1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/context_tracking.h> 26 27 #include <asm/irq_regs.h> 28 29 #include "tick-internal.h" 30 31 #include <trace/events/timer.h> 32 33 /* 34 * Per cpu nohz control structure 35 */ 36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 44 /* 45 * The time, when the last jiffy update happened. Protected by jiffies_lock. 46 */ 47 static ktime_t last_jiffies_update; 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevalute with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update.tv64 == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the cpu in charge went 120 * into a long sleep. If two cpus happen to assign themself to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog_sched(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 #endif 155 156 #ifdef CONFIG_NO_HZ_FULL 157 cpumask_var_t tick_nohz_full_mask; 158 cpumask_var_t housekeeping_mask; 159 bool tick_nohz_full_running; 160 static atomic_t tick_dep_mask; 161 162 static bool check_tick_dependency(atomic_t *dep) 163 { 164 int val = atomic_read(dep); 165 166 if (val & TICK_DEP_MASK_POSIX_TIMER) { 167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 168 return true; 169 } 170 171 if (val & TICK_DEP_MASK_PERF_EVENTS) { 172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 173 return true; 174 } 175 176 if (val & TICK_DEP_MASK_SCHED) { 177 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 183 return true; 184 } 185 186 return false; 187 } 188 189 static bool can_stop_full_tick(struct tick_sched *ts) 190 { 191 WARN_ON_ONCE(!irqs_disabled()); 192 193 if (check_tick_dependency(&tick_dep_mask)) 194 return false; 195 196 if (check_tick_dependency(&ts->tick_dep_mask)) 197 return false; 198 199 if (check_tick_dependency(¤t->tick_dep_mask)) 200 return false; 201 202 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 203 return false; 204 205 return true; 206 } 207 208 static void nohz_full_kick_func(struct irq_work *work) 209 { 210 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 211 } 212 213 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 214 .func = nohz_full_kick_func, 215 }; 216 217 /* 218 * Kick this CPU if it's full dynticks in order to force it to 219 * re-evaluate its dependency on the tick and restart it if necessary. 220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 221 * is NMI safe. 222 */ 223 static void tick_nohz_full_kick(void) 224 { 225 if (!tick_nohz_full_cpu(smp_processor_id())) 226 return; 227 228 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 229 } 230 231 /* 232 * Kick the CPU if it's full dynticks in order to force it to 233 * re-evaluate its dependency on the tick and restart it if necessary. 234 */ 235 void tick_nohz_full_kick_cpu(int cpu) 236 { 237 if (!tick_nohz_full_cpu(cpu)) 238 return; 239 240 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 241 } 242 243 /* 244 * Kick all full dynticks CPUs in order to force these to re-evaluate 245 * their dependency on the tick and restart it if necessary. 246 */ 247 static void tick_nohz_full_kick_all(void) 248 { 249 int cpu; 250 251 if (!tick_nohz_full_running) 252 return; 253 254 preempt_disable(); 255 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 256 tick_nohz_full_kick_cpu(cpu); 257 preempt_enable(); 258 } 259 260 static void tick_nohz_dep_set_all(atomic_t *dep, 261 enum tick_dep_bits bit) 262 { 263 int prev; 264 265 prev = atomic_fetch_or(BIT(bit), dep); 266 if (!prev) 267 tick_nohz_full_kick_all(); 268 } 269 270 /* 271 * Set a global tick dependency. Used by perf events that rely on freq and 272 * by unstable clock. 273 */ 274 void tick_nohz_dep_set(enum tick_dep_bits bit) 275 { 276 tick_nohz_dep_set_all(&tick_dep_mask, bit); 277 } 278 279 void tick_nohz_dep_clear(enum tick_dep_bits bit) 280 { 281 atomic_andnot(BIT(bit), &tick_dep_mask); 282 } 283 284 /* 285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 286 * manage events throttling. 287 */ 288 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 289 { 290 int prev; 291 struct tick_sched *ts; 292 293 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 294 295 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 296 if (!prev) { 297 preempt_disable(); 298 /* Perf needs local kick that is NMI safe */ 299 if (cpu == smp_processor_id()) { 300 tick_nohz_full_kick(); 301 } else { 302 /* Remote irq work not NMI-safe */ 303 if (!WARN_ON_ONCE(in_nmi())) 304 tick_nohz_full_kick_cpu(cpu); 305 } 306 preempt_enable(); 307 } 308 } 309 310 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 311 { 312 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 313 314 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 315 } 316 317 /* 318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 319 * per task timers. 320 */ 321 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 322 { 323 /* 324 * We could optimize this with just kicking the target running the task 325 * if that noise matters for nohz full users. 326 */ 327 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 328 } 329 330 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 331 { 332 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 333 } 334 335 /* 336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 337 * per process timers. 338 */ 339 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 340 { 341 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 342 } 343 344 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 345 { 346 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 347 } 348 349 /* 350 * Re-evaluate the need for the tick as we switch the current task. 351 * It might need the tick due to per task/process properties: 352 * perf events, posix cpu timers, ... 353 */ 354 void __tick_nohz_task_switch(void) 355 { 356 unsigned long flags; 357 struct tick_sched *ts; 358 359 local_irq_save(flags); 360 361 if (!tick_nohz_full_cpu(smp_processor_id())) 362 goto out; 363 364 ts = this_cpu_ptr(&tick_cpu_sched); 365 366 if (ts->tick_stopped) { 367 if (atomic_read(¤t->tick_dep_mask) || 368 atomic_read(¤t->signal->tick_dep_mask)) 369 tick_nohz_full_kick(); 370 } 371 out: 372 local_irq_restore(flags); 373 } 374 375 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 376 static int __init tick_nohz_full_setup(char *str) 377 { 378 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 379 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 380 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 381 free_bootmem_cpumask_var(tick_nohz_full_mask); 382 return 1; 383 } 384 tick_nohz_full_running = true; 385 386 return 1; 387 } 388 __setup("nohz_full=", tick_nohz_full_setup); 389 390 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 391 unsigned long action, 392 void *hcpu) 393 { 394 unsigned int cpu = (unsigned long)hcpu; 395 396 switch (action & ~CPU_TASKS_FROZEN) { 397 case CPU_DOWN_PREPARE: 398 /* 399 * The boot CPU handles housekeeping duty (unbound timers, 400 * workqueues, timekeeping, ...) on behalf of full dynticks 401 * CPUs. It must remain online when nohz full is enabled. 402 */ 403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 404 return NOTIFY_BAD; 405 break; 406 } 407 return NOTIFY_OK; 408 } 409 410 static int tick_nohz_init_all(void) 411 { 412 int err = -1; 413 414 #ifdef CONFIG_NO_HZ_FULL_ALL 415 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 416 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 417 return err; 418 } 419 err = 0; 420 cpumask_setall(tick_nohz_full_mask); 421 tick_nohz_full_running = true; 422 #endif 423 return err; 424 } 425 426 void __init tick_nohz_init(void) 427 { 428 int cpu; 429 430 if (!tick_nohz_full_running) { 431 if (tick_nohz_init_all() < 0) 432 return; 433 } 434 435 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 436 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 437 cpumask_clear(tick_nohz_full_mask); 438 tick_nohz_full_running = false; 439 return; 440 } 441 442 /* 443 * Full dynticks uses irq work to drive the tick rescheduling on safe 444 * locking contexts. But then we need irq work to raise its own 445 * interrupts to avoid circular dependency on the tick 446 */ 447 if (!arch_irq_work_has_interrupt()) { 448 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 449 cpumask_clear(tick_nohz_full_mask); 450 cpumask_copy(housekeeping_mask, cpu_possible_mask); 451 tick_nohz_full_running = false; 452 return; 453 } 454 455 cpu = smp_processor_id(); 456 457 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 458 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 459 cpu); 460 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 461 } 462 463 cpumask_andnot(housekeeping_mask, 464 cpu_possible_mask, tick_nohz_full_mask); 465 466 for_each_cpu(cpu, tick_nohz_full_mask) 467 context_tracking_cpu_set(cpu); 468 469 cpu_notifier(tick_nohz_cpu_down_callback, 0); 470 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 471 cpumask_pr_args(tick_nohz_full_mask)); 472 473 /* 474 * We need at least one CPU to handle housekeeping work such 475 * as timekeeping, unbound timers, workqueues, ... 476 */ 477 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 478 } 479 #endif 480 481 /* 482 * NOHZ - aka dynamic tick functionality 483 */ 484 #ifdef CONFIG_NO_HZ_COMMON 485 /* 486 * NO HZ enabled ? 487 */ 488 bool tick_nohz_enabled __read_mostly = true; 489 unsigned long tick_nohz_active __read_mostly; 490 /* 491 * Enable / Disable tickless mode 492 */ 493 static int __init setup_tick_nohz(char *str) 494 { 495 return (kstrtobool(str, &tick_nohz_enabled) == 0); 496 } 497 498 __setup("nohz=", setup_tick_nohz); 499 500 int tick_nohz_tick_stopped(void) 501 { 502 return __this_cpu_read(tick_cpu_sched.tick_stopped); 503 } 504 505 /** 506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 507 * 508 * Called from interrupt entry when the CPU was idle 509 * 510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 511 * must be updated. Otherwise an interrupt handler could use a stale jiffy 512 * value. We do this unconditionally on any cpu, as we don't know whether the 513 * cpu, which has the update task assigned is in a long sleep. 514 */ 515 static void tick_nohz_update_jiffies(ktime_t now) 516 { 517 unsigned long flags; 518 519 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 520 521 local_irq_save(flags); 522 tick_do_update_jiffies64(now); 523 local_irq_restore(flags); 524 525 touch_softlockup_watchdog_sched(); 526 } 527 528 /* 529 * Updates the per cpu time idle statistics counters 530 */ 531 static void 532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 533 { 534 ktime_t delta; 535 536 if (ts->idle_active) { 537 delta = ktime_sub(now, ts->idle_entrytime); 538 if (nr_iowait_cpu(cpu) > 0) 539 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 540 else 541 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 542 ts->idle_entrytime = now; 543 } 544 545 if (last_update_time) 546 *last_update_time = ktime_to_us(now); 547 548 } 549 550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 551 { 552 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 553 ts->idle_active = 0; 554 555 sched_clock_idle_wakeup_event(0); 556 } 557 558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 559 { 560 ktime_t now = ktime_get(); 561 562 ts->idle_entrytime = now; 563 ts->idle_active = 1; 564 sched_clock_idle_sleep_event(); 565 return now; 566 } 567 568 /** 569 * get_cpu_idle_time_us - get the total idle time of a cpu 570 * @cpu: CPU number to query 571 * @last_update_time: variable to store update time in. Do not update 572 * counters if NULL. 573 * 574 * Return the cummulative idle time (since boot) for a given 575 * CPU, in microseconds. 576 * 577 * This time is measured via accounting rather than sampling, 578 * and is as accurate as ktime_get() is. 579 * 580 * This function returns -1 if NOHZ is not enabled. 581 */ 582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 583 { 584 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 585 ktime_t now, idle; 586 587 if (!tick_nohz_active) 588 return -1; 589 590 now = ktime_get(); 591 if (last_update_time) { 592 update_ts_time_stats(cpu, ts, now, last_update_time); 593 idle = ts->idle_sleeptime; 594 } else { 595 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 596 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 597 598 idle = ktime_add(ts->idle_sleeptime, delta); 599 } else { 600 idle = ts->idle_sleeptime; 601 } 602 } 603 604 return ktime_to_us(idle); 605 606 } 607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 608 609 /** 610 * get_cpu_iowait_time_us - get the total iowait time of a cpu 611 * @cpu: CPU number to query 612 * @last_update_time: variable to store update time in. Do not update 613 * counters if NULL. 614 * 615 * Return the cummulative iowait time (since boot) for a given 616 * CPU, in microseconds. 617 * 618 * This time is measured via accounting rather than sampling, 619 * and is as accurate as ktime_get() is. 620 * 621 * This function returns -1 if NOHZ is not enabled. 622 */ 623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 624 { 625 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 626 ktime_t now, iowait; 627 628 if (!tick_nohz_active) 629 return -1; 630 631 now = ktime_get(); 632 if (last_update_time) { 633 update_ts_time_stats(cpu, ts, now, last_update_time); 634 iowait = ts->iowait_sleeptime; 635 } else { 636 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 637 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 638 639 iowait = ktime_add(ts->iowait_sleeptime, delta); 640 } else { 641 iowait = ts->iowait_sleeptime; 642 } 643 } 644 645 return ktime_to_us(iowait); 646 } 647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 648 649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 650 { 651 hrtimer_cancel(&ts->sched_timer); 652 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 653 654 /* Forward the time to expire in the future */ 655 hrtimer_forward(&ts->sched_timer, now, tick_period); 656 657 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 658 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 659 else 660 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 661 } 662 663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 664 ktime_t now, int cpu) 665 { 666 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 667 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 668 unsigned long seq, basejiff; 669 ktime_t tick; 670 671 /* Read jiffies and the time when jiffies were updated last */ 672 do { 673 seq = read_seqbegin(&jiffies_lock); 674 basemono = last_jiffies_update.tv64; 675 basejiff = jiffies; 676 } while (read_seqretry(&jiffies_lock, seq)); 677 ts->last_jiffies = basejiff; 678 679 if (rcu_needs_cpu(basemono, &next_rcu) || 680 arch_needs_cpu() || irq_work_needs_cpu()) { 681 next_tick = basemono + TICK_NSEC; 682 } else { 683 /* 684 * Get the next pending timer. If high resolution 685 * timers are enabled this only takes the timer wheel 686 * timers into account. If high resolution timers are 687 * disabled this also looks at the next expiring 688 * hrtimer. 689 */ 690 next_tmr = get_next_timer_interrupt(basejiff, basemono); 691 ts->next_timer = next_tmr; 692 /* Take the next rcu event into account */ 693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 694 } 695 696 /* 697 * If the tick is due in the next period, keep it ticking or 698 * force prod the timer. 699 */ 700 delta = next_tick - basemono; 701 if (delta <= (u64)TICK_NSEC) { 702 tick.tv64 = 0; 703 /* 704 * We've not stopped the tick yet, and there's a timer in the 705 * next period, so no point in stopping it either, bail. 706 */ 707 if (!ts->tick_stopped) 708 goto out; 709 710 /* 711 * If, OTOH, we did stop it, but there's a pending (expired) 712 * timer reprogram the timer hardware to fire now. 713 * 714 * We will not restart the tick proper, just prod the timer 715 * hardware into firing an interrupt to process the pending 716 * timers. Just like tick_irq_exit() will not restart the tick 717 * for 'normal' interrupts. 718 * 719 * Only once we exit the idle loop will we re-enable the tick, 720 * see tick_nohz_idle_exit(). 721 */ 722 if (delta == 0) { 723 tick_nohz_restart(ts, now); 724 goto out; 725 } 726 } 727 728 /* 729 * If this cpu is the one which updates jiffies, then give up 730 * the assignment and let it be taken by the cpu which runs 731 * the tick timer next, which might be this cpu as well. If we 732 * don't drop this here the jiffies might be stale and 733 * do_timer() never invoked. Keep track of the fact that it 734 * was the one which had the do_timer() duty last. If this cpu 735 * is the one which had the do_timer() duty last, we limit the 736 * sleep time to the timekeeping max_deferement value. 737 * Otherwise we can sleep as long as we want. 738 */ 739 delta = timekeeping_max_deferment(); 740 if (cpu == tick_do_timer_cpu) { 741 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 742 ts->do_timer_last = 1; 743 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 744 delta = KTIME_MAX; 745 ts->do_timer_last = 0; 746 } else if (!ts->do_timer_last) { 747 delta = KTIME_MAX; 748 } 749 750 #ifdef CONFIG_NO_HZ_FULL 751 /* Limit the tick delta to the maximum scheduler deferment */ 752 if (!ts->inidle) 753 delta = min(delta, scheduler_tick_max_deferment()); 754 #endif 755 756 /* Calculate the next expiry time */ 757 if (delta < (KTIME_MAX - basemono)) 758 expires = basemono + delta; 759 else 760 expires = KTIME_MAX; 761 762 expires = min_t(u64, expires, next_tick); 763 tick.tv64 = expires; 764 765 /* Skip reprogram of event if its not changed */ 766 if (ts->tick_stopped && (expires == dev->next_event.tv64)) 767 goto out; 768 769 /* 770 * nohz_stop_sched_tick can be called several times before 771 * the nohz_restart_sched_tick is called. This happens when 772 * interrupts arrive which do not cause a reschedule. In the 773 * first call we save the current tick time, so we can restart 774 * the scheduler tick in nohz_restart_sched_tick. 775 */ 776 if (!ts->tick_stopped) { 777 nohz_balance_enter_idle(cpu); 778 calc_load_enter_idle(); 779 cpu_load_update_nohz_start(); 780 781 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 782 ts->tick_stopped = 1; 783 trace_tick_stop(1, TICK_DEP_MASK_NONE); 784 } 785 786 /* 787 * If the expiration time == KTIME_MAX, then we simply stop 788 * the tick timer. 789 */ 790 if (unlikely(expires == KTIME_MAX)) { 791 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 792 hrtimer_cancel(&ts->sched_timer); 793 goto out; 794 } 795 796 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 797 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 798 else 799 tick_program_event(tick, 1); 800 out: 801 /* Update the estimated sleep length */ 802 ts->sleep_length = ktime_sub(dev->next_event, now); 803 return tick; 804 } 805 806 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 807 { 808 /* Update jiffies first */ 809 tick_do_update_jiffies64(now); 810 cpu_load_update_nohz_stop(); 811 812 calc_load_exit_idle(); 813 touch_softlockup_watchdog_sched(); 814 /* 815 * Cancel the scheduled timer and restore the tick 816 */ 817 ts->tick_stopped = 0; 818 ts->idle_exittime = now; 819 820 tick_nohz_restart(ts, now); 821 } 822 823 static void tick_nohz_full_update_tick(struct tick_sched *ts) 824 { 825 #ifdef CONFIG_NO_HZ_FULL 826 int cpu = smp_processor_id(); 827 828 if (!tick_nohz_full_cpu(cpu)) 829 return; 830 831 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 832 return; 833 834 if (can_stop_full_tick(ts)) 835 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 836 else if (ts->tick_stopped) 837 tick_nohz_restart_sched_tick(ts, ktime_get()); 838 #endif 839 } 840 841 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 842 { 843 /* 844 * If this cpu is offline and it is the one which updates 845 * jiffies, then give up the assignment and let it be taken by 846 * the cpu which runs the tick timer next. If we don't drop 847 * this here the jiffies might be stale and do_timer() never 848 * invoked. 849 */ 850 if (unlikely(!cpu_online(cpu))) { 851 if (cpu == tick_do_timer_cpu) 852 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 853 return false; 854 } 855 856 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 857 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; 858 return false; 859 } 860 861 if (need_resched()) 862 return false; 863 864 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 865 static int ratelimit; 866 867 if (ratelimit < 10 && 868 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 869 pr_warn("NOHZ: local_softirq_pending %02x\n", 870 (unsigned int) local_softirq_pending()); 871 ratelimit++; 872 } 873 return false; 874 } 875 876 if (tick_nohz_full_enabled()) { 877 /* 878 * Keep the tick alive to guarantee timekeeping progression 879 * if there are full dynticks CPUs around 880 */ 881 if (tick_do_timer_cpu == cpu) 882 return false; 883 /* 884 * Boot safety: make sure the timekeeping duty has been 885 * assigned before entering dyntick-idle mode, 886 */ 887 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 888 return false; 889 } 890 891 return true; 892 } 893 894 static void __tick_nohz_idle_enter(struct tick_sched *ts) 895 { 896 ktime_t now, expires; 897 int cpu = smp_processor_id(); 898 899 now = tick_nohz_start_idle(ts); 900 901 if (can_stop_idle_tick(cpu, ts)) { 902 int was_stopped = ts->tick_stopped; 903 904 ts->idle_calls++; 905 906 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 907 if (expires.tv64 > 0LL) { 908 ts->idle_sleeps++; 909 ts->idle_expires = expires; 910 } 911 912 if (!was_stopped && ts->tick_stopped) 913 ts->idle_jiffies = ts->last_jiffies; 914 } 915 } 916 917 /** 918 * tick_nohz_idle_enter - stop the idle tick from the idle task 919 * 920 * When the next event is more than a tick into the future, stop the idle tick 921 * Called when we start the idle loop. 922 * 923 * The arch is responsible of calling: 924 * 925 * - rcu_idle_enter() after its last use of RCU before the CPU is put 926 * to sleep. 927 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 928 */ 929 void tick_nohz_idle_enter(void) 930 { 931 struct tick_sched *ts; 932 933 WARN_ON_ONCE(irqs_disabled()); 934 935 /* 936 * Update the idle state in the scheduler domain hierarchy 937 * when tick_nohz_stop_sched_tick() is called from the idle loop. 938 * State will be updated to busy during the first busy tick after 939 * exiting idle. 940 */ 941 set_cpu_sd_state_idle(); 942 943 local_irq_disable(); 944 945 ts = this_cpu_ptr(&tick_cpu_sched); 946 ts->inidle = 1; 947 __tick_nohz_idle_enter(ts); 948 949 local_irq_enable(); 950 } 951 952 /** 953 * tick_nohz_irq_exit - update next tick event from interrupt exit 954 * 955 * When an interrupt fires while we are idle and it doesn't cause 956 * a reschedule, it may still add, modify or delete a timer, enqueue 957 * an RCU callback, etc... 958 * So we need to re-calculate and reprogram the next tick event. 959 */ 960 void tick_nohz_irq_exit(void) 961 { 962 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 963 964 if (ts->inidle) 965 __tick_nohz_idle_enter(ts); 966 else 967 tick_nohz_full_update_tick(ts); 968 } 969 970 /** 971 * tick_nohz_get_sleep_length - return the length of the current sleep 972 * 973 * Called from power state control code with interrupts disabled 974 */ 975 ktime_t tick_nohz_get_sleep_length(void) 976 { 977 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 978 979 return ts->sleep_length; 980 } 981 982 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 983 { 984 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 985 unsigned long ticks; 986 987 if (vtime_accounting_cpu_enabled()) 988 return; 989 /* 990 * We stopped the tick in idle. Update process times would miss the 991 * time we slept as update_process_times does only a 1 tick 992 * accounting. Enforce that this is accounted to idle ! 993 */ 994 ticks = jiffies - ts->idle_jiffies; 995 /* 996 * We might be one off. Do not randomly account a huge number of ticks! 997 */ 998 if (ticks && ticks < LONG_MAX) 999 account_idle_ticks(ticks); 1000 #endif 1001 } 1002 1003 /** 1004 * tick_nohz_idle_exit - restart the idle tick from the idle task 1005 * 1006 * Restart the idle tick when the CPU is woken up from idle 1007 * This also exit the RCU extended quiescent state. The CPU 1008 * can use RCU again after this function is called. 1009 */ 1010 void tick_nohz_idle_exit(void) 1011 { 1012 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1013 ktime_t now; 1014 1015 local_irq_disable(); 1016 1017 WARN_ON_ONCE(!ts->inidle); 1018 1019 ts->inidle = 0; 1020 1021 if (ts->idle_active || ts->tick_stopped) 1022 now = ktime_get(); 1023 1024 if (ts->idle_active) 1025 tick_nohz_stop_idle(ts, now); 1026 1027 if (ts->tick_stopped) { 1028 tick_nohz_restart_sched_tick(ts, now); 1029 tick_nohz_account_idle_ticks(ts); 1030 } 1031 1032 local_irq_enable(); 1033 } 1034 1035 /* 1036 * The nohz low res interrupt handler 1037 */ 1038 static void tick_nohz_handler(struct clock_event_device *dev) 1039 { 1040 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1041 struct pt_regs *regs = get_irq_regs(); 1042 ktime_t now = ktime_get(); 1043 1044 dev->next_event.tv64 = KTIME_MAX; 1045 1046 tick_sched_do_timer(now); 1047 tick_sched_handle(ts, regs); 1048 1049 /* No need to reprogram if we are running tickless */ 1050 if (unlikely(ts->tick_stopped)) 1051 return; 1052 1053 hrtimer_forward(&ts->sched_timer, now, tick_period); 1054 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1055 } 1056 1057 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1058 { 1059 if (!tick_nohz_enabled) 1060 return; 1061 ts->nohz_mode = mode; 1062 /* One update is enough */ 1063 if (!test_and_set_bit(0, &tick_nohz_active)) 1064 timers_update_migration(true); 1065 } 1066 1067 /** 1068 * tick_nohz_switch_to_nohz - switch to nohz mode 1069 */ 1070 static void tick_nohz_switch_to_nohz(void) 1071 { 1072 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1073 ktime_t next; 1074 1075 if (!tick_nohz_enabled) 1076 return; 1077 1078 if (tick_switch_to_oneshot(tick_nohz_handler)) 1079 return; 1080 1081 /* 1082 * Recycle the hrtimer in ts, so we can share the 1083 * hrtimer_forward with the highres code. 1084 */ 1085 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1086 /* Get the next period */ 1087 next = tick_init_jiffy_update(); 1088 1089 hrtimer_set_expires(&ts->sched_timer, next); 1090 hrtimer_forward_now(&ts->sched_timer, tick_period); 1091 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1092 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1093 } 1094 1095 /* 1096 * When NOHZ is enabled and the tick is stopped, we need to kick the 1097 * tick timer from irq_enter() so that the jiffies update is kept 1098 * alive during long running softirqs. That's ugly as hell, but 1099 * correctness is key even if we need to fix the offending softirq in 1100 * the first place. 1101 * 1102 * Note, this is different to tick_nohz_restart. We just kick the 1103 * timer and do not touch the other magic bits which need to be done 1104 * when idle is left. 1105 */ 1106 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now) 1107 { 1108 #if 0 1109 /* Switch back to 2.6.27 behaviour */ 1110 ktime_t delta; 1111 1112 /* 1113 * Do not touch the tick device, when the next expiry is either 1114 * already reached or less/equal than the tick period. 1115 */ 1116 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1117 if (delta.tv64 <= tick_period.tv64) 1118 return; 1119 1120 tick_nohz_restart(ts, now); 1121 #endif 1122 } 1123 1124 static inline void tick_nohz_irq_enter(void) 1125 { 1126 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1127 ktime_t now; 1128 1129 if (!ts->idle_active && !ts->tick_stopped) 1130 return; 1131 now = ktime_get(); 1132 if (ts->idle_active) 1133 tick_nohz_stop_idle(ts, now); 1134 if (ts->tick_stopped) { 1135 tick_nohz_update_jiffies(now); 1136 tick_nohz_kick_tick(ts, now); 1137 } 1138 } 1139 1140 #else 1141 1142 static inline void tick_nohz_switch_to_nohz(void) { } 1143 static inline void tick_nohz_irq_enter(void) { } 1144 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1145 1146 #endif /* CONFIG_NO_HZ_COMMON */ 1147 1148 /* 1149 * Called from irq_enter to notify about the possible interruption of idle() 1150 */ 1151 void tick_irq_enter(void) 1152 { 1153 tick_check_oneshot_broadcast_this_cpu(); 1154 tick_nohz_irq_enter(); 1155 } 1156 1157 /* 1158 * High resolution timer specific code 1159 */ 1160 #ifdef CONFIG_HIGH_RES_TIMERS 1161 /* 1162 * We rearm the timer until we get disabled by the idle code. 1163 * Called with interrupts disabled. 1164 */ 1165 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1166 { 1167 struct tick_sched *ts = 1168 container_of(timer, struct tick_sched, sched_timer); 1169 struct pt_regs *regs = get_irq_regs(); 1170 ktime_t now = ktime_get(); 1171 1172 tick_sched_do_timer(now); 1173 1174 /* 1175 * Do not call, when we are not in irq context and have 1176 * no valid regs pointer 1177 */ 1178 if (regs) 1179 tick_sched_handle(ts, regs); 1180 1181 /* No need to reprogram if we are in idle or full dynticks mode */ 1182 if (unlikely(ts->tick_stopped)) 1183 return HRTIMER_NORESTART; 1184 1185 hrtimer_forward(timer, now, tick_period); 1186 1187 return HRTIMER_RESTART; 1188 } 1189 1190 static int sched_skew_tick; 1191 1192 static int __init skew_tick(char *str) 1193 { 1194 get_option(&str, &sched_skew_tick); 1195 1196 return 0; 1197 } 1198 early_param("skew_tick", skew_tick); 1199 1200 /** 1201 * tick_setup_sched_timer - setup the tick emulation timer 1202 */ 1203 void tick_setup_sched_timer(void) 1204 { 1205 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1206 ktime_t now = ktime_get(); 1207 1208 /* 1209 * Emulate tick processing via per-CPU hrtimers: 1210 */ 1211 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1212 ts->sched_timer.function = tick_sched_timer; 1213 1214 /* Get the next period (per cpu) */ 1215 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1216 1217 /* Offset the tick to avert jiffies_lock contention. */ 1218 if (sched_skew_tick) { 1219 u64 offset = ktime_to_ns(tick_period) >> 1; 1220 do_div(offset, num_possible_cpus()); 1221 offset *= smp_processor_id(); 1222 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1223 } 1224 1225 hrtimer_forward(&ts->sched_timer, now, tick_period); 1226 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1227 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1228 } 1229 #endif /* HIGH_RES_TIMERS */ 1230 1231 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1232 void tick_cancel_sched_timer(int cpu) 1233 { 1234 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1235 1236 # ifdef CONFIG_HIGH_RES_TIMERS 1237 if (ts->sched_timer.base) 1238 hrtimer_cancel(&ts->sched_timer); 1239 # endif 1240 1241 memset(ts, 0, sizeof(*ts)); 1242 } 1243 #endif 1244 1245 /** 1246 * Async notification about clocksource changes 1247 */ 1248 void tick_clock_notify(void) 1249 { 1250 int cpu; 1251 1252 for_each_possible_cpu(cpu) 1253 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1254 } 1255 1256 /* 1257 * Async notification about clock event changes 1258 */ 1259 void tick_oneshot_notify(void) 1260 { 1261 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1262 1263 set_bit(0, &ts->check_clocks); 1264 } 1265 1266 /** 1267 * Check, if a change happened, which makes oneshot possible. 1268 * 1269 * Called cyclic from the hrtimer softirq (driven by the timer 1270 * softirq) allow_nohz signals, that we can switch into low-res nohz 1271 * mode, because high resolution timers are disabled (either compile 1272 * or runtime). Called with interrupts disabled. 1273 */ 1274 int tick_check_oneshot_change(int allow_nohz) 1275 { 1276 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1277 1278 if (!test_and_clear_bit(0, &ts->check_clocks)) 1279 return 0; 1280 1281 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1282 return 0; 1283 1284 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1285 return 0; 1286 1287 if (!allow_nohz) 1288 return 1; 1289 1290 tick_nohz_switch_to_nohz(); 1291 return 0; 1292 } 1293