xref: /openbmc/linux/kernel/time/tick-sched.c (revision 7dd65feb)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 
143 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 	ts->idle_waketime = now;
145 
146 	local_irq_save(flags);
147 	tick_do_update_jiffies64(now);
148 	local_irq_restore(flags);
149 
150 	touch_softlockup_watchdog();
151 }
152 
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
154 {
155 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 	ktime_t delta;
157 
158 	delta = ktime_sub(now, ts->idle_entrytime);
159 	ts->idle_lastupdate = now;
160 	ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 	ts->idle_active = 0;
162 
163 	sched_clock_idle_wakeup_event(0);
164 }
165 
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167 {
168 	ktime_t now, delta;
169 
170 	now = ktime_get();
171 	if (ts->idle_active) {
172 		delta = ktime_sub(now, ts->idle_entrytime);
173 		ts->idle_lastupdate = now;
174 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 	}
176 	ts->idle_entrytime = now;
177 	ts->idle_active = 1;
178 	sched_clock_idle_sleep_event();
179 	return now;
180 }
181 
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183 {
184 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
185 
186 	if (!tick_nohz_enabled)
187 		return -1;
188 
189 	if (ts->idle_active)
190 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
191 	else
192 		*last_update_time = ktime_to_us(ktime_get());
193 
194 	return ktime_to_us(ts->idle_sleeptime);
195 }
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197 
198 /**
199  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200  *
201  * When the next event is more than a tick into the future, stop the idle tick
202  * Called either from the idle loop or from irq_exit() when an idle period was
203  * just interrupted by an interrupt which did not cause a reschedule.
204  */
205 void tick_nohz_stop_sched_tick(int inidle)
206 {
207 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 	struct tick_sched *ts;
209 	ktime_t last_update, expires, now;
210 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 	u64 time_delta;
212 	int cpu;
213 
214 	local_irq_save(flags);
215 
216 	cpu = smp_processor_id();
217 	ts = &per_cpu(tick_cpu_sched, cpu);
218 
219 	/*
220 	 * Call to tick_nohz_start_idle stops the last_update_time from being
221 	 * updated. Thus, it must not be called in the event we are called from
222 	 * irq_exit() with the prior state different than idle.
223 	 */
224 	if (!inidle && !ts->inidle)
225 		goto end;
226 
227 	/*
228 	 * Set ts->inidle unconditionally. Even if the system did not
229 	 * switch to NOHZ mode the cpu frequency governers rely on the
230 	 * update of the idle time accounting in tick_nohz_start_idle().
231 	 */
232 	ts->inidle = 1;
233 
234 	now = tick_nohz_start_idle(ts);
235 
236 	/*
237 	 * If this cpu is offline and it is the one which updates
238 	 * jiffies, then give up the assignment and let it be taken by
239 	 * the cpu which runs the tick timer next. If we don't drop
240 	 * this here the jiffies might be stale and do_timer() never
241 	 * invoked.
242 	 */
243 	if (unlikely(!cpu_online(cpu))) {
244 		if (cpu == tick_do_timer_cpu)
245 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
246 	}
247 
248 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
249 		goto end;
250 
251 	if (need_resched())
252 		goto end;
253 
254 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
255 		static int ratelimit;
256 
257 		if (ratelimit < 10) {
258 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
259 			       (unsigned int) local_softirq_pending());
260 			ratelimit++;
261 		}
262 		goto end;
263 	}
264 
265 	ts->idle_calls++;
266 	/* Read jiffies and the time when jiffies were updated last */
267 	do {
268 		seq = read_seqbegin(&xtime_lock);
269 		last_update = last_jiffies_update;
270 		last_jiffies = jiffies;
271 		time_delta = timekeeping_max_deferment();
272 	} while (read_seqretry(&xtime_lock, seq));
273 
274 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
275 	    arch_needs_cpu(cpu)) {
276 		next_jiffies = last_jiffies + 1;
277 		delta_jiffies = 1;
278 	} else {
279 		/* Get the next timer wheel timer */
280 		next_jiffies = get_next_timer_interrupt(last_jiffies);
281 		delta_jiffies = next_jiffies - last_jiffies;
282 	}
283 	/*
284 	 * Do not stop the tick, if we are only one off
285 	 * or if the cpu is required for rcu
286 	 */
287 	if (!ts->tick_stopped && delta_jiffies == 1)
288 		goto out;
289 
290 	/* Schedule the tick, if we are at least one jiffie off */
291 	if ((long)delta_jiffies >= 1) {
292 
293 		/*
294 		 * If this cpu is the one which updates jiffies, then
295 		 * give up the assignment and let it be taken by the
296 		 * cpu which runs the tick timer next, which might be
297 		 * this cpu as well. If we don't drop this here the
298 		 * jiffies might be stale and do_timer() never
299 		 * invoked. Keep track of the fact that it was the one
300 		 * which had the do_timer() duty last. If this cpu is
301 		 * the one which had the do_timer() duty last, we
302 		 * limit the sleep time to the timekeeping
303 		 * max_deferement value which we retrieved
304 		 * above. Otherwise we can sleep as long as we want.
305 		 */
306 		if (cpu == tick_do_timer_cpu) {
307 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
308 			ts->do_timer_last = 1;
309 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
310 			time_delta = KTIME_MAX;
311 			ts->do_timer_last = 0;
312 		} else if (!ts->do_timer_last) {
313 			time_delta = KTIME_MAX;
314 		}
315 
316 		/*
317 		 * calculate the expiry time for the next timer wheel
318 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
319 		 * that there is no timer pending or at least extremely
320 		 * far into the future (12 days for HZ=1000). In this
321 		 * case we set the expiry to the end of time.
322 		 */
323 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
324 			/*
325 			 * Calculate the time delta for the next timer event.
326 			 * If the time delta exceeds the maximum time delta
327 			 * permitted by the current clocksource then adjust
328 			 * the time delta accordingly to ensure the
329 			 * clocksource does not wrap.
330 			 */
331 			time_delta = min_t(u64, time_delta,
332 					   tick_period.tv64 * delta_jiffies);
333 		}
334 
335 		if (time_delta < KTIME_MAX)
336 			expires = ktime_add_ns(last_update, time_delta);
337 		else
338 			expires.tv64 = KTIME_MAX;
339 
340 		if (delta_jiffies > 1)
341 			cpumask_set_cpu(cpu, nohz_cpu_mask);
342 
343 		/* Skip reprogram of event if its not changed */
344 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
345 			goto out;
346 
347 		/*
348 		 * nohz_stop_sched_tick can be called several times before
349 		 * the nohz_restart_sched_tick is called. This happens when
350 		 * interrupts arrive which do not cause a reschedule. In the
351 		 * first call we save the current tick time, so we can restart
352 		 * the scheduler tick in nohz_restart_sched_tick.
353 		 */
354 		if (!ts->tick_stopped) {
355 			if (select_nohz_load_balancer(1)) {
356 				/*
357 				 * sched tick not stopped!
358 				 */
359 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
360 				goto out;
361 			}
362 
363 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
364 			ts->tick_stopped = 1;
365 			ts->idle_jiffies = last_jiffies;
366 			rcu_enter_nohz();
367 		}
368 
369 		ts->idle_sleeps++;
370 
371 		/* Mark expires */
372 		ts->idle_expires = expires;
373 
374 		/*
375 		 * If the expiration time == KTIME_MAX, then
376 		 * in this case we simply stop the tick timer.
377 		 */
378 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
379 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
380 				hrtimer_cancel(&ts->sched_timer);
381 			goto out;
382 		}
383 
384 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
385 			hrtimer_start(&ts->sched_timer, expires,
386 				      HRTIMER_MODE_ABS_PINNED);
387 			/* Check, if the timer was already in the past */
388 			if (hrtimer_active(&ts->sched_timer))
389 				goto out;
390 		} else if (!tick_program_event(expires, 0))
391 				goto out;
392 		/*
393 		 * We are past the event already. So we crossed a
394 		 * jiffie boundary. Update jiffies and raise the
395 		 * softirq.
396 		 */
397 		tick_do_update_jiffies64(ktime_get());
398 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
399 	}
400 	raise_softirq_irqoff(TIMER_SOFTIRQ);
401 out:
402 	ts->next_jiffies = next_jiffies;
403 	ts->last_jiffies = last_jiffies;
404 	ts->sleep_length = ktime_sub(dev->next_event, now);
405 end:
406 	local_irq_restore(flags);
407 }
408 
409 /**
410  * tick_nohz_get_sleep_length - return the length of the current sleep
411  *
412  * Called from power state control code with interrupts disabled
413  */
414 ktime_t tick_nohz_get_sleep_length(void)
415 {
416 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
417 
418 	return ts->sleep_length;
419 }
420 
421 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
422 {
423 	hrtimer_cancel(&ts->sched_timer);
424 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
425 
426 	while (1) {
427 		/* Forward the time to expire in the future */
428 		hrtimer_forward(&ts->sched_timer, now, tick_period);
429 
430 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 			hrtimer_start_expires(&ts->sched_timer,
432 					      HRTIMER_MODE_ABS_PINNED);
433 			/* Check, if the timer was already in the past */
434 			if (hrtimer_active(&ts->sched_timer))
435 				break;
436 		} else {
437 			if (!tick_program_event(
438 				hrtimer_get_expires(&ts->sched_timer), 0))
439 				break;
440 		}
441 		/* Update jiffies and reread time */
442 		tick_do_update_jiffies64(now);
443 		now = ktime_get();
444 	}
445 }
446 
447 /**
448  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
449  *
450  * Restart the idle tick when the CPU is woken up from idle
451  */
452 void tick_nohz_restart_sched_tick(void)
453 {
454 	int cpu = smp_processor_id();
455 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
456 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
457 	unsigned long ticks;
458 #endif
459 	ktime_t now;
460 
461 	local_irq_disable();
462 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
463 		now = ktime_get();
464 
465 	if (ts->idle_active)
466 		tick_nohz_stop_idle(cpu, now);
467 
468 	if (!ts->inidle || !ts->tick_stopped) {
469 		ts->inidle = 0;
470 		local_irq_enable();
471 		return;
472 	}
473 
474 	ts->inidle = 0;
475 
476 	rcu_exit_nohz();
477 
478 	/* Update jiffies first */
479 	select_nohz_load_balancer(0);
480 	tick_do_update_jiffies64(now);
481 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
482 
483 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
484 	/*
485 	 * We stopped the tick in idle. Update process times would miss the
486 	 * time we slept as update_process_times does only a 1 tick
487 	 * accounting. Enforce that this is accounted to idle !
488 	 */
489 	ticks = jiffies - ts->idle_jiffies;
490 	/*
491 	 * We might be one off. Do not randomly account a huge number of ticks!
492 	 */
493 	if (ticks && ticks < LONG_MAX)
494 		account_idle_ticks(ticks);
495 #endif
496 
497 	touch_softlockup_watchdog();
498 	/*
499 	 * Cancel the scheduled timer and restore the tick
500 	 */
501 	ts->tick_stopped  = 0;
502 	ts->idle_exittime = now;
503 
504 	tick_nohz_restart(ts, now);
505 
506 	local_irq_enable();
507 }
508 
509 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
510 {
511 	hrtimer_forward(&ts->sched_timer, now, tick_period);
512 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
513 }
514 
515 /*
516  * The nohz low res interrupt handler
517  */
518 static void tick_nohz_handler(struct clock_event_device *dev)
519 {
520 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
521 	struct pt_regs *regs = get_irq_regs();
522 	int cpu = smp_processor_id();
523 	ktime_t now = ktime_get();
524 
525 	dev->next_event.tv64 = KTIME_MAX;
526 
527 	/*
528 	 * Check if the do_timer duty was dropped. We don't care about
529 	 * concurrency: This happens only when the cpu in charge went
530 	 * into a long sleep. If two cpus happen to assign themself to
531 	 * this duty, then the jiffies update is still serialized by
532 	 * xtime_lock.
533 	 */
534 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
535 		tick_do_timer_cpu = cpu;
536 
537 	/* Check, if the jiffies need an update */
538 	if (tick_do_timer_cpu == cpu)
539 		tick_do_update_jiffies64(now);
540 
541 	/*
542 	 * When we are idle and the tick is stopped, we have to touch
543 	 * the watchdog as we might not schedule for a really long
544 	 * time. This happens on complete idle SMP systems while
545 	 * waiting on the login prompt. We also increment the "start
546 	 * of idle" jiffy stamp so the idle accounting adjustment we
547 	 * do when we go busy again does not account too much ticks.
548 	 */
549 	if (ts->tick_stopped) {
550 		touch_softlockup_watchdog();
551 		ts->idle_jiffies++;
552 	}
553 
554 	update_process_times(user_mode(regs));
555 	profile_tick(CPU_PROFILING);
556 
557 	while (tick_nohz_reprogram(ts, now)) {
558 		now = ktime_get();
559 		tick_do_update_jiffies64(now);
560 	}
561 }
562 
563 /**
564  * tick_nohz_switch_to_nohz - switch to nohz mode
565  */
566 static void tick_nohz_switch_to_nohz(void)
567 {
568 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
569 	ktime_t next;
570 
571 	if (!tick_nohz_enabled)
572 		return;
573 
574 	local_irq_disable();
575 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
576 		local_irq_enable();
577 		return;
578 	}
579 
580 	ts->nohz_mode = NOHZ_MODE_LOWRES;
581 
582 	/*
583 	 * Recycle the hrtimer in ts, so we can share the
584 	 * hrtimer_forward with the highres code.
585 	 */
586 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
587 	/* Get the next period */
588 	next = tick_init_jiffy_update();
589 
590 	for (;;) {
591 		hrtimer_set_expires(&ts->sched_timer, next);
592 		if (!tick_program_event(next, 0))
593 			break;
594 		next = ktime_add(next, tick_period);
595 	}
596 	local_irq_enable();
597 
598 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
599 	       smp_processor_id());
600 }
601 
602 /*
603  * When NOHZ is enabled and the tick is stopped, we need to kick the
604  * tick timer from irq_enter() so that the jiffies update is kept
605  * alive during long running softirqs. That's ugly as hell, but
606  * correctness is key even if we need to fix the offending softirq in
607  * the first place.
608  *
609  * Note, this is different to tick_nohz_restart. We just kick the
610  * timer and do not touch the other magic bits which need to be done
611  * when idle is left.
612  */
613 static void tick_nohz_kick_tick(int cpu, ktime_t now)
614 {
615 #if 0
616 	/* Switch back to 2.6.27 behaviour */
617 
618 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
619 	ktime_t delta;
620 
621 	/*
622 	 * Do not touch the tick device, when the next expiry is either
623 	 * already reached or less/equal than the tick period.
624 	 */
625 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
626 	if (delta.tv64 <= tick_period.tv64)
627 		return;
628 
629 	tick_nohz_restart(ts, now);
630 #endif
631 }
632 
633 static inline void tick_check_nohz(int cpu)
634 {
635 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
636 	ktime_t now;
637 
638 	if (!ts->idle_active && !ts->tick_stopped)
639 		return;
640 	now = ktime_get();
641 	if (ts->idle_active)
642 		tick_nohz_stop_idle(cpu, now);
643 	if (ts->tick_stopped) {
644 		tick_nohz_update_jiffies(now);
645 		tick_nohz_kick_tick(cpu, now);
646 	}
647 }
648 
649 #else
650 
651 static inline void tick_nohz_switch_to_nohz(void) { }
652 static inline void tick_check_nohz(int cpu) { }
653 
654 #endif /* NO_HZ */
655 
656 /*
657  * Called from irq_enter to notify about the possible interruption of idle()
658  */
659 void tick_check_idle(int cpu)
660 {
661 	tick_check_oneshot_broadcast(cpu);
662 	tick_check_nohz(cpu);
663 }
664 
665 /*
666  * High resolution timer specific code
667  */
668 #ifdef CONFIG_HIGH_RES_TIMERS
669 /*
670  * We rearm the timer until we get disabled by the idle code.
671  * Called with interrupts disabled and timer->base->cpu_base->lock held.
672  */
673 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
674 {
675 	struct tick_sched *ts =
676 		container_of(timer, struct tick_sched, sched_timer);
677 	struct pt_regs *regs = get_irq_regs();
678 	ktime_t now = ktime_get();
679 	int cpu = smp_processor_id();
680 
681 #ifdef CONFIG_NO_HZ
682 	/*
683 	 * Check if the do_timer duty was dropped. We don't care about
684 	 * concurrency: This happens only when the cpu in charge went
685 	 * into a long sleep. If two cpus happen to assign themself to
686 	 * this duty, then the jiffies update is still serialized by
687 	 * xtime_lock.
688 	 */
689 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
690 		tick_do_timer_cpu = cpu;
691 #endif
692 
693 	/* Check, if the jiffies need an update */
694 	if (tick_do_timer_cpu == cpu)
695 		tick_do_update_jiffies64(now);
696 
697 	/*
698 	 * Do not call, when we are not in irq context and have
699 	 * no valid regs pointer
700 	 */
701 	if (regs) {
702 		/*
703 		 * When we are idle and the tick is stopped, we have to touch
704 		 * the watchdog as we might not schedule for a really long
705 		 * time. This happens on complete idle SMP systems while
706 		 * waiting on the login prompt. We also increment the "start of
707 		 * idle" jiffy stamp so the idle accounting adjustment we do
708 		 * when we go busy again does not account too much ticks.
709 		 */
710 		if (ts->tick_stopped) {
711 			touch_softlockup_watchdog();
712 			ts->idle_jiffies++;
713 		}
714 		update_process_times(user_mode(regs));
715 		profile_tick(CPU_PROFILING);
716 	}
717 
718 	hrtimer_forward(timer, now, tick_period);
719 
720 	return HRTIMER_RESTART;
721 }
722 
723 /**
724  * tick_setup_sched_timer - setup the tick emulation timer
725  */
726 void tick_setup_sched_timer(void)
727 {
728 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
729 	ktime_t now = ktime_get();
730 	u64 offset;
731 
732 	/*
733 	 * Emulate tick processing via per-CPU hrtimers:
734 	 */
735 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
736 	ts->sched_timer.function = tick_sched_timer;
737 
738 	/* Get the next period (per cpu) */
739 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
740 	offset = ktime_to_ns(tick_period) >> 1;
741 	do_div(offset, num_possible_cpus());
742 	offset *= smp_processor_id();
743 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
744 
745 	for (;;) {
746 		hrtimer_forward(&ts->sched_timer, now, tick_period);
747 		hrtimer_start_expires(&ts->sched_timer,
748 				      HRTIMER_MODE_ABS_PINNED);
749 		/* Check, if the timer was already in the past */
750 		if (hrtimer_active(&ts->sched_timer))
751 			break;
752 		now = ktime_get();
753 	}
754 
755 #ifdef CONFIG_NO_HZ
756 	if (tick_nohz_enabled)
757 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
758 #endif
759 }
760 #endif /* HIGH_RES_TIMERS */
761 
762 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
763 void tick_cancel_sched_timer(int cpu)
764 {
765 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
766 
767 # ifdef CONFIG_HIGH_RES_TIMERS
768 	if (ts->sched_timer.base)
769 		hrtimer_cancel(&ts->sched_timer);
770 # endif
771 
772 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
773 }
774 #endif
775 
776 /**
777  * Async notification about clocksource changes
778  */
779 void tick_clock_notify(void)
780 {
781 	int cpu;
782 
783 	for_each_possible_cpu(cpu)
784 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
785 }
786 
787 /*
788  * Async notification about clock event changes
789  */
790 void tick_oneshot_notify(void)
791 {
792 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
793 
794 	set_bit(0, &ts->check_clocks);
795 }
796 
797 /**
798  * Check, if a change happened, which makes oneshot possible.
799  *
800  * Called cyclic from the hrtimer softirq (driven by the timer
801  * softirq) allow_nohz signals, that we can switch into low-res nohz
802  * mode, because high resolution timers are disabled (either compile
803  * or runtime).
804  */
805 int tick_check_oneshot_change(int allow_nohz)
806 {
807 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
808 
809 	if (!test_and_clear_bit(0, &ts->check_clocks))
810 		return 0;
811 
812 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
813 		return 0;
814 
815 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
816 		return 0;
817 
818 	if (!allow_nohz)
819 		return 1;
820 
821 	tick_nohz_switch_to_nohz();
822 	return 0;
823 }
824