xref: /openbmc/linux/kernel/time/tick-sched.c (revision 62cf20b3)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now = ktime_get();
186 
187 	ts->idle_entrytime = now;
188 	ts->idle_active = 1;
189 	sched_clock_idle_sleep_event();
190 	return now;
191 }
192 
193 /**
194  * get_cpu_idle_time_us - get the total idle time of a cpu
195  * @cpu: CPU number to query
196  * @last_update_time: variable to store update time in. Do not update
197  * counters if NULL.
198  *
199  * Return the cummulative idle time (since boot) for a given
200  * CPU, in microseconds.
201  *
202  * This time is measured via accounting rather than sampling,
203  * and is as accurate as ktime_get() is.
204  *
205  * This function returns -1 if NOHZ is not enabled.
206  */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 	ktime_t now, idle;
211 
212 	if (!tick_nohz_enabled)
213 		return -1;
214 
215 	now = ktime_get();
216 	if (last_update_time) {
217 		update_ts_time_stats(cpu, ts, now, last_update_time);
218 		idle = ts->idle_sleeptime;
219 	} else {
220 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222 
223 			idle = ktime_add(ts->idle_sleeptime, delta);
224 		} else {
225 			idle = ts->idle_sleeptime;
226 		}
227 	}
228 
229 	return ktime_to_us(idle);
230 
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233 
234 /**
235  * get_cpu_iowait_time_us - get the total iowait time of a cpu
236  * @cpu: CPU number to query
237  * @last_update_time: variable to store update time in. Do not update
238  * counters if NULL.
239  *
240  * Return the cummulative iowait time (since boot) for a given
241  * CPU, in microseconds.
242  *
243  * This time is measured via accounting rather than sampling,
244  * and is as accurate as ktime_get() is.
245  *
246  * This function returns -1 if NOHZ is not enabled.
247  */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 	ktime_t now, iowait;
252 
253 	if (!tick_nohz_enabled)
254 		return -1;
255 
256 	now = ktime_get();
257 	if (last_update_time) {
258 		update_ts_time_stats(cpu, ts, now, last_update_time);
259 		iowait = ts->iowait_sleeptime;
260 	} else {
261 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263 
264 			iowait = ktime_add(ts->iowait_sleeptime, delta);
265 		} else {
266 			iowait = ts->iowait_sleeptime;
267 		}
268 	}
269 
270 	return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273 
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
275 {
276 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277 	ktime_t last_update, expires, now;
278 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
279 	u64 time_delta;
280 	int cpu;
281 
282 	cpu = smp_processor_id();
283 	ts = &per_cpu(tick_cpu_sched, cpu);
284 
285 	now = tick_nohz_start_idle(cpu, ts);
286 
287 	/*
288 	 * If this cpu is offline and it is the one which updates
289 	 * jiffies, then give up the assignment and let it be taken by
290 	 * the cpu which runs the tick timer next. If we don't drop
291 	 * this here the jiffies might be stale and do_timer() never
292 	 * invoked.
293 	 */
294 	if (unlikely(!cpu_online(cpu))) {
295 		if (cpu == tick_do_timer_cpu)
296 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
297 	}
298 
299 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
300 		return;
301 
302 	if (need_resched())
303 		return;
304 
305 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
306 		static int ratelimit;
307 
308 		if (ratelimit < 10) {
309 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
310 			       (unsigned int) local_softirq_pending());
311 			ratelimit++;
312 		}
313 		return;
314 	}
315 
316 	ts->idle_calls++;
317 	/* Read jiffies and the time when jiffies were updated last */
318 	do {
319 		seq = read_seqbegin(&xtime_lock);
320 		last_update = last_jiffies_update;
321 		last_jiffies = jiffies;
322 		time_delta = timekeeping_max_deferment();
323 	} while (read_seqretry(&xtime_lock, seq));
324 
325 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
326 	    arch_needs_cpu(cpu)) {
327 		next_jiffies = last_jiffies + 1;
328 		delta_jiffies = 1;
329 	} else {
330 		/* Get the next timer wheel timer */
331 		next_jiffies = get_next_timer_interrupt(last_jiffies);
332 		delta_jiffies = next_jiffies - last_jiffies;
333 	}
334 	/*
335 	 * Do not stop the tick, if we are only one off
336 	 * or if the cpu is required for rcu
337 	 */
338 	if (!ts->tick_stopped && delta_jiffies == 1)
339 		goto out;
340 
341 	/* Schedule the tick, if we are at least one jiffie off */
342 	if ((long)delta_jiffies >= 1) {
343 
344 		/*
345 		 * If this cpu is the one which updates jiffies, then
346 		 * give up the assignment and let it be taken by the
347 		 * cpu which runs the tick timer next, which might be
348 		 * this cpu as well. If we don't drop this here the
349 		 * jiffies might be stale and do_timer() never
350 		 * invoked. Keep track of the fact that it was the one
351 		 * which had the do_timer() duty last. If this cpu is
352 		 * the one which had the do_timer() duty last, we
353 		 * limit the sleep time to the timekeeping
354 		 * max_deferement value which we retrieved
355 		 * above. Otherwise we can sleep as long as we want.
356 		 */
357 		if (cpu == tick_do_timer_cpu) {
358 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
359 			ts->do_timer_last = 1;
360 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
361 			time_delta = KTIME_MAX;
362 			ts->do_timer_last = 0;
363 		} else if (!ts->do_timer_last) {
364 			time_delta = KTIME_MAX;
365 		}
366 
367 		/*
368 		 * calculate the expiry time for the next timer wheel
369 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
370 		 * that there is no timer pending or at least extremely
371 		 * far into the future (12 days for HZ=1000). In this
372 		 * case we set the expiry to the end of time.
373 		 */
374 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
375 			/*
376 			 * Calculate the time delta for the next timer event.
377 			 * If the time delta exceeds the maximum time delta
378 			 * permitted by the current clocksource then adjust
379 			 * the time delta accordingly to ensure the
380 			 * clocksource does not wrap.
381 			 */
382 			time_delta = min_t(u64, time_delta,
383 					   tick_period.tv64 * delta_jiffies);
384 		}
385 
386 		if (time_delta < KTIME_MAX)
387 			expires = ktime_add_ns(last_update, time_delta);
388 		else
389 			expires.tv64 = KTIME_MAX;
390 
391 		/* Skip reprogram of event if its not changed */
392 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
393 			goto out;
394 
395 		/*
396 		 * nohz_stop_sched_tick can be called several times before
397 		 * the nohz_restart_sched_tick is called. This happens when
398 		 * interrupts arrive which do not cause a reschedule. In the
399 		 * first call we save the current tick time, so we can restart
400 		 * the scheduler tick in nohz_restart_sched_tick.
401 		 */
402 		if (!ts->tick_stopped) {
403 			select_nohz_load_balancer(1);
404 
405 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
406 			ts->tick_stopped = 1;
407 			ts->idle_jiffies = last_jiffies;
408 		}
409 
410 		ts->idle_sleeps++;
411 
412 		/* Mark expires */
413 		ts->idle_expires = expires;
414 
415 		/*
416 		 * If the expiration time == KTIME_MAX, then
417 		 * in this case we simply stop the tick timer.
418 		 */
419 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
420 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
421 				hrtimer_cancel(&ts->sched_timer);
422 			goto out;
423 		}
424 
425 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
426 			hrtimer_start(&ts->sched_timer, expires,
427 				      HRTIMER_MODE_ABS_PINNED);
428 			/* Check, if the timer was already in the past */
429 			if (hrtimer_active(&ts->sched_timer))
430 				goto out;
431 		} else if (!tick_program_event(expires, 0))
432 				goto out;
433 		/*
434 		 * We are past the event already. So we crossed a
435 		 * jiffie boundary. Update jiffies and raise the
436 		 * softirq.
437 		 */
438 		tick_do_update_jiffies64(ktime_get());
439 	}
440 	raise_softirq_irqoff(TIMER_SOFTIRQ);
441 out:
442 	ts->next_jiffies = next_jiffies;
443 	ts->last_jiffies = last_jiffies;
444 	ts->sleep_length = ktime_sub(dev->next_event, now);
445 }
446 
447 /**
448  * tick_nohz_idle_enter - stop the idle tick from the idle task
449  *
450  * When the next event is more than a tick into the future, stop the idle tick
451  * Called when we start the idle loop.
452  *
453  * The arch is responsible of calling:
454  *
455  * - rcu_idle_enter() after its last use of RCU before the CPU is put
456  *  to sleep.
457  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
458  */
459 void tick_nohz_idle_enter(void)
460 {
461 	struct tick_sched *ts;
462 
463 	WARN_ON_ONCE(irqs_disabled());
464 
465 	/*
466  	 * Update the idle state in the scheduler domain hierarchy
467  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
468  	 * State will be updated to busy during the first busy tick after
469  	 * exiting idle.
470  	 */
471 	set_cpu_sd_state_idle();
472 
473 	local_irq_disable();
474 
475 	ts = &__get_cpu_var(tick_cpu_sched);
476 	/*
477 	 * set ts->inidle unconditionally. even if the system did not
478 	 * switch to nohz mode the cpu frequency governers rely on the
479 	 * update of the idle time accounting in tick_nohz_start_idle().
480 	 */
481 	ts->inidle = 1;
482 	tick_nohz_stop_sched_tick(ts);
483 
484 	local_irq_enable();
485 }
486 
487 /**
488  * tick_nohz_irq_exit - update next tick event from interrupt exit
489  *
490  * When an interrupt fires while we are idle and it doesn't cause
491  * a reschedule, it may still add, modify or delete a timer, enqueue
492  * an RCU callback, etc...
493  * So we need to re-calculate and reprogram the next tick event.
494  */
495 void tick_nohz_irq_exit(void)
496 {
497 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
498 
499 	if (!ts->inidle)
500 		return;
501 
502 	tick_nohz_stop_sched_tick(ts);
503 }
504 
505 /**
506  * tick_nohz_get_sleep_length - return the length of the current sleep
507  *
508  * Called from power state control code with interrupts disabled
509  */
510 ktime_t tick_nohz_get_sleep_length(void)
511 {
512 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
513 
514 	return ts->sleep_length;
515 }
516 
517 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
518 {
519 	hrtimer_cancel(&ts->sched_timer);
520 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
521 
522 	while (1) {
523 		/* Forward the time to expire in the future */
524 		hrtimer_forward(&ts->sched_timer, now, tick_period);
525 
526 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
527 			hrtimer_start_expires(&ts->sched_timer,
528 					      HRTIMER_MODE_ABS_PINNED);
529 			/* Check, if the timer was already in the past */
530 			if (hrtimer_active(&ts->sched_timer))
531 				break;
532 		} else {
533 			if (!tick_program_event(
534 				hrtimer_get_expires(&ts->sched_timer), 0))
535 				break;
536 		}
537 		/* Reread time and update jiffies */
538 		now = ktime_get();
539 		tick_do_update_jiffies64(now);
540 	}
541 }
542 
543 /**
544  * tick_nohz_idle_exit - restart the idle tick from the idle task
545  *
546  * Restart the idle tick when the CPU is woken up from idle
547  * This also exit the RCU extended quiescent state. The CPU
548  * can use RCU again after this function is called.
549  */
550 void tick_nohz_idle_exit(void)
551 {
552 	int cpu = smp_processor_id();
553 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
555 	unsigned long ticks;
556 #endif
557 	ktime_t now;
558 
559 	local_irq_disable();
560 
561 	WARN_ON_ONCE(!ts->inidle);
562 
563 	ts->inidle = 0;
564 
565 	if (ts->idle_active || ts->tick_stopped)
566 		now = ktime_get();
567 
568 	if (ts->idle_active)
569 		tick_nohz_stop_idle(cpu, now);
570 
571 	if (!ts->tick_stopped) {
572 		local_irq_enable();
573 		return;
574 	}
575 
576 	/* Update jiffies first */
577 	select_nohz_load_balancer(0);
578 	tick_do_update_jiffies64(now);
579 
580 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
581 	/*
582 	 * We stopped the tick in idle. Update process times would miss the
583 	 * time we slept as update_process_times does only a 1 tick
584 	 * accounting. Enforce that this is accounted to idle !
585 	 */
586 	ticks = jiffies - ts->idle_jiffies;
587 	/*
588 	 * We might be one off. Do not randomly account a huge number of ticks!
589 	 */
590 	if (ticks && ticks < LONG_MAX)
591 		account_idle_ticks(ticks);
592 #endif
593 
594 	touch_softlockup_watchdog();
595 	/*
596 	 * Cancel the scheduled timer and restore the tick
597 	 */
598 	ts->tick_stopped  = 0;
599 	ts->idle_exittime = now;
600 
601 	tick_nohz_restart(ts, now);
602 
603 	local_irq_enable();
604 }
605 
606 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
607 {
608 	hrtimer_forward(&ts->sched_timer, now, tick_period);
609 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
610 }
611 
612 /*
613  * The nohz low res interrupt handler
614  */
615 static void tick_nohz_handler(struct clock_event_device *dev)
616 {
617 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
618 	struct pt_regs *regs = get_irq_regs();
619 	int cpu = smp_processor_id();
620 	ktime_t now = ktime_get();
621 
622 	dev->next_event.tv64 = KTIME_MAX;
623 
624 	/*
625 	 * Check if the do_timer duty was dropped. We don't care about
626 	 * concurrency: This happens only when the cpu in charge went
627 	 * into a long sleep. If two cpus happen to assign themself to
628 	 * this duty, then the jiffies update is still serialized by
629 	 * xtime_lock.
630 	 */
631 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
632 		tick_do_timer_cpu = cpu;
633 
634 	/* Check, if the jiffies need an update */
635 	if (tick_do_timer_cpu == cpu)
636 		tick_do_update_jiffies64(now);
637 
638 	/*
639 	 * When we are idle and the tick is stopped, we have to touch
640 	 * the watchdog as we might not schedule for a really long
641 	 * time. This happens on complete idle SMP systems while
642 	 * waiting on the login prompt. We also increment the "start
643 	 * of idle" jiffy stamp so the idle accounting adjustment we
644 	 * do when we go busy again does not account too much ticks.
645 	 */
646 	if (ts->tick_stopped) {
647 		touch_softlockup_watchdog();
648 		ts->idle_jiffies++;
649 	}
650 
651 	update_process_times(user_mode(regs));
652 	profile_tick(CPU_PROFILING);
653 
654 	while (tick_nohz_reprogram(ts, now)) {
655 		now = ktime_get();
656 		tick_do_update_jiffies64(now);
657 	}
658 }
659 
660 /**
661  * tick_nohz_switch_to_nohz - switch to nohz mode
662  */
663 static void tick_nohz_switch_to_nohz(void)
664 {
665 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
666 	ktime_t next;
667 
668 	if (!tick_nohz_enabled)
669 		return;
670 
671 	local_irq_disable();
672 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
673 		local_irq_enable();
674 		return;
675 	}
676 
677 	ts->nohz_mode = NOHZ_MODE_LOWRES;
678 
679 	/*
680 	 * Recycle the hrtimer in ts, so we can share the
681 	 * hrtimer_forward with the highres code.
682 	 */
683 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
684 	/* Get the next period */
685 	next = tick_init_jiffy_update();
686 
687 	for (;;) {
688 		hrtimer_set_expires(&ts->sched_timer, next);
689 		if (!tick_program_event(next, 0))
690 			break;
691 		next = ktime_add(next, tick_period);
692 	}
693 	local_irq_enable();
694 }
695 
696 /*
697  * When NOHZ is enabled and the tick is stopped, we need to kick the
698  * tick timer from irq_enter() so that the jiffies update is kept
699  * alive during long running softirqs. That's ugly as hell, but
700  * correctness is key even if we need to fix the offending softirq in
701  * the first place.
702  *
703  * Note, this is different to tick_nohz_restart. We just kick the
704  * timer and do not touch the other magic bits which need to be done
705  * when idle is left.
706  */
707 static void tick_nohz_kick_tick(int cpu, ktime_t now)
708 {
709 #if 0
710 	/* Switch back to 2.6.27 behaviour */
711 
712 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
713 	ktime_t delta;
714 
715 	/*
716 	 * Do not touch the tick device, when the next expiry is either
717 	 * already reached or less/equal than the tick period.
718 	 */
719 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
720 	if (delta.tv64 <= tick_period.tv64)
721 		return;
722 
723 	tick_nohz_restart(ts, now);
724 #endif
725 }
726 
727 static inline void tick_check_nohz(int cpu)
728 {
729 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
730 	ktime_t now;
731 
732 	if (!ts->idle_active && !ts->tick_stopped)
733 		return;
734 	now = ktime_get();
735 	if (ts->idle_active)
736 		tick_nohz_stop_idle(cpu, now);
737 	if (ts->tick_stopped) {
738 		tick_nohz_update_jiffies(now);
739 		tick_nohz_kick_tick(cpu, now);
740 	}
741 }
742 
743 #else
744 
745 static inline void tick_nohz_switch_to_nohz(void) { }
746 static inline void tick_check_nohz(int cpu) { }
747 
748 #endif /* NO_HZ */
749 
750 /*
751  * Called from irq_enter to notify about the possible interruption of idle()
752  */
753 void tick_check_idle(int cpu)
754 {
755 	tick_check_oneshot_broadcast(cpu);
756 	tick_check_nohz(cpu);
757 }
758 
759 /*
760  * High resolution timer specific code
761  */
762 #ifdef CONFIG_HIGH_RES_TIMERS
763 /*
764  * We rearm the timer until we get disabled by the idle code.
765  * Called with interrupts disabled and timer->base->cpu_base->lock held.
766  */
767 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
768 {
769 	struct tick_sched *ts =
770 		container_of(timer, struct tick_sched, sched_timer);
771 	struct pt_regs *regs = get_irq_regs();
772 	ktime_t now = ktime_get();
773 	int cpu = smp_processor_id();
774 
775 #ifdef CONFIG_NO_HZ
776 	/*
777 	 * Check if the do_timer duty was dropped. We don't care about
778 	 * concurrency: This happens only when the cpu in charge went
779 	 * into a long sleep. If two cpus happen to assign themself to
780 	 * this duty, then the jiffies update is still serialized by
781 	 * xtime_lock.
782 	 */
783 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
784 		tick_do_timer_cpu = cpu;
785 #endif
786 
787 	/* Check, if the jiffies need an update */
788 	if (tick_do_timer_cpu == cpu)
789 		tick_do_update_jiffies64(now);
790 
791 	/*
792 	 * Do not call, when we are not in irq context and have
793 	 * no valid regs pointer
794 	 */
795 	if (regs) {
796 		/*
797 		 * When we are idle and the tick is stopped, we have to touch
798 		 * the watchdog as we might not schedule for a really long
799 		 * time. This happens on complete idle SMP systems while
800 		 * waiting on the login prompt. We also increment the "start of
801 		 * idle" jiffy stamp so the idle accounting adjustment we do
802 		 * when we go busy again does not account too much ticks.
803 		 */
804 		if (ts->tick_stopped) {
805 			touch_softlockup_watchdog();
806 			ts->idle_jiffies++;
807 		}
808 		update_process_times(user_mode(regs));
809 		profile_tick(CPU_PROFILING);
810 	}
811 
812 	hrtimer_forward(timer, now, tick_period);
813 
814 	return HRTIMER_RESTART;
815 }
816 
817 static int sched_skew_tick;
818 
819 static int __init skew_tick(char *str)
820 {
821 	get_option(&str, &sched_skew_tick);
822 
823 	return 0;
824 }
825 early_param("skew_tick", skew_tick);
826 
827 /**
828  * tick_setup_sched_timer - setup the tick emulation timer
829  */
830 void tick_setup_sched_timer(void)
831 {
832 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
833 	ktime_t now = ktime_get();
834 
835 	/*
836 	 * Emulate tick processing via per-CPU hrtimers:
837 	 */
838 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
839 	ts->sched_timer.function = tick_sched_timer;
840 
841 	/* Get the next period (per cpu) */
842 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
843 
844 	/* Offset the tick to avert xtime_lock contention. */
845 	if (sched_skew_tick) {
846 		u64 offset = ktime_to_ns(tick_period) >> 1;
847 		do_div(offset, num_possible_cpus());
848 		offset *= smp_processor_id();
849 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
850 	}
851 
852 	for (;;) {
853 		hrtimer_forward(&ts->sched_timer, now, tick_period);
854 		hrtimer_start_expires(&ts->sched_timer,
855 				      HRTIMER_MODE_ABS_PINNED);
856 		/* Check, if the timer was already in the past */
857 		if (hrtimer_active(&ts->sched_timer))
858 			break;
859 		now = ktime_get();
860 	}
861 
862 #ifdef CONFIG_NO_HZ
863 	if (tick_nohz_enabled)
864 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
865 #endif
866 }
867 #endif /* HIGH_RES_TIMERS */
868 
869 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
870 void tick_cancel_sched_timer(int cpu)
871 {
872 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
873 
874 # ifdef CONFIG_HIGH_RES_TIMERS
875 	if (ts->sched_timer.base)
876 		hrtimer_cancel(&ts->sched_timer);
877 # endif
878 
879 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
880 }
881 #endif
882 
883 /**
884  * Async notification about clocksource changes
885  */
886 void tick_clock_notify(void)
887 {
888 	int cpu;
889 
890 	for_each_possible_cpu(cpu)
891 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
892 }
893 
894 /*
895  * Async notification about clock event changes
896  */
897 void tick_oneshot_notify(void)
898 {
899 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
900 
901 	set_bit(0, &ts->check_clocks);
902 }
903 
904 /**
905  * Check, if a change happened, which makes oneshot possible.
906  *
907  * Called cyclic from the hrtimer softirq (driven by the timer
908  * softirq) allow_nohz signals, that we can switch into low-res nohz
909  * mode, because high resolution timers are disabled (either compile
910  * or runtime).
911  */
912 int tick_check_oneshot_change(int allow_nohz)
913 {
914 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
915 
916 	if (!test_and_clear_bit(0, &ts->check_clocks))
917 		return 0;
918 
919 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
920 		return 0;
921 
922 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
923 		return 0;
924 
925 	if (!allow_nohz)
926 		return 1;
927 
928 	tick_nohz_switch_to_nohz();
929 	return 0;
930 }
931