { }
698 
699 #endif /* NO_HZ */
700 
701 /*
702  * Called from irq_enter to notify about the possible interruption of idle()
703  */
704 void tick_check_idle(int cpu)
705 {
706 	tick_check_oneshot_broadcast(cpu);
707 	tick_check_nohz(cpu);
708 }
709 
710 /*
711  * High resolution timer specific code
712  */
713 #ifdef CONFIG_HIGH_RES_TIMERS
714 /*
715  * We rearm the timer until we get disabled by the idle code.
716  * Called with interrupts disabled and timer->base->cpu_base->lock held.
717  */
718 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
719 {
720 	struct tick_sched *ts =
721 		container_of(timer, struct tick_sched, sched_timer);
722 	struct pt_regs *regs = get_irq_regs();
723 	ktime_t now = ktime_get();
724 	int cpu = smp_processor_id();
725 
726 #ifdef CONFIG_NO_HZ
727 	/*
728 	 * Check if the do_timer duty was dropped. We don't care about
729 	 * concurrency: This happens only when the cpu in charge went
730 	 * into a long sleep. If two cpus happen to assign themself to
731 	 * this duty, then the jiffies update is still serialized by
732 	 * xtime_lock.
733 	 */
734 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
735 		tick_do_timer_cpu = cpu;
736 #endif
737 
738 	/* Check, if the jiffies need an update */
739 	if (tick_do_timer_cpu == cpu)
740 		tick_do_update_jiffies64(now);
741 
742 	/*
743 	 * Do not call, when we are not in irq context and have
744 	 * no valid regs pointer
745 	 */
746 	if (regs) {
747 		/*
748 		 * When we are idle and the tick is stopped, we have to touch
749 		 * the watchdog as we might not schedule for a really long
750 		 * time. This happens on complete idle SMP systems while
751 		 * waiting on the login prompt. We also increment the "start of
752 		 * idle" jiffy stamp so the idle accounting adjustment we do
753 		 * when we go busy again does not account too much ticks.
754 		 */
755 		if (ts->tick_stopped) {
756 			touch_softlockup_watchdog();
757 			ts->idle_jiffies++;
758 		}
759 		update_process_times(user_mode(regs));
760 		profile_tick(CPU_PROFILING);
761 	}
762 
763 	hrtimer_forward(timer, now, tick_period);
764 
765 	return HRTIMER_RESTART;
766 }
767 
768 /**
769  * tick_setup_sched_timer - setup the tick emulation timer
770  */
771 void tick_setup_sched_timer(void)
772 {
773 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
774 	ktime_t now = ktime_get();
775 
776 	/*
777 	 * Emulate tick processing via per-CPU hrtimers:
778 	 */
779 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
780 	ts->sched_timer.function = tick_sched_timer;
781 
782 	/* Get the next period (per cpu) */
783 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
784 
785 	for (;;) {
786 		hrtimer_forward(&ts->sched_timer, now, tick_period);
787 		hrtimer_start_expires(&ts->sched_timer,
788 				      HRTIMER_MODE_ABS_PINNED);
789 		/* Check, if the timer was already in the past */
790 		if (hrtimer_active(&ts->sched_timer))
791 			break;
792 		now = ktime_get();
793 	}
794 
795 #ifdef CONFIG_NO_HZ
796 	if (tick_nohz_enabled) {
797 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
798 		printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
799 	}
800 #endif
801 }
802 #endif /* HIGH_RES_TIMERS */
803 
804 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805 void tick_cancel_sched_timer(int cpu)
806 {
807 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
808 
809 # ifdef CONFIG_HIGH_RES_TIMERS
810 	if (ts->sched_timer.base)
811 		hrtimer_cancel(&ts->sched_timer);
812 # endif
813 
814 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
815 }
816 #endif
817 
818 /**
819  * Async notification about clocksource changes
820  */
821 void tick_clock_notify(void)
822 {
823 	int cpu;
824 
825 	for_each_possible_cpu(cpu)
826 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
827 }
828 
829 /*
830  * Async notification about clock event changes
831  */
832 void tick_oneshot_notify(void)
833 {
834 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835 
836 	set_bit(0, &ts->check_clocks);
837 }
838 
839 /**
840  * Check, if a change happened, which makes oneshot possible.
841  *
842  * Called cyclic from the hrtimer softirq (driven by the timer
843  * softirq) allow_nohz signals, that we can switch into low-res nohz
844  * mode, because high resolution timers are disabled (either compile
845  * or runtime).
846  */
847 int tick_check_oneshot_change(int allow_nohz)
848 {
849 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
850 
851 	if (!test_and_clear_bit(0, &ts->check_clocks))
852 		return 0;
853 
854 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
855 		return 0;
856 
857 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
858 		return 0;
859 
860 	if (!allow_nohz)
861 		return 1;
862 
863 	tick_nohz_switch_to_nohz();
864 	return 0;
865 }
866