1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/tick.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* Reevalute with xtime_lock held */ 52 write_seqlock(&xtime_lock); 53 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 >= tick_period.tv64) { 56 57 delta = ktime_sub(delta, tick_period); 58 last_jiffies_update = ktime_add(last_jiffies_update, 59 tick_period); 60 61 /* Slow path for long timeouts */ 62 if (unlikely(delta.tv64 >= tick_period.tv64)) { 63 s64 incr = ktime_to_ns(tick_period); 64 65 ticks = ktime_divns(delta, incr); 66 67 last_jiffies_update = ktime_add_ns(last_jiffies_update, 68 incr * ticks); 69 } 70 do_timer(++ticks); 71 } 72 write_sequnlock(&xtime_lock); 73 } 74 75 /* 76 * Initialize and return retrieve the jiffies update. 77 */ 78 static ktime_t tick_init_jiffy_update(void) 79 { 80 ktime_t period; 81 82 write_seqlock(&xtime_lock); 83 /* Did we start the jiffies update yet ? */ 84 if (last_jiffies_update.tv64 == 0) 85 last_jiffies_update = tick_next_period; 86 period = last_jiffies_update; 87 write_sequnlock(&xtime_lock); 88 return period; 89 } 90 91 /* 92 * NOHZ - aka dynamic tick functionality 93 */ 94 #ifdef CONFIG_NO_HZ 95 /* 96 * NO HZ enabled ? 97 */ 98 static int tick_nohz_enabled __read_mostly = 1; 99 100 /* 101 * Enable / Disable tickless mode 102 */ 103 static int __init setup_tick_nohz(char *str) 104 { 105 if (!strcmp(str, "off")) 106 tick_nohz_enabled = 0; 107 else if (!strcmp(str, "on")) 108 tick_nohz_enabled = 1; 109 else 110 return 0; 111 return 1; 112 } 113 114 __setup("nohz=", setup_tick_nohz); 115 116 /** 117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 118 * 119 * Called from interrupt entry when the CPU was idle 120 * 121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 122 * must be updated. Otherwise an interrupt handler could use a stale jiffy 123 * value. We do this unconditionally on any cpu, as we don't know whether the 124 * cpu, which has the update task assigned is in a long sleep. 125 */ 126 void tick_nohz_update_jiffies(void) 127 { 128 int cpu = smp_processor_id(); 129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 130 unsigned long flags; 131 ktime_t now; 132 133 if (!ts->tick_stopped) 134 return; 135 136 cpu_clear(cpu, nohz_cpu_mask); 137 now = ktime_get(); 138 139 local_irq_save(flags); 140 tick_do_update_jiffies64(now); 141 local_irq_restore(flags); 142 } 143 144 /** 145 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 146 * 147 * When the next event is more than a tick into the future, stop the idle tick 148 * Called either from the idle loop or from irq_exit() when an idle period was 149 * just interrupted by an interrupt which did not cause a reschedule. 150 */ 151 void tick_nohz_stop_sched_tick(void) 152 { 153 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 154 struct tick_sched *ts; 155 ktime_t last_update, expires, now, delta; 156 int cpu; 157 158 local_irq_save(flags); 159 160 cpu = smp_processor_id(); 161 ts = &per_cpu(tick_cpu_sched, cpu); 162 163 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 164 goto end; 165 166 if (need_resched()) 167 goto end; 168 169 cpu = smp_processor_id(); 170 if (unlikely(local_softirq_pending())) { 171 static int ratelimit; 172 173 if (ratelimit < 10) { 174 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 175 local_softirq_pending()); 176 ratelimit++; 177 } 178 } 179 180 now = ktime_get(); 181 /* 182 * When called from irq_exit we need to account the idle sleep time 183 * correctly. 184 */ 185 if (ts->tick_stopped) { 186 delta = ktime_sub(now, ts->idle_entrytime); 187 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 188 } 189 190 ts->idle_entrytime = now; 191 ts->idle_calls++; 192 193 /* Read jiffies and the time when jiffies were updated last */ 194 do { 195 seq = read_seqbegin(&xtime_lock); 196 last_update = last_jiffies_update; 197 last_jiffies = jiffies; 198 } while (read_seqretry(&xtime_lock, seq)); 199 200 /* Get the next timer wheel timer */ 201 next_jiffies = get_next_timer_interrupt(last_jiffies); 202 delta_jiffies = next_jiffies - last_jiffies; 203 204 if (rcu_needs_cpu(cpu)) 205 delta_jiffies = 1; 206 /* 207 * Do not stop the tick, if we are only one off 208 * or if the cpu is required for rcu 209 */ 210 if (!ts->tick_stopped && delta_jiffies == 1) 211 goto out; 212 213 /* Schedule the tick, if we are at least one jiffie off */ 214 if ((long)delta_jiffies >= 1) { 215 216 if (delta_jiffies > 1) 217 cpu_set(cpu, nohz_cpu_mask); 218 /* 219 * nohz_stop_sched_tick can be called several times before 220 * the nohz_restart_sched_tick is called. This happens when 221 * interrupts arrive which do not cause a reschedule. In the 222 * first call we save the current tick time, so we can restart 223 * the scheduler tick in nohz_restart_sched_tick. 224 */ 225 if (!ts->tick_stopped) { 226 if (select_nohz_load_balancer(1)) { 227 /* 228 * sched tick not stopped! 229 */ 230 cpu_clear(cpu, nohz_cpu_mask); 231 goto out; 232 } 233 234 ts->idle_tick = ts->sched_timer.expires; 235 ts->tick_stopped = 1; 236 ts->idle_jiffies = last_jiffies; 237 } 238 239 /* 240 * If this cpu is the one which updates jiffies, then 241 * give up the assignment and let it be taken by the 242 * cpu which runs the tick timer next, which might be 243 * this cpu as well. If we don't drop this here the 244 * jiffies might be stale and do_timer() never 245 * invoked. 246 */ 247 if (cpu == tick_do_timer_cpu) 248 tick_do_timer_cpu = -1; 249 250 ts->idle_sleeps++; 251 252 /* 253 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that 254 * there is no timer pending or at least extremly far 255 * into the future (12 days for HZ=1000). In this case 256 * we simply stop the tick timer: 257 */ 258 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { 259 ts->idle_expires.tv64 = KTIME_MAX; 260 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 261 hrtimer_cancel(&ts->sched_timer); 262 goto out; 263 } 264 265 /* 266 * calculate the expiry time for the next timer wheel 267 * timer 268 */ 269 expires = ktime_add_ns(last_update, tick_period.tv64 * 270 delta_jiffies); 271 ts->idle_expires = expires; 272 273 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 274 hrtimer_start(&ts->sched_timer, expires, 275 HRTIMER_MODE_ABS); 276 /* Check, if the timer was already in the past */ 277 if (hrtimer_active(&ts->sched_timer)) 278 goto out; 279 } else if(!tick_program_event(expires, 0)) 280 goto out; 281 /* 282 * We are past the event already. So we crossed a 283 * jiffie boundary. Update jiffies and raise the 284 * softirq. 285 */ 286 tick_do_update_jiffies64(ktime_get()); 287 cpu_clear(cpu, nohz_cpu_mask); 288 } 289 raise_softirq_irqoff(TIMER_SOFTIRQ); 290 out: 291 ts->next_jiffies = next_jiffies; 292 ts->last_jiffies = last_jiffies; 293 end: 294 local_irq_restore(flags); 295 } 296 297 /** 298 * nohz_restart_sched_tick - restart the idle tick from the idle task 299 * 300 * Restart the idle tick when the CPU is woken up from idle 301 */ 302 void tick_nohz_restart_sched_tick(void) 303 { 304 int cpu = smp_processor_id(); 305 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 306 unsigned long ticks; 307 ktime_t now, delta; 308 309 if (!ts->tick_stopped) 310 return; 311 312 /* Update jiffies first */ 313 now = ktime_get(); 314 315 local_irq_disable(); 316 select_nohz_load_balancer(0); 317 tick_do_update_jiffies64(now); 318 cpu_clear(cpu, nohz_cpu_mask); 319 320 /* Account the idle time */ 321 delta = ktime_sub(now, ts->idle_entrytime); 322 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 323 324 /* 325 * We stopped the tick in idle. Update process times would miss the 326 * time we slept as update_process_times does only a 1 tick 327 * accounting. Enforce that this is accounted to idle ! 328 */ 329 ticks = jiffies - ts->idle_jiffies; 330 /* 331 * We might be one off. Do not randomly account a huge number of ticks! 332 */ 333 if (ticks && ticks < LONG_MAX) { 334 add_preempt_count(HARDIRQ_OFFSET); 335 account_system_time(current, HARDIRQ_OFFSET, 336 jiffies_to_cputime(ticks)); 337 sub_preempt_count(HARDIRQ_OFFSET); 338 } 339 340 /* 341 * Cancel the scheduled timer and restore the tick 342 */ 343 ts->tick_stopped = 0; 344 hrtimer_cancel(&ts->sched_timer); 345 ts->sched_timer.expires = ts->idle_tick; 346 347 while (1) { 348 /* Forward the time to expire in the future */ 349 hrtimer_forward(&ts->sched_timer, now, tick_period); 350 351 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 352 hrtimer_start(&ts->sched_timer, 353 ts->sched_timer.expires, 354 HRTIMER_MODE_ABS); 355 /* Check, if the timer was already in the past */ 356 if (hrtimer_active(&ts->sched_timer)) 357 break; 358 } else { 359 if (!tick_program_event(ts->sched_timer.expires, 0)) 360 break; 361 } 362 /* Update jiffies and reread time */ 363 tick_do_update_jiffies64(now); 364 now = ktime_get(); 365 } 366 local_irq_enable(); 367 } 368 369 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 370 { 371 hrtimer_forward(&ts->sched_timer, now, tick_period); 372 return tick_program_event(ts->sched_timer.expires, 0); 373 } 374 375 /* 376 * The nohz low res interrupt handler 377 */ 378 static void tick_nohz_handler(struct clock_event_device *dev) 379 { 380 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 381 struct pt_regs *regs = get_irq_regs(); 382 int cpu = smp_processor_id(); 383 ktime_t now = ktime_get(); 384 385 dev->next_event.tv64 = KTIME_MAX; 386 387 /* 388 * Check if the do_timer duty was dropped. We don't care about 389 * concurrency: This happens only when the cpu in charge went 390 * into a long sleep. If two cpus happen to assign themself to 391 * this duty, then the jiffies update is still serialized by 392 * xtime_lock. 393 */ 394 if (unlikely(tick_do_timer_cpu == -1)) 395 tick_do_timer_cpu = cpu; 396 397 /* Check, if the jiffies need an update */ 398 if (tick_do_timer_cpu == cpu) 399 tick_do_update_jiffies64(now); 400 401 /* 402 * When we are idle and the tick is stopped, we have to touch 403 * the watchdog as we might not schedule for a really long 404 * time. This happens on complete idle SMP systems while 405 * waiting on the login prompt. We also increment the "start 406 * of idle" jiffy stamp so the idle accounting adjustment we 407 * do when we go busy again does not account too much ticks. 408 */ 409 if (ts->tick_stopped) { 410 touch_softlockup_watchdog(); 411 ts->idle_jiffies++; 412 } 413 414 update_process_times(user_mode(regs)); 415 profile_tick(CPU_PROFILING); 416 417 /* Do not restart, when we are in the idle loop */ 418 if (ts->tick_stopped) 419 return; 420 421 while (tick_nohz_reprogram(ts, now)) { 422 now = ktime_get(); 423 tick_do_update_jiffies64(now); 424 } 425 } 426 427 /** 428 * tick_nohz_switch_to_nohz - switch to nohz mode 429 */ 430 static void tick_nohz_switch_to_nohz(void) 431 { 432 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 433 ktime_t next; 434 435 if (!tick_nohz_enabled) 436 return; 437 438 local_irq_disable(); 439 if (tick_switch_to_oneshot(tick_nohz_handler)) { 440 local_irq_enable(); 441 return; 442 } 443 444 ts->nohz_mode = NOHZ_MODE_LOWRES; 445 446 /* 447 * Recycle the hrtimer in ts, so we can share the 448 * hrtimer_forward with the highres code. 449 */ 450 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 451 /* Get the next period */ 452 next = tick_init_jiffy_update(); 453 454 for (;;) { 455 ts->sched_timer.expires = next; 456 if (!tick_program_event(next, 0)) 457 break; 458 next = ktime_add(next, tick_period); 459 } 460 local_irq_enable(); 461 462 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", 463 smp_processor_id()); 464 } 465 466 #else 467 468 static inline void tick_nohz_switch_to_nohz(void) { } 469 470 #endif /* NO_HZ */ 471 472 /* 473 * High resolution timer specific code 474 */ 475 #ifdef CONFIG_HIGH_RES_TIMERS 476 /* 477 * We rearm the timer until we get disabled by the idle code 478 * Called with interrupts disabled and timer->base->cpu_base->lock held. 479 */ 480 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 481 { 482 struct tick_sched *ts = 483 container_of(timer, struct tick_sched, sched_timer); 484 struct hrtimer_cpu_base *base = timer->base->cpu_base; 485 struct pt_regs *regs = get_irq_regs(); 486 ktime_t now = ktime_get(); 487 int cpu = smp_processor_id(); 488 489 #ifdef CONFIG_NO_HZ 490 /* 491 * Check if the do_timer duty was dropped. We don't care about 492 * concurrency: This happens only when the cpu in charge went 493 * into a long sleep. If two cpus happen to assign themself to 494 * this duty, then the jiffies update is still serialized by 495 * xtime_lock. 496 */ 497 if (unlikely(tick_do_timer_cpu == -1)) 498 tick_do_timer_cpu = cpu; 499 #endif 500 501 /* Check, if the jiffies need an update */ 502 if (tick_do_timer_cpu == cpu) 503 tick_do_update_jiffies64(now); 504 505 /* 506 * Do not call, when we are not in irq context and have 507 * no valid regs pointer 508 */ 509 if (regs) { 510 /* 511 * When we are idle and the tick is stopped, we have to touch 512 * the watchdog as we might not schedule for a really long 513 * time. This happens on complete idle SMP systems while 514 * waiting on the login prompt. We also increment the "start of 515 * idle" jiffy stamp so the idle accounting adjustment we do 516 * when we go busy again does not account too much ticks. 517 */ 518 if (ts->tick_stopped) { 519 touch_softlockup_watchdog(); 520 ts->idle_jiffies++; 521 } 522 /* 523 * update_process_times() might take tasklist_lock, hence 524 * drop the base lock. sched-tick hrtimers are per-CPU and 525 * never accessible by userspace APIs, so this is safe to do. 526 */ 527 spin_unlock(&base->lock); 528 update_process_times(user_mode(regs)); 529 profile_tick(CPU_PROFILING); 530 spin_lock(&base->lock); 531 } 532 533 /* Do not restart, when we are in the idle loop */ 534 if (ts->tick_stopped) 535 return HRTIMER_NORESTART; 536 537 hrtimer_forward(timer, now, tick_period); 538 539 return HRTIMER_RESTART; 540 } 541 542 /** 543 * tick_setup_sched_timer - setup the tick emulation timer 544 */ 545 void tick_setup_sched_timer(void) 546 { 547 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 548 ktime_t now = ktime_get(); 549 550 /* 551 * Emulate tick processing via per-CPU hrtimers: 552 */ 553 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 554 ts->sched_timer.function = tick_sched_timer; 555 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; 556 557 /* Get the next period */ 558 ts->sched_timer.expires = tick_init_jiffy_update(); 559 560 for (;;) { 561 hrtimer_forward(&ts->sched_timer, now, tick_period); 562 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, 563 HRTIMER_MODE_ABS); 564 /* Check, if the timer was already in the past */ 565 if (hrtimer_active(&ts->sched_timer)) 566 break; 567 now = ktime_get(); 568 } 569 570 #ifdef CONFIG_NO_HZ 571 if (tick_nohz_enabled) 572 ts->nohz_mode = NOHZ_MODE_HIGHRES; 573 #endif 574 } 575 576 void tick_cancel_sched_timer(int cpu) 577 { 578 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 579 580 if (ts->sched_timer.base) 581 hrtimer_cancel(&ts->sched_timer); 582 ts->tick_stopped = 0; 583 ts->nohz_mode = NOHZ_MODE_INACTIVE; 584 } 585 #endif /* HIGH_RES_TIMERS */ 586 587 /** 588 * Async notification about clocksource changes 589 */ 590 void tick_clock_notify(void) 591 { 592 int cpu; 593 594 for_each_possible_cpu(cpu) 595 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 596 } 597 598 /* 599 * Async notification about clock event changes 600 */ 601 void tick_oneshot_notify(void) 602 { 603 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 604 605 set_bit(0, &ts->check_clocks); 606 } 607 608 /** 609 * Check, if a change happened, which makes oneshot possible. 610 * 611 * Called cyclic from the hrtimer softirq (driven by the timer 612 * softirq) allow_nohz signals, that we can switch into low-res nohz 613 * mode, because high resolution timers are disabled (either compile 614 * or runtime). 615 */ 616 int tick_check_oneshot_change(int allow_nohz) 617 { 618 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 619 620 if (!test_and_clear_bit(0, &ts->check_clocks)) 621 return 0; 622 623 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 624 return 0; 625 626 if (!timekeeping_is_continuous() || !tick_is_oneshot_available()) 627 return 0; 628 629 if (!allow_nohz) 630 return 1; 631 632 tick_nohz_switch_to_nohz(); 633 return 0; 634 } 635