1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 * The READ_ONCE() pairs with two updates done later in this function. 62 */ 63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update)); 64 if (delta < tick_period) 65 return; 66 67 /* Reevaluate with jiffies_lock held */ 68 write_seqlock(&jiffies_lock); 69 70 delta = ktime_sub(now, last_jiffies_update); 71 if (delta >= tick_period) { 72 73 delta = ktime_sub(delta, tick_period); 74 /* Pairs with the lockless read in this function. */ 75 WRITE_ONCE(last_jiffies_update, 76 ktime_add(last_jiffies_update, tick_period)); 77 78 /* Slow path for long timeouts */ 79 if (unlikely(delta >= tick_period)) { 80 s64 incr = ktime_to_ns(tick_period); 81 82 ticks = ktime_divns(delta, incr); 83 84 /* Pairs with the lockless read in this function. */ 85 WRITE_ONCE(last_jiffies_update, 86 ktime_add_ns(last_jiffies_update, 87 incr * ticks)); 88 } 89 do_timer(++ticks); 90 91 /* Keep the tick_next_period variable up to date */ 92 tick_next_period = ktime_add(last_jiffies_update, tick_period); 93 } else { 94 write_sequnlock(&jiffies_lock); 95 return; 96 } 97 write_sequnlock(&jiffies_lock); 98 update_wall_time(); 99 } 100 101 /* 102 * Initialize and return retrieve the jiffies update. 103 */ 104 static ktime_t tick_init_jiffy_update(void) 105 { 106 ktime_t period; 107 108 write_seqlock(&jiffies_lock); 109 /* Did we start the jiffies update yet ? */ 110 if (last_jiffies_update == 0) 111 last_jiffies_update = tick_next_period; 112 period = last_jiffies_update; 113 write_sequnlock(&jiffies_lock); 114 return period; 115 } 116 117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 118 { 119 int cpu = smp_processor_id(); 120 121 #ifdef CONFIG_NO_HZ_COMMON 122 /* 123 * Check if the do_timer duty was dropped. We don't care about 124 * concurrency: This happens only when the CPU in charge went 125 * into a long sleep. If two CPUs happen to assign themselves to 126 * this duty, then the jiffies update is still serialized by 127 * jiffies_lock. 128 * 129 * If nohz_full is enabled, this should not happen because the 130 * tick_do_timer_cpu never relinquishes. 131 */ 132 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 133 #ifdef CONFIG_NO_HZ_FULL 134 WARN_ON(tick_nohz_full_running); 135 #endif 136 tick_do_timer_cpu = cpu; 137 } 138 #endif 139 140 /* Check, if the jiffies need an update */ 141 if (tick_do_timer_cpu == cpu) 142 tick_do_update_jiffies64(now); 143 144 if (ts->inidle) 145 ts->got_idle_tick = 1; 146 } 147 148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 149 { 150 #ifdef CONFIG_NO_HZ_COMMON 151 /* 152 * When we are idle and the tick is stopped, we have to touch 153 * the watchdog as we might not schedule for a really long 154 * time. This happens on complete idle SMP systems while 155 * waiting on the login prompt. We also increment the "start of 156 * idle" jiffy stamp so the idle accounting adjustment we do 157 * when we go busy again does not account too much ticks. 158 */ 159 if (ts->tick_stopped) { 160 touch_softlockup_watchdog_sched(); 161 if (is_idle_task(current)) 162 ts->idle_jiffies++; 163 /* 164 * In case the current tick fired too early past its expected 165 * expiration, make sure we don't bypass the next clock reprogramming 166 * to the same deadline. 167 */ 168 ts->next_tick = 0; 169 } 170 #endif 171 update_process_times(user_mode(regs)); 172 profile_tick(CPU_PROFILING); 173 } 174 #endif 175 176 #ifdef CONFIG_NO_HZ_FULL 177 cpumask_var_t tick_nohz_full_mask; 178 bool tick_nohz_full_running; 179 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 180 static atomic_t tick_dep_mask; 181 182 static bool check_tick_dependency(atomic_t *dep) 183 { 184 int val = atomic_read(dep); 185 186 if (val & TICK_DEP_MASK_POSIX_TIMER) { 187 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_PERF_EVENTS) { 192 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_SCHED) { 197 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 198 return true; 199 } 200 201 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 202 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 203 return true; 204 } 205 206 if (val & TICK_DEP_MASK_RCU) { 207 trace_tick_stop(0, TICK_DEP_MASK_RCU); 208 return true; 209 } 210 211 return false; 212 } 213 214 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 215 { 216 lockdep_assert_irqs_disabled(); 217 218 if (unlikely(!cpu_online(cpu))) 219 return false; 220 221 if (check_tick_dependency(&tick_dep_mask)) 222 return false; 223 224 if (check_tick_dependency(&ts->tick_dep_mask)) 225 return false; 226 227 if (check_tick_dependency(¤t->tick_dep_mask)) 228 return false; 229 230 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 231 return false; 232 233 return true; 234 } 235 236 static void nohz_full_kick_func(struct irq_work *work) 237 { 238 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 239 } 240 241 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 242 .func = nohz_full_kick_func, 243 }; 244 245 /* 246 * Kick this CPU if it's full dynticks in order to force it to 247 * re-evaluate its dependency on the tick and restart it if necessary. 248 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 249 * is NMI safe. 250 */ 251 static void tick_nohz_full_kick(void) 252 { 253 if (!tick_nohz_full_cpu(smp_processor_id())) 254 return; 255 256 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 257 } 258 259 /* 260 * Kick the CPU if it's full dynticks in order to force it to 261 * re-evaluate its dependency on the tick and restart it if necessary. 262 */ 263 void tick_nohz_full_kick_cpu(int cpu) 264 { 265 if (!tick_nohz_full_cpu(cpu)) 266 return; 267 268 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 269 } 270 271 /* 272 * Kick all full dynticks CPUs in order to force these to re-evaluate 273 * their dependency on the tick and restart it if necessary. 274 */ 275 static void tick_nohz_full_kick_all(void) 276 { 277 int cpu; 278 279 if (!tick_nohz_full_running) 280 return; 281 282 preempt_disable(); 283 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 284 tick_nohz_full_kick_cpu(cpu); 285 preempt_enable(); 286 } 287 288 static void tick_nohz_dep_set_all(atomic_t *dep, 289 enum tick_dep_bits bit) 290 { 291 int prev; 292 293 prev = atomic_fetch_or(BIT(bit), dep); 294 if (!prev) 295 tick_nohz_full_kick_all(); 296 } 297 298 /* 299 * Set a global tick dependency. Used by perf events that rely on freq and 300 * by unstable clock. 301 */ 302 void tick_nohz_dep_set(enum tick_dep_bits bit) 303 { 304 tick_nohz_dep_set_all(&tick_dep_mask, bit); 305 } 306 307 void tick_nohz_dep_clear(enum tick_dep_bits bit) 308 { 309 atomic_andnot(BIT(bit), &tick_dep_mask); 310 } 311 312 /* 313 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 314 * manage events throttling. 315 */ 316 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 317 { 318 int prev; 319 struct tick_sched *ts; 320 321 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 322 323 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 324 if (!prev) { 325 preempt_disable(); 326 /* Perf needs local kick that is NMI safe */ 327 if (cpu == smp_processor_id()) { 328 tick_nohz_full_kick(); 329 } else { 330 /* Remote irq work not NMI-safe */ 331 if (!WARN_ON_ONCE(in_nmi())) 332 tick_nohz_full_kick_cpu(cpu); 333 } 334 preempt_enable(); 335 } 336 } 337 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 338 339 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 340 { 341 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 342 343 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 344 } 345 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 346 347 /* 348 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 349 * per task timers. 350 */ 351 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 352 { 353 /* 354 * We could optimize this with just kicking the target running the task 355 * if that noise matters for nohz full users. 356 */ 357 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 358 } 359 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 360 361 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 362 { 363 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 364 } 365 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 366 367 /* 368 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 369 * per process timers. 370 */ 371 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 372 { 373 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 374 } 375 376 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 377 { 378 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 379 } 380 381 /* 382 * Re-evaluate the need for the tick as we switch the current task. 383 * It might need the tick due to per task/process properties: 384 * perf events, posix CPU timers, ... 385 */ 386 void __tick_nohz_task_switch(void) 387 { 388 unsigned long flags; 389 struct tick_sched *ts; 390 391 local_irq_save(flags); 392 393 if (!tick_nohz_full_cpu(smp_processor_id())) 394 goto out; 395 396 ts = this_cpu_ptr(&tick_cpu_sched); 397 398 if (ts->tick_stopped) { 399 if (atomic_read(¤t->tick_dep_mask) || 400 atomic_read(¤t->signal->tick_dep_mask)) 401 tick_nohz_full_kick(); 402 } 403 out: 404 local_irq_restore(flags); 405 } 406 407 /* Get the boot-time nohz CPU list from the kernel parameters. */ 408 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 409 { 410 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 411 cpumask_copy(tick_nohz_full_mask, cpumask); 412 tick_nohz_full_running = true; 413 } 414 EXPORT_SYMBOL_GPL(tick_nohz_full_setup); 415 416 static int tick_nohz_cpu_down(unsigned int cpu) 417 { 418 /* 419 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 420 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 421 * CPUs. It must remain online when nohz full is enabled. 422 */ 423 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 424 return -EBUSY; 425 return 0; 426 } 427 428 void __init tick_nohz_init(void) 429 { 430 int cpu, ret; 431 432 if (!tick_nohz_full_running) 433 return; 434 435 /* 436 * Full dynticks uses irq work to drive the tick rescheduling on safe 437 * locking contexts. But then we need irq work to raise its own 438 * interrupts to avoid circular dependency on the tick 439 */ 440 if (!arch_irq_work_has_interrupt()) { 441 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 442 cpumask_clear(tick_nohz_full_mask); 443 tick_nohz_full_running = false; 444 return; 445 } 446 447 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 448 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 449 cpu = smp_processor_id(); 450 451 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 452 pr_warn("NO_HZ: Clearing %d from nohz_full range " 453 "for timekeeping\n", cpu); 454 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 455 } 456 } 457 458 for_each_cpu(cpu, tick_nohz_full_mask) 459 context_tracking_cpu_set(cpu); 460 461 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 462 "kernel/nohz:predown", NULL, 463 tick_nohz_cpu_down); 464 WARN_ON(ret < 0); 465 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 466 cpumask_pr_args(tick_nohz_full_mask)); 467 } 468 #endif 469 470 /* 471 * NOHZ - aka dynamic tick functionality 472 */ 473 #ifdef CONFIG_NO_HZ_COMMON 474 /* 475 * NO HZ enabled ? 476 */ 477 bool tick_nohz_enabled __read_mostly = true; 478 unsigned long tick_nohz_active __read_mostly; 479 /* 480 * Enable / Disable tickless mode 481 */ 482 static int __init setup_tick_nohz(char *str) 483 { 484 return (kstrtobool(str, &tick_nohz_enabled) == 0); 485 } 486 487 __setup("nohz=", setup_tick_nohz); 488 489 bool tick_nohz_tick_stopped(void) 490 { 491 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 492 493 return ts->tick_stopped; 494 } 495 496 bool tick_nohz_tick_stopped_cpu(int cpu) 497 { 498 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 499 500 return ts->tick_stopped; 501 } 502 503 /** 504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 505 * 506 * Called from interrupt entry when the CPU was idle 507 * 508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 509 * must be updated. Otherwise an interrupt handler could use a stale jiffy 510 * value. We do this unconditionally on any CPU, as we don't know whether the 511 * CPU, which has the update task assigned is in a long sleep. 512 */ 513 static void tick_nohz_update_jiffies(ktime_t now) 514 { 515 unsigned long flags; 516 517 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 518 519 local_irq_save(flags); 520 tick_do_update_jiffies64(now); 521 local_irq_restore(flags); 522 523 touch_softlockup_watchdog_sched(); 524 } 525 526 /* 527 * Updates the per-CPU time idle statistics counters 528 */ 529 static void 530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 531 { 532 ktime_t delta; 533 534 if (ts->idle_active) { 535 delta = ktime_sub(now, ts->idle_entrytime); 536 if (nr_iowait_cpu(cpu) > 0) 537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 538 else 539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 540 ts->idle_entrytime = now; 541 } 542 543 if (last_update_time) 544 *last_update_time = ktime_to_us(now); 545 546 } 547 548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 549 { 550 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 551 ts->idle_active = 0; 552 553 sched_clock_idle_wakeup_event(); 554 } 555 556 static void tick_nohz_start_idle(struct tick_sched *ts) 557 { 558 ts->idle_entrytime = ktime_get(); 559 ts->idle_active = 1; 560 sched_clock_idle_sleep_event(); 561 } 562 563 /** 564 * get_cpu_idle_time_us - get the total idle time of a CPU 565 * @cpu: CPU number to query 566 * @last_update_time: variable to store update time in. Do not update 567 * counters if NULL. 568 * 569 * Return the cumulative idle time (since boot) for a given 570 * CPU, in microseconds. 571 * 572 * This time is measured via accounting rather than sampling, 573 * and is as accurate as ktime_get() is. 574 * 575 * This function returns -1 if NOHZ is not enabled. 576 */ 577 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 578 { 579 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 580 ktime_t now, idle; 581 582 if (!tick_nohz_active) 583 return -1; 584 585 now = ktime_get(); 586 if (last_update_time) { 587 update_ts_time_stats(cpu, ts, now, last_update_time); 588 idle = ts->idle_sleeptime; 589 } else { 590 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 591 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 592 593 idle = ktime_add(ts->idle_sleeptime, delta); 594 } else { 595 idle = ts->idle_sleeptime; 596 } 597 } 598 599 return ktime_to_us(idle); 600 601 } 602 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 603 604 /** 605 * get_cpu_iowait_time_us - get the total iowait time of a CPU 606 * @cpu: CPU number to query 607 * @last_update_time: variable to store update time in. Do not update 608 * counters if NULL. 609 * 610 * Return the cumulative iowait time (since boot) for a given 611 * CPU, in microseconds. 612 * 613 * This time is measured via accounting rather than sampling, 614 * and is as accurate as ktime_get() is. 615 * 616 * This function returns -1 if NOHZ is not enabled. 617 */ 618 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 619 { 620 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 621 ktime_t now, iowait; 622 623 if (!tick_nohz_active) 624 return -1; 625 626 now = ktime_get(); 627 if (last_update_time) { 628 update_ts_time_stats(cpu, ts, now, last_update_time); 629 iowait = ts->iowait_sleeptime; 630 } else { 631 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 632 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 633 634 iowait = ktime_add(ts->iowait_sleeptime, delta); 635 } else { 636 iowait = ts->iowait_sleeptime; 637 } 638 } 639 640 return ktime_to_us(iowait); 641 } 642 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 643 644 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 645 { 646 hrtimer_cancel(&ts->sched_timer); 647 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 648 649 /* Forward the time to expire in the future */ 650 hrtimer_forward(&ts->sched_timer, now, tick_period); 651 652 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 653 hrtimer_start_expires(&ts->sched_timer, 654 HRTIMER_MODE_ABS_PINNED_HARD); 655 } else { 656 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 657 } 658 659 /* 660 * Reset to make sure next tick stop doesn't get fooled by past 661 * cached clock deadline. 662 */ 663 ts->next_tick = 0; 664 } 665 666 static inline bool local_timer_softirq_pending(void) 667 { 668 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 669 } 670 671 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 672 { 673 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 674 unsigned long basejiff; 675 unsigned int seq; 676 677 /* Read jiffies and the time when jiffies were updated last */ 678 do { 679 seq = read_seqbegin(&jiffies_lock); 680 basemono = last_jiffies_update; 681 basejiff = jiffies; 682 } while (read_seqretry(&jiffies_lock, seq)); 683 ts->last_jiffies = basejiff; 684 ts->timer_expires_base = basemono; 685 686 /* 687 * Keep the periodic tick, when RCU, architecture or irq_work 688 * requests it. 689 * Aside of that check whether the local timer softirq is 690 * pending. If so its a bad idea to call get_next_timer_interrupt() 691 * because there is an already expired timer, so it will request 692 * immeditate expiry, which rearms the hardware timer with a 693 * minimal delta which brings us back to this place 694 * immediately. Lather, rinse and repeat... 695 */ 696 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 697 irq_work_needs_cpu() || local_timer_softirq_pending()) { 698 next_tick = basemono + TICK_NSEC; 699 } else { 700 /* 701 * Get the next pending timer. If high resolution 702 * timers are enabled this only takes the timer wheel 703 * timers into account. If high resolution timers are 704 * disabled this also looks at the next expiring 705 * hrtimer. 706 */ 707 next_tmr = get_next_timer_interrupt(basejiff, basemono); 708 ts->next_timer = next_tmr; 709 /* Take the next rcu event into account */ 710 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 711 } 712 713 /* 714 * If the tick is due in the next period, keep it ticking or 715 * force prod the timer. 716 */ 717 delta = next_tick - basemono; 718 if (delta <= (u64)TICK_NSEC) { 719 /* 720 * Tell the timer code that the base is not idle, i.e. undo 721 * the effect of get_next_timer_interrupt(): 722 */ 723 timer_clear_idle(); 724 /* 725 * We've not stopped the tick yet, and there's a timer in the 726 * next period, so no point in stopping it either, bail. 727 */ 728 if (!ts->tick_stopped) { 729 ts->timer_expires = 0; 730 goto out; 731 } 732 } 733 734 /* 735 * If this CPU is the one which had the do_timer() duty last, we limit 736 * the sleep time to the timekeeping max_deferment value. 737 * Otherwise we can sleep as long as we want. 738 */ 739 delta = timekeeping_max_deferment(); 740 if (cpu != tick_do_timer_cpu && 741 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 742 delta = KTIME_MAX; 743 744 /* Calculate the next expiry time */ 745 if (delta < (KTIME_MAX - basemono)) 746 expires = basemono + delta; 747 else 748 expires = KTIME_MAX; 749 750 ts->timer_expires = min_t(u64, expires, next_tick); 751 752 out: 753 return ts->timer_expires; 754 } 755 756 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 757 { 758 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 759 u64 basemono = ts->timer_expires_base; 760 u64 expires = ts->timer_expires; 761 ktime_t tick = expires; 762 763 /* Make sure we won't be trying to stop it twice in a row. */ 764 ts->timer_expires_base = 0; 765 766 /* 767 * If this CPU is the one which updates jiffies, then give up 768 * the assignment and let it be taken by the CPU which runs 769 * the tick timer next, which might be this CPU as well. If we 770 * don't drop this here the jiffies might be stale and 771 * do_timer() never invoked. Keep track of the fact that it 772 * was the one which had the do_timer() duty last. 773 */ 774 if (cpu == tick_do_timer_cpu) { 775 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 776 ts->do_timer_last = 1; 777 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 778 ts->do_timer_last = 0; 779 } 780 781 /* Skip reprogram of event if its not changed */ 782 if (ts->tick_stopped && (expires == ts->next_tick)) { 783 /* Sanity check: make sure clockevent is actually programmed */ 784 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 785 return; 786 787 WARN_ON_ONCE(1); 788 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 789 basemono, ts->next_tick, dev->next_event, 790 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 791 } 792 793 /* 794 * nohz_stop_sched_tick can be called several times before 795 * the nohz_restart_sched_tick is called. This happens when 796 * interrupts arrive which do not cause a reschedule. In the 797 * first call we save the current tick time, so we can restart 798 * the scheduler tick in nohz_restart_sched_tick. 799 */ 800 if (!ts->tick_stopped) { 801 calc_load_nohz_start(); 802 quiet_vmstat(); 803 804 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 805 ts->tick_stopped = 1; 806 trace_tick_stop(1, TICK_DEP_MASK_NONE); 807 } 808 809 ts->next_tick = tick; 810 811 /* 812 * If the expiration time == KTIME_MAX, then we simply stop 813 * the tick timer. 814 */ 815 if (unlikely(expires == KTIME_MAX)) { 816 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 817 hrtimer_cancel(&ts->sched_timer); 818 return; 819 } 820 821 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 822 hrtimer_start(&ts->sched_timer, tick, 823 HRTIMER_MODE_ABS_PINNED_HARD); 824 } else { 825 hrtimer_set_expires(&ts->sched_timer, tick); 826 tick_program_event(tick, 1); 827 } 828 } 829 830 static void tick_nohz_retain_tick(struct tick_sched *ts) 831 { 832 ts->timer_expires_base = 0; 833 } 834 835 #ifdef CONFIG_NO_HZ_FULL 836 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 837 { 838 if (tick_nohz_next_event(ts, cpu)) 839 tick_nohz_stop_tick(ts, cpu); 840 else 841 tick_nohz_retain_tick(ts); 842 } 843 #endif /* CONFIG_NO_HZ_FULL */ 844 845 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 846 { 847 /* Update jiffies first */ 848 tick_do_update_jiffies64(now); 849 850 /* 851 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 852 * the clock forward checks in the enqueue path: 853 */ 854 timer_clear_idle(); 855 856 calc_load_nohz_stop(); 857 touch_softlockup_watchdog_sched(); 858 /* 859 * Cancel the scheduled timer and restore the tick 860 */ 861 ts->tick_stopped = 0; 862 ts->idle_exittime = now; 863 864 tick_nohz_restart(ts, now); 865 } 866 867 static void tick_nohz_full_update_tick(struct tick_sched *ts) 868 { 869 #ifdef CONFIG_NO_HZ_FULL 870 int cpu = smp_processor_id(); 871 872 if (!tick_nohz_full_cpu(cpu)) 873 return; 874 875 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 876 return; 877 878 if (can_stop_full_tick(cpu, ts)) 879 tick_nohz_stop_sched_tick(ts, cpu); 880 else if (ts->tick_stopped) 881 tick_nohz_restart_sched_tick(ts, ktime_get()); 882 #endif 883 } 884 885 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 886 { 887 /* 888 * If this CPU is offline and it is the one which updates 889 * jiffies, then give up the assignment and let it be taken by 890 * the CPU which runs the tick timer next. If we don't drop 891 * this here the jiffies might be stale and do_timer() never 892 * invoked. 893 */ 894 if (unlikely(!cpu_online(cpu))) { 895 if (cpu == tick_do_timer_cpu) 896 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 897 /* 898 * Make sure the CPU doesn't get fooled by obsolete tick 899 * deadline if it comes back online later. 900 */ 901 ts->next_tick = 0; 902 return false; 903 } 904 905 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 906 return false; 907 908 if (need_resched()) 909 return false; 910 911 if (unlikely(local_softirq_pending())) { 912 static int ratelimit; 913 914 if (ratelimit < 10 && 915 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 916 pr_warn("NOHZ: local_softirq_pending %02x\n", 917 (unsigned int) local_softirq_pending()); 918 ratelimit++; 919 } 920 return false; 921 } 922 923 if (tick_nohz_full_enabled()) { 924 /* 925 * Keep the tick alive to guarantee timekeeping progression 926 * if there are full dynticks CPUs around 927 */ 928 if (tick_do_timer_cpu == cpu) 929 return false; 930 /* 931 * Boot safety: make sure the timekeeping duty has been 932 * assigned before entering dyntick-idle mode, 933 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 934 */ 935 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 936 return false; 937 938 /* Should not happen for nohz-full */ 939 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 940 return false; 941 } 942 943 return true; 944 } 945 946 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 947 { 948 ktime_t expires; 949 int cpu = smp_processor_id(); 950 951 /* 952 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 953 * tick timer expiration time is known already. 954 */ 955 if (ts->timer_expires_base) 956 expires = ts->timer_expires; 957 else if (can_stop_idle_tick(cpu, ts)) 958 expires = tick_nohz_next_event(ts, cpu); 959 else 960 return; 961 962 ts->idle_calls++; 963 964 if (expires > 0LL) { 965 int was_stopped = ts->tick_stopped; 966 967 tick_nohz_stop_tick(ts, cpu); 968 969 ts->idle_sleeps++; 970 ts->idle_expires = expires; 971 972 if (!was_stopped && ts->tick_stopped) { 973 ts->idle_jiffies = ts->last_jiffies; 974 nohz_balance_enter_idle(cpu); 975 } 976 } else { 977 tick_nohz_retain_tick(ts); 978 } 979 } 980 981 /** 982 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 983 * 984 * When the next event is more than a tick into the future, stop the idle tick 985 */ 986 void tick_nohz_idle_stop_tick(void) 987 { 988 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 989 } 990 991 void tick_nohz_idle_retain_tick(void) 992 { 993 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 994 /* 995 * Undo the effect of get_next_timer_interrupt() called from 996 * tick_nohz_next_event(). 997 */ 998 timer_clear_idle(); 999 } 1000 1001 /** 1002 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1003 * 1004 * Called when we start the idle loop. 1005 */ 1006 void tick_nohz_idle_enter(void) 1007 { 1008 struct tick_sched *ts; 1009 1010 lockdep_assert_irqs_enabled(); 1011 1012 local_irq_disable(); 1013 1014 ts = this_cpu_ptr(&tick_cpu_sched); 1015 1016 WARN_ON_ONCE(ts->timer_expires_base); 1017 1018 ts->inidle = 1; 1019 tick_nohz_start_idle(ts); 1020 1021 local_irq_enable(); 1022 } 1023 1024 /** 1025 * tick_nohz_irq_exit - update next tick event from interrupt exit 1026 * 1027 * When an interrupt fires while we are idle and it doesn't cause 1028 * a reschedule, it may still add, modify or delete a timer, enqueue 1029 * an RCU callback, etc... 1030 * So we need to re-calculate and reprogram the next tick event. 1031 */ 1032 void tick_nohz_irq_exit(void) 1033 { 1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1035 1036 if (ts->inidle) 1037 tick_nohz_start_idle(ts); 1038 else 1039 tick_nohz_full_update_tick(ts); 1040 } 1041 1042 /** 1043 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1044 */ 1045 bool tick_nohz_idle_got_tick(void) 1046 { 1047 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1048 1049 if (ts->got_idle_tick) { 1050 ts->got_idle_tick = 0; 1051 return true; 1052 } 1053 return false; 1054 } 1055 1056 /** 1057 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1058 * or the tick, whatever that expires first. Note that, if the tick has been 1059 * stopped, it returns the next hrtimer. 1060 * 1061 * Called from power state control code with interrupts disabled 1062 */ 1063 ktime_t tick_nohz_get_next_hrtimer(void) 1064 { 1065 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1066 } 1067 1068 /** 1069 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1070 * @delta_next: duration until the next event if the tick cannot be stopped 1071 * 1072 * Called from power state control code with interrupts disabled 1073 */ 1074 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1075 { 1076 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1077 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1078 int cpu = smp_processor_id(); 1079 /* 1080 * The idle entry time is expected to be a sufficient approximation of 1081 * the current time at this point. 1082 */ 1083 ktime_t now = ts->idle_entrytime; 1084 ktime_t next_event; 1085 1086 WARN_ON_ONCE(!ts->inidle); 1087 1088 *delta_next = ktime_sub(dev->next_event, now); 1089 1090 if (!can_stop_idle_tick(cpu, ts)) 1091 return *delta_next; 1092 1093 next_event = tick_nohz_next_event(ts, cpu); 1094 if (!next_event) 1095 return *delta_next; 1096 1097 /* 1098 * If the next highres timer to expire is earlier than next_event, the 1099 * idle governor needs to know that. 1100 */ 1101 next_event = min_t(u64, next_event, 1102 hrtimer_next_event_without(&ts->sched_timer)); 1103 1104 return ktime_sub(next_event, now); 1105 } 1106 1107 /** 1108 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1109 * for a particular CPU. 1110 * 1111 * Called from the schedutil frequency scaling governor in scheduler context. 1112 */ 1113 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1114 { 1115 struct tick_sched *ts = tick_get_tick_sched(cpu); 1116 1117 return ts->idle_calls; 1118 } 1119 1120 /** 1121 * tick_nohz_get_idle_calls - return the current idle calls counter value 1122 * 1123 * Called from the schedutil frequency scaling governor in scheduler context. 1124 */ 1125 unsigned long tick_nohz_get_idle_calls(void) 1126 { 1127 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1128 1129 return ts->idle_calls; 1130 } 1131 1132 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1133 { 1134 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1135 unsigned long ticks; 1136 1137 if (vtime_accounting_enabled_this_cpu()) 1138 return; 1139 /* 1140 * We stopped the tick in idle. Update process times would miss the 1141 * time we slept as update_process_times does only a 1 tick 1142 * accounting. Enforce that this is accounted to idle ! 1143 */ 1144 ticks = jiffies - ts->idle_jiffies; 1145 /* 1146 * We might be one off. Do not randomly account a huge number of ticks! 1147 */ 1148 if (ticks && ticks < LONG_MAX) 1149 account_idle_ticks(ticks); 1150 #endif 1151 } 1152 1153 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1154 { 1155 tick_nohz_restart_sched_tick(ts, now); 1156 tick_nohz_account_idle_ticks(ts); 1157 } 1158 1159 void tick_nohz_idle_restart_tick(void) 1160 { 1161 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1162 1163 if (ts->tick_stopped) 1164 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1165 } 1166 1167 /** 1168 * tick_nohz_idle_exit - restart the idle tick from the idle task 1169 * 1170 * Restart the idle tick when the CPU is woken up from idle 1171 * This also exit the RCU extended quiescent state. The CPU 1172 * can use RCU again after this function is called. 1173 */ 1174 void tick_nohz_idle_exit(void) 1175 { 1176 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1177 bool idle_active, tick_stopped; 1178 ktime_t now; 1179 1180 local_irq_disable(); 1181 1182 WARN_ON_ONCE(!ts->inidle); 1183 WARN_ON_ONCE(ts->timer_expires_base); 1184 1185 ts->inidle = 0; 1186 idle_active = ts->idle_active; 1187 tick_stopped = ts->tick_stopped; 1188 1189 if (idle_active || tick_stopped) 1190 now = ktime_get(); 1191 1192 if (idle_active) 1193 tick_nohz_stop_idle(ts, now); 1194 1195 if (tick_stopped) 1196 __tick_nohz_idle_restart_tick(ts, now); 1197 1198 local_irq_enable(); 1199 } 1200 1201 /* 1202 * The nohz low res interrupt handler 1203 */ 1204 static void tick_nohz_handler(struct clock_event_device *dev) 1205 { 1206 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1207 struct pt_regs *regs = get_irq_regs(); 1208 ktime_t now = ktime_get(); 1209 1210 dev->next_event = KTIME_MAX; 1211 1212 tick_sched_do_timer(ts, now); 1213 tick_sched_handle(ts, regs); 1214 1215 /* No need to reprogram if we are running tickless */ 1216 if (unlikely(ts->tick_stopped)) 1217 return; 1218 1219 hrtimer_forward(&ts->sched_timer, now, tick_period); 1220 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1221 } 1222 1223 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1224 { 1225 if (!tick_nohz_enabled) 1226 return; 1227 ts->nohz_mode = mode; 1228 /* One update is enough */ 1229 if (!test_and_set_bit(0, &tick_nohz_active)) 1230 timers_update_nohz(); 1231 } 1232 1233 /** 1234 * tick_nohz_switch_to_nohz - switch to nohz mode 1235 */ 1236 static void tick_nohz_switch_to_nohz(void) 1237 { 1238 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1239 ktime_t next; 1240 1241 if (!tick_nohz_enabled) 1242 return; 1243 1244 if (tick_switch_to_oneshot(tick_nohz_handler)) 1245 return; 1246 1247 /* 1248 * Recycle the hrtimer in ts, so we can share the 1249 * hrtimer_forward with the highres code. 1250 */ 1251 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1252 /* Get the next period */ 1253 next = tick_init_jiffy_update(); 1254 1255 hrtimer_set_expires(&ts->sched_timer, next); 1256 hrtimer_forward_now(&ts->sched_timer, tick_period); 1257 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1258 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1259 } 1260 1261 static inline void tick_nohz_irq_enter(void) 1262 { 1263 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1264 ktime_t now; 1265 1266 if (!ts->idle_active && !ts->tick_stopped) 1267 return; 1268 now = ktime_get(); 1269 if (ts->idle_active) 1270 tick_nohz_stop_idle(ts, now); 1271 if (ts->tick_stopped) 1272 tick_nohz_update_jiffies(now); 1273 } 1274 1275 #else 1276 1277 static inline void tick_nohz_switch_to_nohz(void) { } 1278 static inline void tick_nohz_irq_enter(void) { } 1279 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1280 1281 #endif /* CONFIG_NO_HZ_COMMON */ 1282 1283 /* 1284 * Called from irq_enter to notify about the possible interruption of idle() 1285 */ 1286 void tick_irq_enter(void) 1287 { 1288 tick_check_oneshot_broadcast_this_cpu(); 1289 tick_nohz_irq_enter(); 1290 } 1291 1292 /* 1293 * High resolution timer specific code 1294 */ 1295 #ifdef CONFIG_HIGH_RES_TIMERS 1296 /* 1297 * We rearm the timer until we get disabled by the idle code. 1298 * Called with interrupts disabled. 1299 */ 1300 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1301 { 1302 struct tick_sched *ts = 1303 container_of(timer, struct tick_sched, sched_timer); 1304 struct pt_regs *regs = get_irq_regs(); 1305 ktime_t now = ktime_get(); 1306 1307 tick_sched_do_timer(ts, now); 1308 1309 /* 1310 * Do not call, when we are not in irq context and have 1311 * no valid regs pointer 1312 */ 1313 if (regs) 1314 tick_sched_handle(ts, regs); 1315 else 1316 ts->next_tick = 0; 1317 1318 /* No need to reprogram if we are in idle or full dynticks mode */ 1319 if (unlikely(ts->tick_stopped)) 1320 return HRTIMER_NORESTART; 1321 1322 hrtimer_forward(timer, now, tick_period); 1323 1324 return HRTIMER_RESTART; 1325 } 1326 1327 static int sched_skew_tick; 1328 1329 static int __init skew_tick(char *str) 1330 { 1331 get_option(&str, &sched_skew_tick); 1332 1333 return 0; 1334 } 1335 early_param("skew_tick", skew_tick); 1336 1337 /** 1338 * tick_setup_sched_timer - setup the tick emulation timer 1339 */ 1340 void tick_setup_sched_timer(void) 1341 { 1342 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1343 ktime_t now = ktime_get(); 1344 1345 /* 1346 * Emulate tick processing via per-CPU hrtimers: 1347 */ 1348 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1349 ts->sched_timer.function = tick_sched_timer; 1350 1351 /* Get the next period (per-CPU) */ 1352 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1353 1354 /* Offset the tick to avert jiffies_lock contention. */ 1355 if (sched_skew_tick) { 1356 u64 offset = ktime_to_ns(tick_period) >> 1; 1357 do_div(offset, num_possible_cpus()); 1358 offset *= smp_processor_id(); 1359 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1360 } 1361 1362 hrtimer_forward(&ts->sched_timer, now, tick_period); 1363 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1364 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1365 } 1366 #endif /* HIGH_RES_TIMERS */ 1367 1368 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1369 void tick_cancel_sched_timer(int cpu) 1370 { 1371 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1372 1373 # ifdef CONFIG_HIGH_RES_TIMERS 1374 if (ts->sched_timer.base) 1375 hrtimer_cancel(&ts->sched_timer); 1376 # endif 1377 1378 memset(ts, 0, sizeof(*ts)); 1379 } 1380 #endif 1381 1382 /** 1383 * Async notification about clocksource changes 1384 */ 1385 void tick_clock_notify(void) 1386 { 1387 int cpu; 1388 1389 for_each_possible_cpu(cpu) 1390 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1391 } 1392 1393 /* 1394 * Async notification about clock event changes 1395 */ 1396 void tick_oneshot_notify(void) 1397 { 1398 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1399 1400 set_bit(0, &ts->check_clocks); 1401 } 1402 1403 /** 1404 * Check, if a change happened, which makes oneshot possible. 1405 * 1406 * Called cyclic from the hrtimer softirq (driven by the timer 1407 * softirq) allow_nohz signals, that we can switch into low-res nohz 1408 * mode, because high resolution timers are disabled (either compile 1409 * or runtime). Called with interrupts disabled. 1410 */ 1411 int tick_check_oneshot_change(int allow_nohz) 1412 { 1413 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1414 1415 if (!test_and_clear_bit(0, &ts->check_clocks)) 1416 return 0; 1417 1418 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1419 return 0; 1420 1421 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1422 return 0; 1423 1424 if (!allow_nohz) 1425 return 1; 1426 1427 tick_nohz_switch_to_nohz(); 1428 return 0; 1429 } 1430