xref: /openbmc/linux/kernel/time/tick-sched.c (revision 643d1f7f)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	touch_softlockup_watchdog();
137 
138 	cpu_clear(cpu, nohz_cpu_mask);
139 	now = ktime_get();
140 	ts->idle_waketime = now;
141 
142 	local_irq_save(flags);
143 	tick_do_update_jiffies64(now);
144 	local_irq_restore(flags);
145 }
146 
147 void tick_nohz_stop_idle(int cpu)
148 {
149 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150 
151 	if (ts->idle_active) {
152 		ktime_t now, delta;
153 		now = ktime_get();
154 		delta = ktime_sub(now, ts->idle_entrytime);
155 		ts->idle_lastupdate = now;
156 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 		ts->idle_active = 0;
158 	}
159 }
160 
161 static ktime_t tick_nohz_start_idle(int cpu)
162 {
163 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
164 	ktime_t now, delta;
165 
166 	now = ktime_get();
167 	if (ts->idle_active) {
168 		delta = ktime_sub(now, ts->idle_entrytime);
169 		ts->idle_lastupdate = now;
170 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
171 	}
172 	ts->idle_entrytime = now;
173 	ts->idle_active = 1;
174 	return now;
175 }
176 
177 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
178 {
179 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
180 
181 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
182 	return ktime_to_us(ts->idle_sleeptime);
183 }
184 
185 /**
186  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
187  *
188  * When the next event is more than a tick into the future, stop the idle tick
189  * Called either from the idle loop or from irq_exit() when an idle period was
190  * just interrupted by an interrupt which did not cause a reschedule.
191  */
192 void tick_nohz_stop_sched_tick(void)
193 {
194 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
195 	unsigned long rt_jiffies;
196 	struct tick_sched *ts;
197 	ktime_t last_update, expires, now;
198 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
199 	int cpu;
200 
201 	local_irq_save(flags);
202 
203 	cpu = smp_processor_id();
204 	now = tick_nohz_start_idle(cpu);
205 	ts = &per_cpu(tick_cpu_sched, cpu);
206 
207 	/*
208 	 * If this cpu is offline and it is the one which updates
209 	 * jiffies, then give up the assignment and let it be taken by
210 	 * the cpu which runs the tick timer next. If we don't drop
211 	 * this here the jiffies might be stale and do_timer() never
212 	 * invoked.
213 	 */
214 	if (unlikely(!cpu_online(cpu))) {
215 		if (cpu == tick_do_timer_cpu)
216 			tick_do_timer_cpu = -1;
217 	}
218 
219 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
220 		goto end;
221 
222 	if (need_resched())
223 		goto end;
224 
225 	cpu = smp_processor_id();
226 	if (unlikely(local_softirq_pending())) {
227 		static int ratelimit;
228 
229 		if (ratelimit < 10) {
230 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
231 			       local_softirq_pending());
232 			ratelimit++;
233 		}
234 	}
235 
236 	ts->idle_calls++;
237 	/* Read jiffies and the time when jiffies were updated last */
238 	do {
239 		seq = read_seqbegin(&xtime_lock);
240 		last_update = last_jiffies_update;
241 		last_jiffies = jiffies;
242 	} while (read_seqretry(&xtime_lock, seq));
243 
244 	/* Get the next timer wheel timer */
245 	next_jiffies = get_next_timer_interrupt(last_jiffies);
246 	delta_jiffies = next_jiffies - last_jiffies;
247 
248 	rt_jiffies = rt_needs_cpu(cpu);
249 	if (rt_jiffies && rt_jiffies < delta_jiffies)
250 		delta_jiffies = rt_jiffies;
251 
252 	if (rcu_needs_cpu(cpu))
253 		delta_jiffies = 1;
254 	/*
255 	 * Do not stop the tick, if we are only one off
256 	 * or if the cpu is required for rcu
257 	 */
258 	if (!ts->tick_stopped && delta_jiffies == 1)
259 		goto out;
260 
261 	/* Schedule the tick, if we are at least one jiffie off */
262 	if ((long)delta_jiffies >= 1) {
263 
264 		if (delta_jiffies > 1)
265 			cpu_set(cpu, nohz_cpu_mask);
266 		/*
267 		 * nohz_stop_sched_tick can be called several times before
268 		 * the nohz_restart_sched_tick is called. This happens when
269 		 * interrupts arrive which do not cause a reschedule. In the
270 		 * first call we save the current tick time, so we can restart
271 		 * the scheduler tick in nohz_restart_sched_tick.
272 		 */
273 		if (!ts->tick_stopped) {
274 			if (select_nohz_load_balancer(1)) {
275 				/*
276 				 * sched tick not stopped!
277 				 */
278 				cpu_clear(cpu, nohz_cpu_mask);
279 				goto out;
280 			}
281 
282 			ts->idle_tick = ts->sched_timer.expires;
283 			ts->tick_stopped = 1;
284 			ts->idle_jiffies = last_jiffies;
285 		}
286 
287 		/*
288 		 * If this cpu is the one which updates jiffies, then
289 		 * give up the assignment and let it be taken by the
290 		 * cpu which runs the tick timer next, which might be
291 		 * this cpu as well. If we don't drop this here the
292 		 * jiffies might be stale and do_timer() never
293 		 * invoked.
294 		 */
295 		if (cpu == tick_do_timer_cpu)
296 			tick_do_timer_cpu = -1;
297 
298 		ts->idle_sleeps++;
299 
300 		/*
301 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
302 		 * there is no timer pending or at least extremly far
303 		 * into the future (12 days for HZ=1000). In this case
304 		 * we simply stop the tick timer:
305 		 */
306 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
307 			ts->idle_expires.tv64 = KTIME_MAX;
308 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
309 				hrtimer_cancel(&ts->sched_timer);
310 			goto out;
311 		}
312 
313 		/*
314 		 * calculate the expiry time for the next timer wheel
315 		 * timer
316 		 */
317 		expires = ktime_add_ns(last_update, tick_period.tv64 *
318 				       delta_jiffies);
319 		ts->idle_expires = expires;
320 
321 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
322 			hrtimer_start(&ts->sched_timer, expires,
323 				      HRTIMER_MODE_ABS);
324 			/* Check, if the timer was already in the past */
325 			if (hrtimer_active(&ts->sched_timer))
326 				goto out;
327 		} else if (!tick_program_event(expires, 0))
328 				goto out;
329 		/*
330 		 * We are past the event already. So we crossed a
331 		 * jiffie boundary. Update jiffies and raise the
332 		 * softirq.
333 		 */
334 		tick_do_update_jiffies64(ktime_get());
335 		cpu_clear(cpu, nohz_cpu_mask);
336 	}
337 	raise_softirq_irqoff(TIMER_SOFTIRQ);
338 out:
339 	ts->next_jiffies = next_jiffies;
340 	ts->last_jiffies = last_jiffies;
341 	ts->sleep_length = ktime_sub(dev->next_event, now);
342 end:
343 	local_irq_restore(flags);
344 }
345 
346 /**
347  * tick_nohz_get_sleep_length - return the length of the current sleep
348  *
349  * Called from power state control code with interrupts disabled
350  */
351 ktime_t tick_nohz_get_sleep_length(void)
352 {
353 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
354 
355 	return ts->sleep_length;
356 }
357 
358 /**
359  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
360  *
361  * Restart the idle tick when the CPU is woken up from idle
362  */
363 void tick_nohz_restart_sched_tick(void)
364 {
365 	int cpu = smp_processor_id();
366 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
367 	unsigned long ticks;
368 	ktime_t now;
369 
370 	local_irq_disable();
371 	tick_nohz_stop_idle(cpu);
372 
373 	if (!ts->tick_stopped) {
374 		local_irq_enable();
375 		return;
376 	}
377 
378 	/* Update jiffies first */
379 	select_nohz_load_balancer(0);
380 	now = ktime_get();
381 	tick_do_update_jiffies64(now);
382 	cpu_clear(cpu, nohz_cpu_mask);
383 
384 	/*
385 	 * We stopped the tick in idle. Update process times would miss the
386 	 * time we slept as update_process_times does only a 1 tick
387 	 * accounting. Enforce that this is accounted to idle !
388 	 */
389 	ticks = jiffies - ts->idle_jiffies;
390 	/*
391 	 * We might be one off. Do not randomly account a huge number of ticks!
392 	 */
393 	if (ticks && ticks < LONG_MAX) {
394 		add_preempt_count(HARDIRQ_OFFSET);
395 		account_system_time(current, HARDIRQ_OFFSET,
396 				    jiffies_to_cputime(ticks));
397 		sub_preempt_count(HARDIRQ_OFFSET);
398 	}
399 
400 	/*
401 	 * Cancel the scheduled timer and restore the tick
402 	 */
403 	ts->tick_stopped  = 0;
404 	ts->idle_exittime = now;
405 	hrtimer_cancel(&ts->sched_timer);
406 	ts->sched_timer.expires = ts->idle_tick;
407 
408 	while (1) {
409 		/* Forward the time to expire in the future */
410 		hrtimer_forward(&ts->sched_timer, now, tick_period);
411 
412 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
413 			hrtimer_start(&ts->sched_timer,
414 				      ts->sched_timer.expires,
415 				      HRTIMER_MODE_ABS);
416 			/* Check, if the timer was already in the past */
417 			if (hrtimer_active(&ts->sched_timer))
418 				break;
419 		} else {
420 			if (!tick_program_event(ts->sched_timer.expires, 0))
421 				break;
422 		}
423 		/* Update jiffies and reread time */
424 		tick_do_update_jiffies64(now);
425 		now = ktime_get();
426 	}
427 	local_irq_enable();
428 }
429 
430 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
431 {
432 	hrtimer_forward(&ts->sched_timer, now, tick_period);
433 	return tick_program_event(ts->sched_timer.expires, 0);
434 }
435 
436 /*
437  * The nohz low res interrupt handler
438  */
439 static void tick_nohz_handler(struct clock_event_device *dev)
440 {
441 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
442 	struct pt_regs *regs = get_irq_regs();
443 	int cpu = smp_processor_id();
444 	ktime_t now = ktime_get();
445 
446 	dev->next_event.tv64 = KTIME_MAX;
447 
448 	/*
449 	 * Check if the do_timer duty was dropped. We don't care about
450 	 * concurrency: This happens only when the cpu in charge went
451 	 * into a long sleep. If two cpus happen to assign themself to
452 	 * this duty, then the jiffies update is still serialized by
453 	 * xtime_lock.
454 	 */
455 	if (unlikely(tick_do_timer_cpu == -1))
456 		tick_do_timer_cpu = cpu;
457 
458 	/* Check, if the jiffies need an update */
459 	if (tick_do_timer_cpu == cpu)
460 		tick_do_update_jiffies64(now);
461 
462 	/*
463 	 * When we are idle and the tick is stopped, we have to touch
464 	 * the watchdog as we might not schedule for a really long
465 	 * time. This happens on complete idle SMP systems while
466 	 * waiting on the login prompt. We also increment the "start
467 	 * of idle" jiffy stamp so the idle accounting adjustment we
468 	 * do when we go busy again does not account too much ticks.
469 	 */
470 	if (ts->tick_stopped) {
471 		touch_softlockup_watchdog();
472 		ts->idle_jiffies++;
473 	}
474 
475 	update_process_times(user_mode(regs));
476 	profile_tick(CPU_PROFILING);
477 
478 	/* Do not restart, when we are in the idle loop */
479 	if (ts->tick_stopped)
480 		return;
481 
482 	while (tick_nohz_reprogram(ts, now)) {
483 		now = ktime_get();
484 		tick_do_update_jiffies64(now);
485 	}
486 }
487 
488 /**
489  * tick_nohz_switch_to_nohz - switch to nohz mode
490  */
491 static void tick_nohz_switch_to_nohz(void)
492 {
493 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
494 	ktime_t next;
495 
496 	if (!tick_nohz_enabled)
497 		return;
498 
499 	local_irq_disable();
500 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
501 		local_irq_enable();
502 		return;
503 	}
504 
505 	ts->nohz_mode = NOHZ_MODE_LOWRES;
506 
507 	/*
508 	 * Recycle the hrtimer in ts, so we can share the
509 	 * hrtimer_forward with the highres code.
510 	 */
511 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
512 	/* Get the next period */
513 	next = tick_init_jiffy_update();
514 
515 	for (;;) {
516 		ts->sched_timer.expires = next;
517 		if (!tick_program_event(next, 0))
518 			break;
519 		next = ktime_add(next, tick_period);
520 	}
521 	local_irq_enable();
522 
523 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
524 	       smp_processor_id());
525 }
526 
527 #else
528 
529 static inline void tick_nohz_switch_to_nohz(void) { }
530 
531 #endif /* NO_HZ */
532 
533 /*
534  * High resolution timer specific code
535  */
536 #ifdef CONFIG_HIGH_RES_TIMERS
537 /*
538  * We rearm the timer until we get disabled by the idle code.
539  * Called with interrupts disabled and timer->base->cpu_base->lock held.
540  */
541 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
542 {
543 	struct tick_sched *ts =
544 		container_of(timer, struct tick_sched, sched_timer);
545 	struct pt_regs *regs = get_irq_regs();
546 	ktime_t now = ktime_get();
547 	int cpu = smp_processor_id();
548 
549 #ifdef CONFIG_NO_HZ
550 	/*
551 	 * Check if the do_timer duty was dropped. We don't care about
552 	 * concurrency: This happens only when the cpu in charge went
553 	 * into a long sleep. If two cpus happen to assign themself to
554 	 * this duty, then the jiffies update is still serialized by
555 	 * xtime_lock.
556 	 */
557 	if (unlikely(tick_do_timer_cpu == -1))
558 		tick_do_timer_cpu = cpu;
559 #endif
560 
561 	/* Check, if the jiffies need an update */
562 	if (tick_do_timer_cpu == cpu)
563 		tick_do_update_jiffies64(now);
564 
565 	/*
566 	 * Do not call, when we are not in irq context and have
567 	 * no valid regs pointer
568 	 */
569 	if (regs) {
570 		/*
571 		 * When we are idle and the tick is stopped, we have to touch
572 		 * the watchdog as we might not schedule for a really long
573 		 * time. This happens on complete idle SMP systems while
574 		 * waiting on the login prompt. We also increment the "start of
575 		 * idle" jiffy stamp so the idle accounting adjustment we do
576 		 * when we go busy again does not account too much ticks.
577 		 */
578 		if (ts->tick_stopped) {
579 			touch_softlockup_watchdog();
580 			ts->idle_jiffies++;
581 		}
582 		update_process_times(user_mode(regs));
583 		profile_tick(CPU_PROFILING);
584 	}
585 
586 	/* Do not restart, when we are in the idle loop */
587 	if (ts->tick_stopped)
588 		return HRTIMER_NORESTART;
589 
590 	hrtimer_forward(timer, now, tick_period);
591 
592 	return HRTIMER_RESTART;
593 }
594 
595 /**
596  * tick_setup_sched_timer - setup the tick emulation timer
597  */
598 void tick_setup_sched_timer(void)
599 {
600 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
601 	ktime_t now = ktime_get();
602 	u64 offset;
603 
604 	/*
605 	 * Emulate tick processing via per-CPU hrtimers:
606 	 */
607 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
608 	ts->sched_timer.function = tick_sched_timer;
609 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
610 
611 	/* Get the next period (per cpu) */
612 	ts->sched_timer.expires = tick_init_jiffy_update();
613 	offset = ktime_to_ns(tick_period) >> 1;
614 	do_div(offset, num_possible_cpus());
615 	offset *= smp_processor_id();
616 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
617 
618 	for (;;) {
619 		hrtimer_forward(&ts->sched_timer, now, tick_period);
620 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
621 			      HRTIMER_MODE_ABS);
622 		/* Check, if the timer was already in the past */
623 		if (hrtimer_active(&ts->sched_timer))
624 			break;
625 		now = ktime_get();
626 	}
627 
628 #ifdef CONFIG_NO_HZ
629 	if (tick_nohz_enabled)
630 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
631 #endif
632 }
633 
634 void tick_cancel_sched_timer(int cpu)
635 {
636 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
637 
638 	if (ts->sched_timer.base)
639 		hrtimer_cancel(&ts->sched_timer);
640 	ts->tick_stopped = 0;
641 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
642 }
643 #endif /* HIGH_RES_TIMERS */
644 
645 /**
646  * Async notification about clocksource changes
647  */
648 void tick_clock_notify(void)
649 {
650 	int cpu;
651 
652 	for_each_possible_cpu(cpu)
653 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
654 }
655 
656 /*
657  * Async notification about clock event changes
658  */
659 void tick_oneshot_notify(void)
660 {
661 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
662 
663 	set_bit(0, &ts->check_clocks);
664 }
665 
666 /**
667  * Check, if a change happened, which makes oneshot possible.
668  *
669  * Called cyclic from the hrtimer softirq (driven by the timer
670  * softirq) allow_nohz signals, that we can switch into low-res nohz
671  * mode, because high resolution timers are disabled (either compile
672  * or runtime).
673  */
674 int tick_check_oneshot_change(int allow_nohz)
675 {
676 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
677 
678 	if (!test_and_clear_bit(0, &ts->check_clocks))
679 		return 0;
680 
681 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
682 		return 0;
683 
684 	if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
685 		return 0;
686 
687 	if (!allow_nohz)
688 		return 1;
689 
690 	tick_nohz_switch_to_nohz();
691 	return 0;
692 }
693