1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 #include <linux/mm.h> 31 32 #include <asm/irq_regs.h> 33 34 #include "tick-internal.h" 35 36 #include <trace/events/timer.h> 37 38 /* 39 * Per-CPU nohz control structure 40 */ 41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 49 /* 50 * The time, when the last jiffy update happened. Protected by jiffies_lock. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 0; 60 ktime_t delta; 61 62 /* 63 * Do a quick check without holding jiffies_lock: 64 */ 65 delta = ktime_sub(now, last_jiffies_update); 66 if (delta < tick_period) 67 return; 68 69 /* Reevaluate with jiffies_lock held */ 70 write_seqlock(&jiffies_lock); 71 72 delta = ktime_sub(now, last_jiffies_update); 73 if (delta >= tick_period) { 74 75 delta = ktime_sub(delta, tick_period); 76 last_jiffies_update = ktime_add(last_jiffies_update, 77 tick_period); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 last_jiffies_update = ktime_add_ns(last_jiffies_update, 86 incr * ticks); 87 } 88 do_timer(++ticks); 89 90 /* Keep the tick_next_period variable up to date */ 91 tick_next_period = ktime_add(last_jiffies_update, tick_period); 92 } else { 93 write_sequnlock(&jiffies_lock); 94 return; 95 } 96 write_sequnlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 /* 101 * Initialize and return retrieve the jiffies update. 102 */ 103 static ktime_t tick_init_jiffy_update(void) 104 { 105 ktime_t period; 106 107 write_seqlock(&jiffies_lock); 108 /* Did we start the jiffies update yet ? */ 109 if (last_jiffies_update == 0) 110 last_jiffies_update = tick_next_period; 111 period = last_jiffies_update; 112 write_sequnlock(&jiffies_lock); 113 return period; 114 } 115 116 117 static void tick_sched_do_timer(ktime_t now) 118 { 119 int cpu = smp_processor_id(); 120 121 #ifdef CONFIG_NO_HZ_COMMON 122 /* 123 * Check if the do_timer duty was dropped. We don't care about 124 * concurrency: This happens only when the CPU in charge went 125 * into a long sleep. If two CPUs happen to assign themselves to 126 * this duty, then the jiffies update is still serialized by 127 * jiffies_lock. 128 */ 129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 130 && !tick_nohz_full_cpu(cpu)) 131 tick_do_timer_cpu = cpu; 132 #endif 133 134 /* Check, if the jiffies need an update */ 135 if (tick_do_timer_cpu == cpu) 136 tick_do_update_jiffies64(now); 137 } 138 139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 140 { 141 #ifdef CONFIG_NO_HZ_COMMON 142 /* 143 * When we are idle and the tick is stopped, we have to touch 144 * the watchdog as we might not schedule for a really long 145 * time. This happens on complete idle SMP systems while 146 * waiting on the login prompt. We also increment the "start of 147 * idle" jiffy stamp so the idle accounting adjustment we do 148 * when we go busy again does not account too much ticks. 149 */ 150 if (ts->tick_stopped) { 151 touch_softlockup_watchdog_sched(); 152 if (is_idle_task(current)) 153 ts->idle_jiffies++; 154 /* 155 * In case the current tick fired too early past its expected 156 * expiration, make sure we don't bypass the next clock reprogramming 157 * to the same deadline. 158 */ 159 ts->next_tick = 0; 160 } 161 #endif 162 update_process_times(user_mode(regs)); 163 profile_tick(CPU_PROFILING); 164 } 165 #endif 166 167 #ifdef CONFIG_NO_HZ_FULL 168 cpumask_var_t tick_nohz_full_mask; 169 bool tick_nohz_full_running; 170 static atomic_t tick_dep_mask; 171 172 static bool check_tick_dependency(atomic_t *dep) 173 { 174 int val = atomic_read(dep); 175 176 if (val & TICK_DEP_MASK_POSIX_TIMER) { 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 178 return true; 179 } 180 181 if (val & TICK_DEP_MASK_PERF_EVENTS) { 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_SCHED) { 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 193 return true; 194 } 195 196 return false; 197 } 198 199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 200 { 201 lockdep_assert_irqs_disabled(); 202 203 if (unlikely(!cpu_online(cpu))) 204 return false; 205 206 if (check_tick_dependency(&tick_dep_mask)) 207 return false; 208 209 if (check_tick_dependency(&ts->tick_dep_mask)) 210 return false; 211 212 if (check_tick_dependency(¤t->tick_dep_mask)) 213 return false; 214 215 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 216 return false; 217 218 return true; 219 } 220 221 static void nohz_full_kick_func(struct irq_work *work) 222 { 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 224 } 225 226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 227 .func = nohz_full_kick_func, 228 }; 229 230 /* 231 * Kick this CPU if it's full dynticks in order to force it to 232 * re-evaluate its dependency on the tick and restart it if necessary. 233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 234 * is NMI safe. 235 */ 236 static void tick_nohz_full_kick(void) 237 { 238 if (!tick_nohz_full_cpu(smp_processor_id())) 239 return; 240 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 242 } 243 244 /* 245 * Kick the CPU if it's full dynticks in order to force it to 246 * re-evaluate its dependency on the tick and restart it if necessary. 247 */ 248 void tick_nohz_full_kick_cpu(int cpu) 249 { 250 if (!tick_nohz_full_cpu(cpu)) 251 return; 252 253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 254 } 255 256 /* 257 * Kick all full dynticks CPUs in order to force these to re-evaluate 258 * their dependency on the tick and restart it if necessary. 259 */ 260 static void tick_nohz_full_kick_all(void) 261 { 262 int cpu; 263 264 if (!tick_nohz_full_running) 265 return; 266 267 preempt_disable(); 268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 269 tick_nohz_full_kick_cpu(cpu); 270 preempt_enable(); 271 } 272 273 static void tick_nohz_dep_set_all(atomic_t *dep, 274 enum tick_dep_bits bit) 275 { 276 int prev; 277 278 prev = atomic_fetch_or(BIT(bit), dep); 279 if (!prev) 280 tick_nohz_full_kick_all(); 281 } 282 283 /* 284 * Set a global tick dependency. Used by perf events that rely on freq and 285 * by unstable clock. 286 */ 287 void tick_nohz_dep_set(enum tick_dep_bits bit) 288 { 289 tick_nohz_dep_set_all(&tick_dep_mask, bit); 290 } 291 292 void tick_nohz_dep_clear(enum tick_dep_bits bit) 293 { 294 atomic_andnot(BIT(bit), &tick_dep_mask); 295 } 296 297 /* 298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 299 * manage events throttling. 300 */ 301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 302 { 303 int prev; 304 struct tick_sched *ts; 305 306 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 307 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 309 if (!prev) { 310 preempt_disable(); 311 /* Perf needs local kick that is NMI safe */ 312 if (cpu == smp_processor_id()) { 313 tick_nohz_full_kick(); 314 } else { 315 /* Remote irq work not NMI-safe */ 316 if (!WARN_ON_ONCE(in_nmi())) 317 tick_nohz_full_kick_cpu(cpu); 318 } 319 preempt_enable(); 320 } 321 } 322 323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 324 { 325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 326 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 328 } 329 330 /* 331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 332 * per task timers. 333 */ 334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 335 { 336 /* 337 * We could optimize this with just kicking the target running the task 338 * if that noise matters for nohz full users. 339 */ 340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 341 } 342 343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 344 { 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 346 } 347 348 /* 349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 350 * per process timers. 351 */ 352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 353 { 354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 355 } 356 357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 358 { 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 360 } 361 362 /* 363 * Re-evaluate the need for the tick as we switch the current task. 364 * It might need the tick due to per task/process properties: 365 * perf events, posix CPU timers, ... 366 */ 367 void __tick_nohz_task_switch(void) 368 { 369 unsigned long flags; 370 struct tick_sched *ts; 371 372 local_irq_save(flags); 373 374 if (!tick_nohz_full_cpu(smp_processor_id())) 375 goto out; 376 377 ts = this_cpu_ptr(&tick_cpu_sched); 378 379 if (ts->tick_stopped) { 380 if (atomic_read(¤t->tick_dep_mask) || 381 atomic_read(¤t->signal->tick_dep_mask)) 382 tick_nohz_full_kick(); 383 } 384 out: 385 local_irq_restore(flags); 386 } 387 388 /* Get the boot-time nohz CPU list from the kernel parameters. */ 389 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 390 { 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 392 cpumask_copy(tick_nohz_full_mask, cpumask); 393 tick_nohz_full_running = true; 394 } 395 396 static int tick_nohz_cpu_down(unsigned int cpu) 397 { 398 /* 399 * The boot CPU handles housekeeping duty (unbound timers, 400 * workqueues, timekeeping, ...) on behalf of full dynticks 401 * CPUs. It must remain online when nohz full is enabled. 402 */ 403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 404 return -EBUSY; 405 return 0; 406 } 407 408 static int tick_nohz_init_all(void) 409 { 410 int err = -1; 411 412 #ifdef CONFIG_NO_HZ_FULL_ALL 413 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 414 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 415 return err; 416 } 417 err = 0; 418 cpumask_setall(tick_nohz_full_mask); 419 tick_nohz_full_running = true; 420 #endif 421 return err; 422 } 423 424 void __init tick_nohz_init(void) 425 { 426 int cpu, ret; 427 428 if (!tick_nohz_full_running) { 429 if (tick_nohz_init_all() < 0) 430 return; 431 } 432 433 /* 434 * Full dynticks uses irq work to drive the tick rescheduling on safe 435 * locking contexts. But then we need irq work to raise its own 436 * interrupts to avoid circular dependency on the tick 437 */ 438 if (!arch_irq_work_has_interrupt()) { 439 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 440 cpumask_clear(tick_nohz_full_mask); 441 tick_nohz_full_running = false; 442 return; 443 } 444 445 cpu = smp_processor_id(); 446 447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 448 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 449 cpu); 450 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 451 } 452 453 for_each_cpu(cpu, tick_nohz_full_mask) 454 context_tracking_cpu_set(cpu); 455 456 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 457 "kernel/nohz:predown", NULL, 458 tick_nohz_cpu_down); 459 WARN_ON(ret < 0); 460 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 461 cpumask_pr_args(tick_nohz_full_mask)); 462 } 463 #endif 464 465 /* 466 * NOHZ - aka dynamic tick functionality 467 */ 468 #ifdef CONFIG_NO_HZ_COMMON 469 /* 470 * NO HZ enabled ? 471 */ 472 bool tick_nohz_enabled __read_mostly = true; 473 unsigned long tick_nohz_active __read_mostly; 474 /* 475 * Enable / Disable tickless mode 476 */ 477 static int __init setup_tick_nohz(char *str) 478 { 479 return (kstrtobool(str, &tick_nohz_enabled) == 0); 480 } 481 482 __setup("nohz=", setup_tick_nohz); 483 484 int tick_nohz_tick_stopped(void) 485 { 486 return __this_cpu_read(tick_cpu_sched.tick_stopped); 487 } 488 489 /** 490 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 491 * 492 * Called from interrupt entry when the CPU was idle 493 * 494 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 495 * must be updated. Otherwise an interrupt handler could use a stale jiffy 496 * value. We do this unconditionally on any CPU, as we don't know whether the 497 * CPU, which has the update task assigned is in a long sleep. 498 */ 499 static void tick_nohz_update_jiffies(ktime_t now) 500 { 501 unsigned long flags; 502 503 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 504 505 local_irq_save(flags); 506 tick_do_update_jiffies64(now); 507 local_irq_restore(flags); 508 509 touch_softlockup_watchdog_sched(); 510 } 511 512 /* 513 * Updates the per-CPU time idle statistics counters 514 */ 515 static void 516 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 517 { 518 ktime_t delta; 519 520 if (ts->idle_active) { 521 delta = ktime_sub(now, ts->idle_entrytime); 522 if (nr_iowait_cpu(cpu) > 0) 523 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 524 else 525 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 526 ts->idle_entrytime = now; 527 } 528 529 if (last_update_time) 530 *last_update_time = ktime_to_us(now); 531 532 } 533 534 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 535 { 536 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 537 ts->idle_active = 0; 538 539 sched_clock_idle_wakeup_event(); 540 } 541 542 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 543 { 544 ktime_t now = ktime_get(); 545 546 ts->idle_entrytime = now; 547 ts->idle_active = 1; 548 sched_clock_idle_sleep_event(); 549 return now; 550 } 551 552 /** 553 * get_cpu_idle_time_us - get the total idle time of a CPU 554 * @cpu: CPU number to query 555 * @last_update_time: variable to store update time in. Do not update 556 * counters if NULL. 557 * 558 * Return the cumulative idle time (since boot) for a given 559 * CPU, in microseconds. 560 * 561 * This time is measured via accounting rather than sampling, 562 * and is as accurate as ktime_get() is. 563 * 564 * This function returns -1 if NOHZ is not enabled. 565 */ 566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 567 { 568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 569 ktime_t now, idle; 570 571 if (!tick_nohz_active) 572 return -1; 573 574 now = ktime_get(); 575 if (last_update_time) { 576 update_ts_time_stats(cpu, ts, now, last_update_time); 577 idle = ts->idle_sleeptime; 578 } else { 579 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 580 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 581 582 idle = ktime_add(ts->idle_sleeptime, delta); 583 } else { 584 idle = ts->idle_sleeptime; 585 } 586 } 587 588 return ktime_to_us(idle); 589 590 } 591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 592 593 /** 594 * get_cpu_iowait_time_us - get the total iowait time of a CPU 595 * @cpu: CPU number to query 596 * @last_update_time: variable to store update time in. Do not update 597 * counters if NULL. 598 * 599 * Return the cumulative iowait time (since boot) for a given 600 * CPU, in microseconds. 601 * 602 * This time is measured via accounting rather than sampling, 603 * and is as accurate as ktime_get() is. 604 * 605 * This function returns -1 if NOHZ is not enabled. 606 */ 607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 608 { 609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 610 ktime_t now, iowait; 611 612 if (!tick_nohz_active) 613 return -1; 614 615 now = ktime_get(); 616 if (last_update_time) { 617 update_ts_time_stats(cpu, ts, now, last_update_time); 618 iowait = ts->iowait_sleeptime; 619 } else { 620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 621 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 622 623 iowait = ktime_add(ts->iowait_sleeptime, delta); 624 } else { 625 iowait = ts->iowait_sleeptime; 626 } 627 } 628 629 return ktime_to_us(iowait); 630 } 631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 632 633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 634 { 635 hrtimer_cancel(&ts->sched_timer); 636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 637 638 /* Forward the time to expire in the future */ 639 hrtimer_forward(&ts->sched_timer, now, tick_period); 640 641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 642 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 643 else 644 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 645 646 /* 647 * Reset to make sure next tick stop doesn't get fooled by past 648 * cached clock deadline. 649 */ 650 ts->next_tick = 0; 651 } 652 653 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 654 ktime_t now, int cpu) 655 { 656 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 657 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 658 unsigned long seq, basejiff; 659 ktime_t tick; 660 661 /* Read jiffies and the time when jiffies were updated last */ 662 do { 663 seq = read_seqbegin(&jiffies_lock); 664 basemono = last_jiffies_update; 665 basejiff = jiffies; 666 } while (read_seqretry(&jiffies_lock, seq)); 667 ts->last_jiffies = basejiff; 668 669 if (rcu_needs_cpu(basemono, &next_rcu) || 670 arch_needs_cpu() || irq_work_needs_cpu()) { 671 next_tick = basemono + TICK_NSEC; 672 } else { 673 /* 674 * Get the next pending timer. If high resolution 675 * timers are enabled this only takes the timer wheel 676 * timers into account. If high resolution timers are 677 * disabled this also looks at the next expiring 678 * hrtimer. 679 */ 680 next_tmr = get_next_timer_interrupt(basejiff, basemono); 681 ts->next_timer = next_tmr; 682 /* Take the next rcu event into account */ 683 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 684 } 685 686 /* 687 * If the tick is due in the next period, keep it ticking or 688 * force prod the timer. 689 */ 690 delta = next_tick - basemono; 691 if (delta <= (u64)TICK_NSEC) { 692 /* 693 * Tell the timer code that the base is not idle, i.e. undo 694 * the effect of get_next_timer_interrupt(): 695 */ 696 timer_clear_idle(); 697 /* 698 * We've not stopped the tick yet, and there's a timer in the 699 * next period, so no point in stopping it either, bail. 700 */ 701 if (!ts->tick_stopped) { 702 tick = 0; 703 goto out; 704 } 705 } 706 707 /* 708 * If this CPU is the one which updates jiffies, then give up 709 * the assignment and let it be taken by the CPU which runs 710 * the tick timer next, which might be this CPU as well. If we 711 * don't drop this here the jiffies might be stale and 712 * do_timer() never invoked. Keep track of the fact that it 713 * was the one which had the do_timer() duty last. If this CPU 714 * is the one which had the do_timer() duty last, we limit the 715 * sleep time to the timekeeping max_deferment value. 716 * Otherwise we can sleep as long as we want. 717 */ 718 delta = timekeeping_max_deferment(); 719 if (cpu == tick_do_timer_cpu) { 720 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 721 ts->do_timer_last = 1; 722 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 723 delta = KTIME_MAX; 724 ts->do_timer_last = 0; 725 } else if (!ts->do_timer_last) { 726 delta = KTIME_MAX; 727 } 728 729 #ifdef CONFIG_NO_HZ_FULL 730 /* Limit the tick delta to the maximum scheduler deferment */ 731 if (!ts->inidle) 732 delta = min(delta, scheduler_tick_max_deferment()); 733 #endif 734 735 /* Calculate the next expiry time */ 736 if (delta < (KTIME_MAX - basemono)) 737 expires = basemono + delta; 738 else 739 expires = KTIME_MAX; 740 741 expires = min_t(u64, expires, next_tick); 742 tick = expires; 743 744 /* Skip reprogram of event if its not changed */ 745 if (ts->tick_stopped && (expires == ts->next_tick)) { 746 /* Sanity check: make sure clockevent is actually programmed */ 747 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 748 goto out; 749 750 WARN_ON_ONCE(1); 751 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 752 basemono, ts->next_tick, dev->next_event, 753 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 754 } 755 756 /* 757 * nohz_stop_sched_tick can be called several times before 758 * the nohz_restart_sched_tick is called. This happens when 759 * interrupts arrive which do not cause a reschedule. In the 760 * first call we save the current tick time, so we can restart 761 * the scheduler tick in nohz_restart_sched_tick. 762 */ 763 if (!ts->tick_stopped) { 764 calc_load_nohz_start(); 765 cpu_load_update_nohz_start(); 766 quiet_vmstat(); 767 768 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 769 ts->tick_stopped = 1; 770 trace_tick_stop(1, TICK_DEP_MASK_NONE); 771 } 772 773 ts->next_tick = tick; 774 775 /* 776 * If the expiration time == KTIME_MAX, then we simply stop 777 * the tick timer. 778 */ 779 if (unlikely(expires == KTIME_MAX)) { 780 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 781 hrtimer_cancel(&ts->sched_timer); 782 goto out; 783 } 784 785 hrtimer_set_expires(&ts->sched_timer, tick); 786 787 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 788 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 789 else 790 tick_program_event(tick, 1); 791 out: 792 /* 793 * Update the estimated sleep length until the next timer 794 * (not only the tick). 795 */ 796 ts->sleep_length = ktime_sub(dev->next_event, now); 797 return tick; 798 } 799 800 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 801 { 802 /* Update jiffies first */ 803 tick_do_update_jiffies64(now); 804 cpu_load_update_nohz_stop(); 805 806 /* 807 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 808 * the clock forward checks in the enqueue path: 809 */ 810 timer_clear_idle(); 811 812 calc_load_nohz_stop(); 813 touch_softlockup_watchdog_sched(); 814 /* 815 * Cancel the scheduled timer and restore the tick 816 */ 817 ts->tick_stopped = 0; 818 ts->idle_exittime = now; 819 820 tick_nohz_restart(ts, now); 821 } 822 823 static void tick_nohz_full_update_tick(struct tick_sched *ts) 824 { 825 #ifdef CONFIG_NO_HZ_FULL 826 int cpu = smp_processor_id(); 827 828 if (!tick_nohz_full_cpu(cpu)) 829 return; 830 831 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 832 return; 833 834 if (can_stop_full_tick(cpu, ts)) 835 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 836 else if (ts->tick_stopped) 837 tick_nohz_restart_sched_tick(ts, ktime_get()); 838 #endif 839 } 840 841 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 842 { 843 /* 844 * If this CPU is offline and it is the one which updates 845 * jiffies, then give up the assignment and let it be taken by 846 * the CPU which runs the tick timer next. If we don't drop 847 * this here the jiffies might be stale and do_timer() never 848 * invoked. 849 */ 850 if (unlikely(!cpu_online(cpu))) { 851 if (cpu == tick_do_timer_cpu) 852 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 853 /* 854 * Make sure the CPU doesn't get fooled by obsolete tick 855 * deadline if it comes back online later. 856 */ 857 ts->next_tick = 0; 858 return false; 859 } 860 861 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 862 ts->sleep_length = NSEC_PER_SEC / HZ; 863 return false; 864 } 865 866 if (need_resched()) 867 return false; 868 869 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 870 static int ratelimit; 871 872 if (ratelimit < 10 && 873 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 874 pr_warn("NOHZ: local_softirq_pending %02x\n", 875 (unsigned int) local_softirq_pending()); 876 ratelimit++; 877 } 878 return false; 879 } 880 881 if (tick_nohz_full_enabled()) { 882 /* 883 * Keep the tick alive to guarantee timekeeping progression 884 * if there are full dynticks CPUs around 885 */ 886 if (tick_do_timer_cpu == cpu) 887 return false; 888 /* 889 * Boot safety: make sure the timekeeping duty has been 890 * assigned before entering dyntick-idle mode, 891 */ 892 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 893 return false; 894 } 895 896 return true; 897 } 898 899 static void __tick_nohz_idle_enter(struct tick_sched *ts) 900 { 901 ktime_t now, expires; 902 int cpu = smp_processor_id(); 903 904 now = tick_nohz_start_idle(ts); 905 906 if (can_stop_idle_tick(cpu, ts)) { 907 int was_stopped = ts->tick_stopped; 908 909 ts->idle_calls++; 910 911 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 912 if (expires > 0LL) { 913 ts->idle_sleeps++; 914 ts->idle_expires = expires; 915 } 916 917 if (!was_stopped && ts->tick_stopped) { 918 ts->idle_jiffies = ts->last_jiffies; 919 nohz_balance_enter_idle(cpu); 920 } 921 } 922 } 923 924 /** 925 * tick_nohz_idle_enter - stop the idle tick from the idle task 926 * 927 * When the next event is more than a tick into the future, stop the idle tick 928 * Called when we start the idle loop. 929 * 930 * The arch is responsible of calling: 931 * 932 * - rcu_idle_enter() after its last use of RCU before the CPU is put 933 * to sleep. 934 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 935 */ 936 void tick_nohz_idle_enter(void) 937 { 938 struct tick_sched *ts; 939 940 lockdep_assert_irqs_enabled(); 941 /* 942 * Update the idle state in the scheduler domain hierarchy 943 * when tick_nohz_stop_sched_tick() is called from the idle loop. 944 * State will be updated to busy during the first busy tick after 945 * exiting idle. 946 */ 947 set_cpu_sd_state_idle(); 948 949 local_irq_disable(); 950 951 ts = this_cpu_ptr(&tick_cpu_sched); 952 ts->inidle = 1; 953 __tick_nohz_idle_enter(ts); 954 955 local_irq_enable(); 956 } 957 958 /** 959 * tick_nohz_irq_exit - update next tick event from interrupt exit 960 * 961 * When an interrupt fires while we are idle and it doesn't cause 962 * a reschedule, it may still add, modify or delete a timer, enqueue 963 * an RCU callback, etc... 964 * So we need to re-calculate and reprogram the next tick event. 965 */ 966 void tick_nohz_irq_exit(void) 967 { 968 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 969 970 if (ts->inidle) 971 __tick_nohz_idle_enter(ts); 972 else 973 tick_nohz_full_update_tick(ts); 974 } 975 976 /** 977 * tick_nohz_get_sleep_length - return the length of the current sleep 978 * 979 * Called from power state control code with interrupts disabled 980 */ 981 ktime_t tick_nohz_get_sleep_length(void) 982 { 983 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 984 985 return ts->sleep_length; 986 } 987 988 /** 989 * tick_nohz_get_idle_calls - return the current idle calls counter value 990 * 991 * Called from the schedutil frequency scaling governor in scheduler context. 992 */ 993 unsigned long tick_nohz_get_idle_calls(void) 994 { 995 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 996 997 return ts->idle_calls; 998 } 999 1000 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1001 { 1002 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1003 unsigned long ticks; 1004 1005 if (vtime_accounting_cpu_enabled()) 1006 return; 1007 /* 1008 * We stopped the tick in idle. Update process times would miss the 1009 * time we slept as update_process_times does only a 1 tick 1010 * accounting. Enforce that this is accounted to idle ! 1011 */ 1012 ticks = jiffies - ts->idle_jiffies; 1013 /* 1014 * We might be one off. Do not randomly account a huge number of ticks! 1015 */ 1016 if (ticks && ticks < LONG_MAX) 1017 account_idle_ticks(ticks); 1018 #endif 1019 } 1020 1021 /** 1022 * tick_nohz_idle_exit - restart the idle tick from the idle task 1023 * 1024 * Restart the idle tick when the CPU is woken up from idle 1025 * This also exit the RCU extended quiescent state. The CPU 1026 * can use RCU again after this function is called. 1027 */ 1028 void tick_nohz_idle_exit(void) 1029 { 1030 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1031 ktime_t now; 1032 1033 local_irq_disable(); 1034 1035 WARN_ON_ONCE(!ts->inidle); 1036 1037 ts->inidle = 0; 1038 1039 if (ts->idle_active || ts->tick_stopped) 1040 now = ktime_get(); 1041 1042 if (ts->idle_active) 1043 tick_nohz_stop_idle(ts, now); 1044 1045 if (ts->tick_stopped) { 1046 tick_nohz_restart_sched_tick(ts, now); 1047 tick_nohz_account_idle_ticks(ts); 1048 } 1049 1050 local_irq_enable(); 1051 } 1052 1053 /* 1054 * The nohz low res interrupt handler 1055 */ 1056 static void tick_nohz_handler(struct clock_event_device *dev) 1057 { 1058 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1059 struct pt_regs *regs = get_irq_regs(); 1060 ktime_t now = ktime_get(); 1061 1062 dev->next_event = KTIME_MAX; 1063 1064 tick_sched_do_timer(now); 1065 tick_sched_handle(ts, regs); 1066 1067 /* No need to reprogram if we are running tickless */ 1068 if (unlikely(ts->tick_stopped)) 1069 return; 1070 1071 hrtimer_forward(&ts->sched_timer, now, tick_period); 1072 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1073 } 1074 1075 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1076 { 1077 if (!tick_nohz_enabled) 1078 return; 1079 ts->nohz_mode = mode; 1080 /* One update is enough */ 1081 if (!test_and_set_bit(0, &tick_nohz_active)) 1082 timers_update_migration(true); 1083 } 1084 1085 /** 1086 * tick_nohz_switch_to_nohz - switch to nohz mode 1087 */ 1088 static void tick_nohz_switch_to_nohz(void) 1089 { 1090 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1091 ktime_t next; 1092 1093 if (!tick_nohz_enabled) 1094 return; 1095 1096 if (tick_switch_to_oneshot(tick_nohz_handler)) 1097 return; 1098 1099 /* 1100 * Recycle the hrtimer in ts, so we can share the 1101 * hrtimer_forward with the highres code. 1102 */ 1103 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1104 /* Get the next period */ 1105 next = tick_init_jiffy_update(); 1106 1107 hrtimer_set_expires(&ts->sched_timer, next); 1108 hrtimer_forward_now(&ts->sched_timer, tick_period); 1109 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1110 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1111 } 1112 1113 static inline void tick_nohz_irq_enter(void) 1114 { 1115 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1116 ktime_t now; 1117 1118 if (!ts->idle_active && !ts->tick_stopped) 1119 return; 1120 now = ktime_get(); 1121 if (ts->idle_active) 1122 tick_nohz_stop_idle(ts, now); 1123 if (ts->tick_stopped) 1124 tick_nohz_update_jiffies(now); 1125 } 1126 1127 #else 1128 1129 static inline void tick_nohz_switch_to_nohz(void) { } 1130 static inline void tick_nohz_irq_enter(void) { } 1131 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1132 1133 #endif /* CONFIG_NO_HZ_COMMON */ 1134 1135 /* 1136 * Called from irq_enter to notify about the possible interruption of idle() 1137 */ 1138 void tick_irq_enter(void) 1139 { 1140 tick_check_oneshot_broadcast_this_cpu(); 1141 tick_nohz_irq_enter(); 1142 } 1143 1144 /* 1145 * High resolution timer specific code 1146 */ 1147 #ifdef CONFIG_HIGH_RES_TIMERS 1148 /* 1149 * We rearm the timer until we get disabled by the idle code. 1150 * Called with interrupts disabled. 1151 */ 1152 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1153 { 1154 struct tick_sched *ts = 1155 container_of(timer, struct tick_sched, sched_timer); 1156 struct pt_regs *regs = get_irq_regs(); 1157 ktime_t now = ktime_get(); 1158 1159 tick_sched_do_timer(now); 1160 1161 /* 1162 * Do not call, when we are not in irq context and have 1163 * no valid regs pointer 1164 */ 1165 if (regs) 1166 tick_sched_handle(ts, regs); 1167 else 1168 ts->next_tick = 0; 1169 1170 /* No need to reprogram if we are in idle or full dynticks mode */ 1171 if (unlikely(ts->tick_stopped)) 1172 return HRTIMER_NORESTART; 1173 1174 hrtimer_forward(timer, now, tick_period); 1175 1176 return HRTIMER_RESTART; 1177 } 1178 1179 static int sched_skew_tick; 1180 1181 static int __init skew_tick(char *str) 1182 { 1183 get_option(&str, &sched_skew_tick); 1184 1185 return 0; 1186 } 1187 early_param("skew_tick", skew_tick); 1188 1189 /** 1190 * tick_setup_sched_timer - setup the tick emulation timer 1191 */ 1192 void tick_setup_sched_timer(void) 1193 { 1194 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1195 ktime_t now = ktime_get(); 1196 1197 /* 1198 * Emulate tick processing via per-CPU hrtimers: 1199 */ 1200 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1201 ts->sched_timer.function = tick_sched_timer; 1202 1203 /* Get the next period (per-CPU) */ 1204 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1205 1206 /* Offset the tick to avert jiffies_lock contention. */ 1207 if (sched_skew_tick) { 1208 u64 offset = ktime_to_ns(tick_period) >> 1; 1209 do_div(offset, num_possible_cpus()); 1210 offset *= smp_processor_id(); 1211 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1212 } 1213 1214 hrtimer_forward(&ts->sched_timer, now, tick_period); 1215 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1216 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1217 } 1218 #endif /* HIGH_RES_TIMERS */ 1219 1220 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1221 void tick_cancel_sched_timer(int cpu) 1222 { 1223 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1224 1225 # ifdef CONFIG_HIGH_RES_TIMERS 1226 if (ts->sched_timer.base) 1227 hrtimer_cancel(&ts->sched_timer); 1228 # endif 1229 1230 memset(ts, 0, sizeof(*ts)); 1231 } 1232 #endif 1233 1234 /** 1235 * Async notification about clocksource changes 1236 */ 1237 void tick_clock_notify(void) 1238 { 1239 int cpu; 1240 1241 for_each_possible_cpu(cpu) 1242 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1243 } 1244 1245 /* 1246 * Async notification about clock event changes 1247 */ 1248 void tick_oneshot_notify(void) 1249 { 1250 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1251 1252 set_bit(0, &ts->check_clocks); 1253 } 1254 1255 /** 1256 * Check, if a change happened, which makes oneshot possible. 1257 * 1258 * Called cyclic from the hrtimer softirq (driven by the timer 1259 * softirq) allow_nohz signals, that we can switch into low-res nohz 1260 * mode, because high resolution timers are disabled (either compile 1261 * or runtime). Called with interrupts disabled. 1262 */ 1263 int tick_check_oneshot_change(int allow_nohz) 1264 { 1265 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1266 1267 if (!test_and_clear_bit(0, &ts->check_clocks)) 1268 return 0; 1269 1270 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1271 return 0; 1272 1273 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1274 return 0; 1275 1276 if (!allow_nohz) 1277 return 1; 1278 1279 tick_nohz_switch_to_nohz(); 1280 return 0; 1281 } 1282