xref: /openbmc/linux/kernel/time/tick-sched.c (revision 7809998a)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 /*
46  * The time, when the last jiffy update happened. Protected by jiffies_lock.
47  */
48 static ktime_t last_jiffies_update;
49 
50 /*
51  * Must be called with interrupts disabled !
52  */
53 static void tick_do_update_jiffies64(ktime_t now)
54 {
55 	unsigned long ticks = 0;
56 	ktime_t delta;
57 
58 	/*
59 	 * Do a quick check without holding jiffies_lock:
60 	 */
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 < tick_period.tv64)
63 		return;
64 
65 	/* Reevalute with jiffies_lock held */
66 	write_seqlock(&jiffies_lock);
67 
68 	delta = ktime_sub(now, last_jiffies_update);
69 	if (delta.tv64 >= tick_period.tv64) {
70 
71 		delta = ktime_sub(delta, tick_period);
72 		last_jiffies_update = ktime_add(last_jiffies_update,
73 						tick_period);
74 
75 		/* Slow path for long timeouts */
76 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
77 			s64 incr = ktime_to_ns(tick_period);
78 
79 			ticks = ktime_divns(delta, incr);
80 
81 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
82 							   incr * ticks);
83 		}
84 		do_timer(++ticks);
85 
86 		/* Keep the tick_next_period variable up to date */
87 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 	} else {
89 		write_sequnlock(&jiffies_lock);
90 		return;
91 	}
92 	write_sequnlock(&jiffies_lock);
93 	update_wall_time();
94 }
95 
96 /*
97  * Initialize and return retrieve the jiffies update.
98  */
99 static ktime_t tick_init_jiffy_update(void)
100 {
101 	ktime_t period;
102 
103 	write_seqlock(&jiffies_lock);
104 	/* Did we start the jiffies update yet ? */
105 	if (last_jiffies_update.tv64 == 0)
106 		last_jiffies_update = tick_next_period;
107 	period = last_jiffies_update;
108 	write_sequnlock(&jiffies_lock);
109 	return period;
110 }
111 
112 
113 static void tick_sched_do_timer(ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the cpu in charge went
121 	 * into a long sleep. If two cpus happen to assign themself to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 */
125 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126 	    && !tick_nohz_full_cpu(cpu))
127 		tick_do_timer_cpu = cpu;
128 #endif
129 
130 	/* Check, if the jiffies need an update */
131 	if (tick_do_timer_cpu == cpu)
132 		tick_do_update_jiffies64(now);
133 }
134 
135 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 {
137 #ifdef CONFIG_NO_HZ_COMMON
138 	/*
139 	 * When we are idle and the tick is stopped, we have to touch
140 	 * the watchdog as we might not schedule for a really long
141 	 * time. This happens on complete idle SMP systems while
142 	 * waiting on the login prompt. We also increment the "start of
143 	 * idle" jiffy stamp so the idle accounting adjustment we do
144 	 * when we go busy again does not account too much ticks.
145 	 */
146 	if (ts->tick_stopped) {
147 		touch_softlockup_watchdog();
148 		if (is_idle_task(current))
149 			ts->idle_jiffies++;
150 	}
151 #endif
152 	update_process_times(user_mode(regs));
153 	profile_tick(CPU_PROFILING);
154 }
155 #endif
156 
157 #ifdef CONFIG_NO_HZ_FULL
158 cpumask_var_t tick_nohz_full_mask;
159 cpumask_var_t housekeeping_mask;
160 bool tick_nohz_full_running;
161 
162 static bool can_stop_full_tick(void)
163 {
164 	WARN_ON_ONCE(!irqs_disabled());
165 
166 	if (!sched_can_stop_tick()) {
167 		trace_tick_stop(0, "more than 1 task in runqueue\n");
168 		return false;
169 	}
170 
171 	if (!posix_cpu_timers_can_stop_tick(current)) {
172 		trace_tick_stop(0, "posix timers running\n");
173 		return false;
174 	}
175 
176 	if (!perf_event_can_stop_tick()) {
177 		trace_tick_stop(0, "perf events running\n");
178 		return false;
179 	}
180 
181 	/* sched_clock_tick() needs us? */
182 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
183 	/*
184 	 * TODO: kick full dynticks CPUs when
185 	 * sched_clock_stable is set.
186 	 */
187 	if (!sched_clock_stable()) {
188 		trace_tick_stop(0, "unstable sched clock\n");
189 		/*
190 		 * Don't allow the user to think they can get
191 		 * full NO_HZ with this machine.
192 		 */
193 		WARN_ONCE(tick_nohz_full_running,
194 			  "NO_HZ FULL will not work with unstable sched clock");
195 		return false;
196 	}
197 #endif
198 
199 	return true;
200 }
201 
202 static void nohz_full_kick_work_func(struct irq_work *work)
203 {
204 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
205 }
206 
207 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
208 	.func = nohz_full_kick_work_func,
209 };
210 
211 /*
212  * Kick this CPU if it's full dynticks in order to force it to
213  * re-evaluate its dependency on the tick and restart it if necessary.
214  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
215  * is NMI safe.
216  */
217 void tick_nohz_full_kick(void)
218 {
219 	if (!tick_nohz_full_cpu(smp_processor_id()))
220 		return;
221 
222 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
223 }
224 
225 /*
226  * Kick the CPU if it's full dynticks in order to force it to
227  * re-evaluate its dependency on the tick and restart it if necessary.
228  */
229 void tick_nohz_full_kick_cpu(int cpu)
230 {
231 	if (!tick_nohz_full_cpu(cpu))
232 		return;
233 
234 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
235 }
236 
237 static void nohz_full_kick_ipi(void *info)
238 {
239 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
240 }
241 
242 /*
243  * Kick all full dynticks CPUs in order to force these to re-evaluate
244  * their dependency on the tick and restart it if necessary.
245  */
246 void tick_nohz_full_kick_all(void)
247 {
248 	if (!tick_nohz_full_running)
249 		return;
250 
251 	preempt_disable();
252 	smp_call_function_many(tick_nohz_full_mask,
253 			       nohz_full_kick_ipi, NULL, false);
254 	tick_nohz_full_kick();
255 	preempt_enable();
256 }
257 
258 /*
259  * Re-evaluate the need for the tick as we switch the current task.
260  * It might need the tick due to per task/process properties:
261  * perf events, posix cpu timers, ...
262  */
263 void __tick_nohz_task_switch(void)
264 {
265 	unsigned long flags;
266 
267 	local_irq_save(flags);
268 
269 	if (!tick_nohz_full_cpu(smp_processor_id()))
270 		goto out;
271 
272 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
273 		tick_nohz_full_kick();
274 
275 out:
276 	local_irq_restore(flags);
277 }
278 
279 /* Parse the boot-time nohz CPU list from the kernel parameters. */
280 static int __init tick_nohz_full_setup(char *str)
281 {
282 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
283 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
284 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
285 		free_bootmem_cpumask_var(tick_nohz_full_mask);
286 		return 1;
287 	}
288 	tick_nohz_full_running = true;
289 
290 	return 1;
291 }
292 __setup("nohz_full=", tick_nohz_full_setup);
293 
294 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
295 				       unsigned long action,
296 				       void *hcpu)
297 {
298 	unsigned int cpu = (unsigned long)hcpu;
299 
300 	switch (action & ~CPU_TASKS_FROZEN) {
301 	case CPU_DOWN_PREPARE:
302 		/*
303 		 * The boot CPU handles housekeeping duty (unbound timers,
304 		 * workqueues, timekeeping, ...) on behalf of full dynticks
305 		 * CPUs. It must remain online when nohz full is enabled.
306 		 */
307 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
308 			return NOTIFY_BAD;
309 		break;
310 	}
311 	return NOTIFY_OK;
312 }
313 
314 static int tick_nohz_init_all(void)
315 {
316 	int err = -1;
317 
318 #ifdef CONFIG_NO_HZ_FULL_ALL
319 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
320 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
321 		return err;
322 	}
323 	err = 0;
324 	cpumask_setall(tick_nohz_full_mask);
325 	tick_nohz_full_running = true;
326 #endif
327 	return err;
328 }
329 
330 void __init tick_nohz_init(void)
331 {
332 	int cpu;
333 
334 	if (!tick_nohz_full_running) {
335 		if (tick_nohz_init_all() < 0)
336 			return;
337 	}
338 
339 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
340 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
341 		cpumask_clear(tick_nohz_full_mask);
342 		tick_nohz_full_running = false;
343 		return;
344 	}
345 
346 	/*
347 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
348 	 * locking contexts. But then we need irq work to raise its own
349 	 * interrupts to avoid circular dependency on the tick
350 	 */
351 	if (!arch_irq_work_has_interrupt()) {
352 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
353 			   "support irq work self-IPIs\n");
354 		cpumask_clear(tick_nohz_full_mask);
355 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
356 		tick_nohz_full_running = false;
357 		return;
358 	}
359 
360 	cpu = smp_processor_id();
361 
362 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
363 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
364 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
365 	}
366 
367 	cpumask_andnot(housekeeping_mask,
368 		       cpu_possible_mask, tick_nohz_full_mask);
369 
370 	for_each_cpu(cpu, tick_nohz_full_mask)
371 		context_tracking_cpu_set(cpu);
372 
373 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
374 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
375 		cpumask_pr_args(tick_nohz_full_mask));
376 
377 	/*
378 	 * We need at least one CPU to handle housekeeping work such
379 	 * as timekeeping, unbound timers, workqueues, ...
380 	 */
381 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
382 }
383 #endif
384 
385 /*
386  * NOHZ - aka dynamic tick functionality
387  */
388 #ifdef CONFIG_NO_HZ_COMMON
389 /*
390  * NO HZ enabled ?
391  */
392 static int tick_nohz_enabled __read_mostly  = 1;
393 unsigned long tick_nohz_active  __read_mostly;
394 /*
395  * Enable / Disable tickless mode
396  */
397 static int __init setup_tick_nohz(char *str)
398 {
399 	if (!strcmp(str, "off"))
400 		tick_nohz_enabled = 0;
401 	else if (!strcmp(str, "on"))
402 		tick_nohz_enabled = 1;
403 	else
404 		return 0;
405 	return 1;
406 }
407 
408 __setup("nohz=", setup_tick_nohz);
409 
410 int tick_nohz_tick_stopped(void)
411 {
412 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
413 }
414 
415 /**
416  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
417  *
418  * Called from interrupt entry when the CPU was idle
419  *
420  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
421  * must be updated. Otherwise an interrupt handler could use a stale jiffy
422  * value. We do this unconditionally on any cpu, as we don't know whether the
423  * cpu, which has the update task assigned is in a long sleep.
424  */
425 static void tick_nohz_update_jiffies(ktime_t now)
426 {
427 	unsigned long flags;
428 
429 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
430 
431 	local_irq_save(flags);
432 	tick_do_update_jiffies64(now);
433 	local_irq_restore(flags);
434 
435 	touch_softlockup_watchdog();
436 }
437 
438 /*
439  * Updates the per cpu time idle statistics counters
440  */
441 static void
442 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
443 {
444 	ktime_t delta;
445 
446 	if (ts->idle_active) {
447 		delta = ktime_sub(now, ts->idle_entrytime);
448 		if (nr_iowait_cpu(cpu) > 0)
449 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
450 		else
451 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
452 		ts->idle_entrytime = now;
453 	}
454 
455 	if (last_update_time)
456 		*last_update_time = ktime_to_us(now);
457 
458 }
459 
460 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
461 {
462 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
463 	ts->idle_active = 0;
464 
465 	sched_clock_idle_wakeup_event(0);
466 }
467 
468 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
469 {
470 	ktime_t now = ktime_get();
471 
472 	ts->idle_entrytime = now;
473 	ts->idle_active = 1;
474 	sched_clock_idle_sleep_event();
475 	return now;
476 }
477 
478 /**
479  * get_cpu_idle_time_us - get the total idle time of a cpu
480  * @cpu: CPU number to query
481  * @last_update_time: variable to store update time in. Do not update
482  * counters if NULL.
483  *
484  * Return the cummulative idle time (since boot) for a given
485  * CPU, in microseconds.
486  *
487  * This time is measured via accounting rather than sampling,
488  * and is as accurate as ktime_get() is.
489  *
490  * This function returns -1 if NOHZ is not enabled.
491  */
492 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
493 {
494 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
495 	ktime_t now, idle;
496 
497 	if (!tick_nohz_active)
498 		return -1;
499 
500 	now = ktime_get();
501 	if (last_update_time) {
502 		update_ts_time_stats(cpu, ts, now, last_update_time);
503 		idle = ts->idle_sleeptime;
504 	} else {
505 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
506 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
507 
508 			idle = ktime_add(ts->idle_sleeptime, delta);
509 		} else {
510 			idle = ts->idle_sleeptime;
511 		}
512 	}
513 
514 	return ktime_to_us(idle);
515 
516 }
517 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
518 
519 /**
520  * get_cpu_iowait_time_us - get the total iowait time of a cpu
521  * @cpu: CPU number to query
522  * @last_update_time: variable to store update time in. Do not update
523  * counters if NULL.
524  *
525  * Return the cummulative iowait time (since boot) for a given
526  * CPU, in microseconds.
527  *
528  * This time is measured via accounting rather than sampling,
529  * and is as accurate as ktime_get() is.
530  *
531  * This function returns -1 if NOHZ is not enabled.
532  */
533 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
534 {
535 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
536 	ktime_t now, iowait;
537 
538 	if (!tick_nohz_active)
539 		return -1;
540 
541 	now = ktime_get();
542 	if (last_update_time) {
543 		update_ts_time_stats(cpu, ts, now, last_update_time);
544 		iowait = ts->iowait_sleeptime;
545 	} else {
546 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
547 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
548 
549 			iowait = ktime_add(ts->iowait_sleeptime, delta);
550 		} else {
551 			iowait = ts->iowait_sleeptime;
552 		}
553 	}
554 
555 	return ktime_to_us(iowait);
556 }
557 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
558 
559 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
560 {
561 	hrtimer_cancel(&ts->sched_timer);
562 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
563 
564 	/* Forward the time to expire in the future */
565 	hrtimer_forward(&ts->sched_timer, now, tick_period);
566 
567 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
568 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
569 	else
570 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
571 }
572 
573 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
574 					 ktime_t now, int cpu)
575 {
576 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
577 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
578 	unsigned long seq, basejiff;
579 	ktime_t	tick;
580 
581 	/* Read jiffies and the time when jiffies were updated last */
582 	do {
583 		seq = read_seqbegin(&jiffies_lock);
584 		basemono = last_jiffies_update.tv64;
585 		basejiff = jiffies;
586 	} while (read_seqretry(&jiffies_lock, seq));
587 	ts->last_jiffies = basejiff;
588 
589 	if (rcu_needs_cpu(basemono, &next_rcu) ||
590 	    arch_needs_cpu() || irq_work_needs_cpu()) {
591 		next_tick = basemono + TICK_NSEC;
592 	} else {
593 		/*
594 		 * Get the next pending timer. If high resolution
595 		 * timers are enabled this only takes the timer wheel
596 		 * timers into account. If high resolution timers are
597 		 * disabled this also looks at the next expiring
598 		 * hrtimer.
599 		 */
600 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
601 		ts->next_timer = next_tmr;
602 		/* Take the next rcu event into account */
603 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
604 	}
605 
606 	/*
607 	 * If the tick is due in the next period, keep it ticking or
608 	 * force prod the timer.
609 	 */
610 	delta = next_tick - basemono;
611 	if (delta <= (u64)TICK_NSEC) {
612 		tick.tv64 = 0;
613 		/*
614 		 * We've not stopped the tick yet, and there's a timer in the
615 		 * next period, so no point in stopping it either, bail.
616 		 */
617 		if (!ts->tick_stopped)
618 			goto out;
619 
620 		/*
621 		 * If, OTOH, we did stop it, but there's a pending (expired)
622 		 * timer reprogram the timer hardware to fire now.
623 		 *
624 		 * We will not restart the tick proper, just prod the timer
625 		 * hardware into firing an interrupt to process the pending
626 		 * timers. Just like tick_irq_exit() will not restart the tick
627 		 * for 'normal' interrupts.
628 		 *
629 		 * Only once we exit the idle loop will we re-enable the tick,
630 		 * see tick_nohz_idle_exit().
631 		 */
632 		if (delta == 0) {
633 			tick_nohz_restart(ts, now);
634 			goto out;
635 		}
636 	}
637 
638 	/*
639 	 * If this cpu is the one which updates jiffies, then give up
640 	 * the assignment and let it be taken by the cpu which runs
641 	 * the tick timer next, which might be this cpu as well. If we
642 	 * don't drop this here the jiffies might be stale and
643 	 * do_timer() never invoked. Keep track of the fact that it
644 	 * was the one which had the do_timer() duty last. If this cpu
645 	 * is the one which had the do_timer() duty last, we limit the
646 	 * sleep time to the timekeeping max_deferement value.
647 	 * Otherwise we can sleep as long as we want.
648 	 */
649 	delta = timekeeping_max_deferment();
650 	if (cpu == tick_do_timer_cpu) {
651 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
652 		ts->do_timer_last = 1;
653 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
654 		delta = KTIME_MAX;
655 		ts->do_timer_last = 0;
656 	} else if (!ts->do_timer_last) {
657 		delta = KTIME_MAX;
658 	}
659 
660 #ifdef CONFIG_NO_HZ_FULL
661 	/* Limit the tick delta to the maximum scheduler deferment */
662 	if (!ts->inidle)
663 		delta = min(delta, scheduler_tick_max_deferment());
664 #endif
665 
666 	/* Calculate the next expiry time */
667 	if (delta < (KTIME_MAX - basemono))
668 		expires = basemono + delta;
669 	else
670 		expires = KTIME_MAX;
671 
672 	expires = min_t(u64, expires, next_tick);
673 	tick.tv64 = expires;
674 
675 	/* Skip reprogram of event if its not changed */
676 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
677 		goto out;
678 
679 	/*
680 	 * nohz_stop_sched_tick can be called several times before
681 	 * the nohz_restart_sched_tick is called. This happens when
682 	 * interrupts arrive which do not cause a reschedule. In the
683 	 * first call we save the current tick time, so we can restart
684 	 * the scheduler tick in nohz_restart_sched_tick.
685 	 */
686 	if (!ts->tick_stopped) {
687 		nohz_balance_enter_idle(cpu);
688 		calc_load_enter_idle();
689 
690 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
691 		ts->tick_stopped = 1;
692 		trace_tick_stop(1, " ");
693 	}
694 
695 	/*
696 	 * If the expiration time == KTIME_MAX, then we simply stop
697 	 * the tick timer.
698 	 */
699 	if (unlikely(expires == KTIME_MAX)) {
700 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
701 			hrtimer_cancel(&ts->sched_timer);
702 		goto out;
703 	}
704 
705 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
706 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
707 	else
708 		tick_program_event(tick, 1);
709 out:
710 	/* Update the estimated sleep length */
711 	ts->sleep_length = ktime_sub(dev->next_event, now);
712 	return tick;
713 }
714 
715 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
716 {
717 	/* Update jiffies first */
718 	tick_do_update_jiffies64(now);
719 	update_cpu_load_nohz();
720 
721 	calc_load_exit_idle();
722 	touch_softlockup_watchdog();
723 	/*
724 	 * Cancel the scheduled timer and restore the tick
725 	 */
726 	ts->tick_stopped  = 0;
727 	ts->idle_exittime = now;
728 
729 	tick_nohz_restart(ts, now);
730 }
731 
732 static void tick_nohz_full_update_tick(struct tick_sched *ts)
733 {
734 #ifdef CONFIG_NO_HZ_FULL
735 	int cpu = smp_processor_id();
736 
737 	if (!tick_nohz_full_cpu(cpu))
738 		return;
739 
740 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
741 		return;
742 
743 	if (can_stop_full_tick())
744 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
745 	else if (ts->tick_stopped)
746 		tick_nohz_restart_sched_tick(ts, ktime_get());
747 #endif
748 }
749 
750 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
751 {
752 	/*
753 	 * If this cpu is offline and it is the one which updates
754 	 * jiffies, then give up the assignment and let it be taken by
755 	 * the cpu which runs the tick timer next. If we don't drop
756 	 * this here the jiffies might be stale and do_timer() never
757 	 * invoked.
758 	 */
759 	if (unlikely(!cpu_online(cpu))) {
760 		if (cpu == tick_do_timer_cpu)
761 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
762 		return false;
763 	}
764 
765 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
766 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
767 		return false;
768 	}
769 
770 	if (need_resched())
771 		return false;
772 
773 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
774 		static int ratelimit;
775 
776 		if (ratelimit < 10 &&
777 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
778 			pr_warn("NOHZ: local_softirq_pending %02x\n",
779 				(unsigned int) local_softirq_pending());
780 			ratelimit++;
781 		}
782 		return false;
783 	}
784 
785 	if (tick_nohz_full_enabled()) {
786 		/*
787 		 * Keep the tick alive to guarantee timekeeping progression
788 		 * if there are full dynticks CPUs around
789 		 */
790 		if (tick_do_timer_cpu == cpu)
791 			return false;
792 		/*
793 		 * Boot safety: make sure the timekeeping duty has been
794 		 * assigned before entering dyntick-idle mode,
795 		 */
796 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
797 			return false;
798 	}
799 
800 	return true;
801 }
802 
803 static void __tick_nohz_idle_enter(struct tick_sched *ts)
804 {
805 	ktime_t now, expires;
806 	int cpu = smp_processor_id();
807 
808 	now = tick_nohz_start_idle(ts);
809 
810 	if (can_stop_idle_tick(cpu, ts)) {
811 		int was_stopped = ts->tick_stopped;
812 
813 		ts->idle_calls++;
814 
815 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
816 		if (expires.tv64 > 0LL) {
817 			ts->idle_sleeps++;
818 			ts->idle_expires = expires;
819 		}
820 
821 		if (!was_stopped && ts->tick_stopped)
822 			ts->idle_jiffies = ts->last_jiffies;
823 	}
824 }
825 
826 /**
827  * tick_nohz_idle_enter - stop the idle tick from the idle task
828  *
829  * When the next event is more than a tick into the future, stop the idle tick
830  * Called when we start the idle loop.
831  *
832  * The arch is responsible of calling:
833  *
834  * - rcu_idle_enter() after its last use of RCU before the CPU is put
835  *  to sleep.
836  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
837  */
838 void tick_nohz_idle_enter(void)
839 {
840 	struct tick_sched *ts;
841 
842 	WARN_ON_ONCE(irqs_disabled());
843 
844 	/*
845  	 * Update the idle state in the scheduler domain hierarchy
846  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
847  	 * State will be updated to busy during the first busy tick after
848  	 * exiting idle.
849  	 */
850 	set_cpu_sd_state_idle();
851 
852 	local_irq_disable();
853 
854 	ts = this_cpu_ptr(&tick_cpu_sched);
855 	ts->inidle = 1;
856 	__tick_nohz_idle_enter(ts);
857 
858 	local_irq_enable();
859 }
860 
861 /**
862  * tick_nohz_irq_exit - update next tick event from interrupt exit
863  *
864  * When an interrupt fires while we are idle and it doesn't cause
865  * a reschedule, it may still add, modify or delete a timer, enqueue
866  * an RCU callback, etc...
867  * So we need to re-calculate and reprogram the next tick event.
868  */
869 void tick_nohz_irq_exit(void)
870 {
871 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
872 
873 	if (ts->inidle)
874 		__tick_nohz_idle_enter(ts);
875 	else
876 		tick_nohz_full_update_tick(ts);
877 }
878 
879 /**
880  * tick_nohz_get_sleep_length - return the length of the current sleep
881  *
882  * Called from power state control code with interrupts disabled
883  */
884 ktime_t tick_nohz_get_sleep_length(void)
885 {
886 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
887 
888 	return ts->sleep_length;
889 }
890 
891 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
892 {
893 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
894 	unsigned long ticks;
895 
896 	if (vtime_accounting_enabled())
897 		return;
898 	/*
899 	 * We stopped the tick in idle. Update process times would miss the
900 	 * time we slept as update_process_times does only a 1 tick
901 	 * accounting. Enforce that this is accounted to idle !
902 	 */
903 	ticks = jiffies - ts->idle_jiffies;
904 	/*
905 	 * We might be one off. Do not randomly account a huge number of ticks!
906 	 */
907 	if (ticks && ticks < LONG_MAX)
908 		account_idle_ticks(ticks);
909 #endif
910 }
911 
912 /**
913  * tick_nohz_idle_exit - restart the idle tick from the idle task
914  *
915  * Restart the idle tick when the CPU is woken up from idle
916  * This also exit the RCU extended quiescent state. The CPU
917  * can use RCU again after this function is called.
918  */
919 void tick_nohz_idle_exit(void)
920 {
921 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
922 	ktime_t now;
923 
924 	local_irq_disable();
925 
926 	WARN_ON_ONCE(!ts->inidle);
927 
928 	ts->inidle = 0;
929 
930 	if (ts->idle_active || ts->tick_stopped)
931 		now = ktime_get();
932 
933 	if (ts->idle_active)
934 		tick_nohz_stop_idle(ts, now);
935 
936 	if (ts->tick_stopped) {
937 		tick_nohz_restart_sched_tick(ts, now);
938 		tick_nohz_account_idle_ticks(ts);
939 	}
940 
941 	local_irq_enable();
942 }
943 
944 /*
945  * The nohz low res interrupt handler
946  */
947 static void tick_nohz_handler(struct clock_event_device *dev)
948 {
949 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
950 	struct pt_regs *regs = get_irq_regs();
951 	ktime_t now = ktime_get();
952 
953 	dev->next_event.tv64 = KTIME_MAX;
954 
955 	tick_sched_do_timer(now);
956 	tick_sched_handle(ts, regs);
957 
958 	/* No need to reprogram if we are running tickless  */
959 	if (unlikely(ts->tick_stopped))
960 		return;
961 
962 	hrtimer_forward(&ts->sched_timer, now, tick_period);
963 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
964 }
965 
966 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
967 {
968 	if (!tick_nohz_enabled)
969 		return;
970 	ts->nohz_mode = mode;
971 	/* One update is enough */
972 	if (!test_and_set_bit(0, &tick_nohz_active))
973 		timers_update_migration(true);
974 }
975 
976 /**
977  * tick_nohz_switch_to_nohz - switch to nohz mode
978  */
979 static void tick_nohz_switch_to_nohz(void)
980 {
981 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
982 	ktime_t next;
983 
984 	if (!tick_nohz_enabled)
985 		return;
986 
987 	if (tick_switch_to_oneshot(tick_nohz_handler))
988 		return;
989 
990 	/*
991 	 * Recycle the hrtimer in ts, so we can share the
992 	 * hrtimer_forward with the highres code.
993 	 */
994 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
995 	/* Get the next period */
996 	next = tick_init_jiffy_update();
997 
998 	hrtimer_forward_now(&ts->sched_timer, tick_period);
999 	hrtimer_set_expires(&ts->sched_timer, next);
1000 	tick_program_event(next, 1);
1001 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1002 }
1003 
1004 /*
1005  * When NOHZ is enabled and the tick is stopped, we need to kick the
1006  * tick timer from irq_enter() so that the jiffies update is kept
1007  * alive during long running softirqs. That's ugly as hell, but
1008  * correctness is key even if we need to fix the offending softirq in
1009  * the first place.
1010  *
1011  * Note, this is different to tick_nohz_restart. We just kick the
1012  * timer and do not touch the other magic bits which need to be done
1013  * when idle is left.
1014  */
1015 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1016 {
1017 #if 0
1018 	/* Switch back to 2.6.27 behaviour */
1019 	ktime_t delta;
1020 
1021 	/*
1022 	 * Do not touch the tick device, when the next expiry is either
1023 	 * already reached or less/equal than the tick period.
1024 	 */
1025 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1026 	if (delta.tv64 <= tick_period.tv64)
1027 		return;
1028 
1029 	tick_nohz_restart(ts, now);
1030 #endif
1031 }
1032 
1033 static inline void tick_nohz_irq_enter(void)
1034 {
1035 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1036 	ktime_t now;
1037 
1038 	if (!ts->idle_active && !ts->tick_stopped)
1039 		return;
1040 	now = ktime_get();
1041 	if (ts->idle_active)
1042 		tick_nohz_stop_idle(ts, now);
1043 	if (ts->tick_stopped) {
1044 		tick_nohz_update_jiffies(now);
1045 		tick_nohz_kick_tick(ts, now);
1046 	}
1047 }
1048 
1049 #else
1050 
1051 static inline void tick_nohz_switch_to_nohz(void) { }
1052 static inline void tick_nohz_irq_enter(void) { }
1053 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1054 
1055 #endif /* CONFIG_NO_HZ_COMMON */
1056 
1057 /*
1058  * Called from irq_enter to notify about the possible interruption of idle()
1059  */
1060 void tick_irq_enter(void)
1061 {
1062 	tick_check_oneshot_broadcast_this_cpu();
1063 	tick_nohz_irq_enter();
1064 }
1065 
1066 /*
1067  * High resolution timer specific code
1068  */
1069 #ifdef CONFIG_HIGH_RES_TIMERS
1070 /*
1071  * We rearm the timer until we get disabled by the idle code.
1072  * Called with interrupts disabled.
1073  */
1074 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1075 {
1076 	struct tick_sched *ts =
1077 		container_of(timer, struct tick_sched, sched_timer);
1078 	struct pt_regs *regs = get_irq_regs();
1079 	ktime_t now = ktime_get();
1080 
1081 	tick_sched_do_timer(now);
1082 
1083 	/*
1084 	 * Do not call, when we are not in irq context and have
1085 	 * no valid regs pointer
1086 	 */
1087 	if (regs)
1088 		tick_sched_handle(ts, regs);
1089 
1090 	/* No need to reprogram if we are in idle or full dynticks mode */
1091 	if (unlikely(ts->tick_stopped))
1092 		return HRTIMER_NORESTART;
1093 
1094 	hrtimer_forward(timer, now, tick_period);
1095 
1096 	return HRTIMER_RESTART;
1097 }
1098 
1099 static int sched_skew_tick;
1100 
1101 static int __init skew_tick(char *str)
1102 {
1103 	get_option(&str, &sched_skew_tick);
1104 
1105 	return 0;
1106 }
1107 early_param("skew_tick", skew_tick);
1108 
1109 /**
1110  * tick_setup_sched_timer - setup the tick emulation timer
1111  */
1112 void tick_setup_sched_timer(void)
1113 {
1114 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115 	ktime_t now = ktime_get();
1116 
1117 	/*
1118 	 * Emulate tick processing via per-CPU hrtimers:
1119 	 */
1120 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1121 	ts->sched_timer.function = tick_sched_timer;
1122 
1123 	/* Get the next period (per cpu) */
1124 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1125 
1126 	/* Offset the tick to avert jiffies_lock contention. */
1127 	if (sched_skew_tick) {
1128 		u64 offset = ktime_to_ns(tick_period) >> 1;
1129 		do_div(offset, num_possible_cpus());
1130 		offset *= smp_processor_id();
1131 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1132 	}
1133 
1134 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1135 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1136 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1137 }
1138 #endif /* HIGH_RES_TIMERS */
1139 
1140 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1141 void tick_cancel_sched_timer(int cpu)
1142 {
1143 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1144 
1145 # ifdef CONFIG_HIGH_RES_TIMERS
1146 	if (ts->sched_timer.base)
1147 		hrtimer_cancel(&ts->sched_timer);
1148 # endif
1149 
1150 	memset(ts, 0, sizeof(*ts));
1151 }
1152 #endif
1153 
1154 /**
1155  * Async notification about clocksource changes
1156  */
1157 void tick_clock_notify(void)
1158 {
1159 	int cpu;
1160 
1161 	for_each_possible_cpu(cpu)
1162 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1163 }
1164 
1165 /*
1166  * Async notification about clock event changes
1167  */
1168 void tick_oneshot_notify(void)
1169 {
1170 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1171 
1172 	set_bit(0, &ts->check_clocks);
1173 }
1174 
1175 /**
1176  * Check, if a change happened, which makes oneshot possible.
1177  *
1178  * Called cyclic from the hrtimer softirq (driven by the timer
1179  * softirq) allow_nohz signals, that we can switch into low-res nohz
1180  * mode, because high resolution timers are disabled (either compile
1181  * or runtime). Called with interrupts disabled.
1182  */
1183 int tick_check_oneshot_change(int allow_nohz)
1184 {
1185 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1186 
1187 	if (!test_and_clear_bit(0, &ts->check_clocks))
1188 		return 0;
1189 
1190 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1191 		return 0;
1192 
1193 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1194 		return 0;
1195 
1196 	if (!allow_nohz)
1197 		return 1;
1198 
1199 	tick_nohz_switch_to_nohz();
1200 	return 0;
1201 }
1202