xref: /openbmc/linux/kernel/time/tick-sched.c (revision 6168f8ed)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevaluate with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themselves to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161 
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 	int val = atomic_read(dep);
165 
166 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 		return true;
169 	}
170 
171 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 		return true;
174 	}
175 
176 	if (val & TICK_DEP_MASK_SCHED) {
177 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 		return true;
184 	}
185 
186 	return false;
187 }
188 
189 static bool can_stop_full_tick(struct tick_sched *ts)
190 {
191 	WARN_ON_ONCE(!irqs_disabled());
192 
193 	if (check_tick_dependency(&tick_dep_mask))
194 		return false;
195 
196 	if (check_tick_dependency(&ts->tick_dep_mask))
197 		return false;
198 
199 	if (check_tick_dependency(&current->tick_dep_mask))
200 		return false;
201 
202 	if (check_tick_dependency(&current->signal->tick_dep_mask))
203 		return false;
204 
205 	return true;
206 }
207 
208 static void nohz_full_kick_func(struct irq_work *work)
209 {
210 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
211 }
212 
213 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
214 	.func = nohz_full_kick_func,
215 };
216 
217 /*
218  * Kick this CPU if it's full dynticks in order to force it to
219  * re-evaluate its dependency on the tick and restart it if necessary.
220  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
221  * is NMI safe.
222  */
223 static void tick_nohz_full_kick(void)
224 {
225 	if (!tick_nohz_full_cpu(smp_processor_id()))
226 		return;
227 
228 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
229 }
230 
231 /*
232  * Kick the CPU if it's full dynticks in order to force it to
233  * re-evaluate its dependency on the tick and restart it if necessary.
234  */
235 void tick_nohz_full_kick_cpu(int cpu)
236 {
237 	if (!tick_nohz_full_cpu(cpu))
238 		return;
239 
240 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
241 }
242 
243 /*
244  * Kick all full dynticks CPUs in order to force these to re-evaluate
245  * their dependency on the tick and restart it if necessary.
246  */
247 static void tick_nohz_full_kick_all(void)
248 {
249 	int cpu;
250 
251 	if (!tick_nohz_full_running)
252 		return;
253 
254 	preempt_disable();
255 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
256 		tick_nohz_full_kick_cpu(cpu);
257 	preempt_enable();
258 }
259 
260 static void tick_nohz_dep_set_all(atomic_t *dep,
261 				  enum tick_dep_bits bit)
262 {
263 	int prev;
264 
265 	prev = atomic_fetch_or(BIT(bit), dep);
266 	if (!prev)
267 		tick_nohz_full_kick_all();
268 }
269 
270 /*
271  * Set a global tick dependency. Used by perf events that rely on freq and
272  * by unstable clock.
273  */
274 void tick_nohz_dep_set(enum tick_dep_bits bit)
275 {
276 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
277 }
278 
279 void tick_nohz_dep_clear(enum tick_dep_bits bit)
280 {
281 	atomic_andnot(BIT(bit), &tick_dep_mask);
282 }
283 
284 /*
285  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
286  * manage events throttling.
287  */
288 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
289 {
290 	int prev;
291 	struct tick_sched *ts;
292 
293 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
294 
295 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
296 	if (!prev) {
297 		preempt_disable();
298 		/* Perf needs local kick that is NMI safe */
299 		if (cpu == smp_processor_id()) {
300 			tick_nohz_full_kick();
301 		} else {
302 			/* Remote irq work not NMI-safe */
303 			if (!WARN_ON_ONCE(in_nmi()))
304 				tick_nohz_full_kick_cpu(cpu);
305 		}
306 		preempt_enable();
307 	}
308 }
309 
310 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
311 {
312 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
313 
314 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
315 }
316 
317 /*
318  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
319  * per task timers.
320  */
321 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
322 {
323 	/*
324 	 * We could optimize this with just kicking the target running the task
325 	 * if that noise matters for nohz full users.
326 	 */
327 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
328 }
329 
330 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
331 {
332 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
333 }
334 
335 /*
336  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
337  * per process timers.
338  */
339 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
340 {
341 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
342 }
343 
344 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
345 {
346 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
347 }
348 
349 /*
350  * Re-evaluate the need for the tick as we switch the current task.
351  * It might need the tick due to per task/process properties:
352  * perf events, posix cpu timers, ...
353  */
354 void __tick_nohz_task_switch(void)
355 {
356 	unsigned long flags;
357 	struct tick_sched *ts;
358 
359 	local_irq_save(flags);
360 
361 	if (!tick_nohz_full_cpu(smp_processor_id()))
362 		goto out;
363 
364 	ts = this_cpu_ptr(&tick_cpu_sched);
365 
366 	if (ts->tick_stopped) {
367 		if (atomic_read(&current->tick_dep_mask) ||
368 		    atomic_read(&current->signal->tick_dep_mask))
369 			tick_nohz_full_kick();
370 	}
371 out:
372 	local_irq_restore(flags);
373 }
374 
375 /* Parse the boot-time nohz CPU list from the kernel parameters. */
376 static int __init tick_nohz_full_setup(char *str)
377 {
378 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
379 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
380 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381 		free_bootmem_cpumask_var(tick_nohz_full_mask);
382 		return 1;
383 	}
384 	tick_nohz_full_running = true;
385 
386 	return 1;
387 }
388 __setup("nohz_full=", tick_nohz_full_setup);
389 
390 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
391 				       unsigned long action,
392 				       void *hcpu)
393 {
394 	unsigned int cpu = (unsigned long)hcpu;
395 
396 	switch (action & ~CPU_TASKS_FROZEN) {
397 	case CPU_DOWN_PREPARE:
398 		/*
399 		 * The boot CPU handles housekeeping duty (unbound timers,
400 		 * workqueues, timekeeping, ...) on behalf of full dynticks
401 		 * CPUs. It must remain online when nohz full is enabled.
402 		 */
403 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 			return NOTIFY_BAD;
405 		break;
406 	}
407 	return NOTIFY_OK;
408 }
409 
410 static int tick_nohz_init_all(void)
411 {
412 	int err = -1;
413 
414 #ifdef CONFIG_NO_HZ_FULL_ALL
415 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
416 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
417 		return err;
418 	}
419 	err = 0;
420 	cpumask_setall(tick_nohz_full_mask);
421 	tick_nohz_full_running = true;
422 #endif
423 	return err;
424 }
425 
426 void __init tick_nohz_init(void)
427 {
428 	int cpu;
429 
430 	if (!tick_nohz_full_running) {
431 		if (tick_nohz_init_all() < 0)
432 			return;
433 	}
434 
435 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
436 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
437 		cpumask_clear(tick_nohz_full_mask);
438 		tick_nohz_full_running = false;
439 		return;
440 	}
441 
442 	/*
443 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
444 	 * locking contexts. But then we need irq work to raise its own
445 	 * interrupts to avoid circular dependency on the tick
446 	 */
447 	if (!arch_irq_work_has_interrupt()) {
448 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 		cpumask_clear(tick_nohz_full_mask);
450 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
451 		tick_nohz_full_running = false;
452 		return;
453 	}
454 
455 	cpu = smp_processor_id();
456 
457 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
459 			cpu);
460 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
461 	}
462 
463 	cpumask_andnot(housekeeping_mask,
464 		       cpu_possible_mask, tick_nohz_full_mask);
465 
466 	for_each_cpu(cpu, tick_nohz_full_mask)
467 		context_tracking_cpu_set(cpu);
468 
469 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
470 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 		cpumask_pr_args(tick_nohz_full_mask));
472 
473 	/*
474 	 * We need at least one CPU to handle housekeeping work such
475 	 * as timekeeping, unbound timers, workqueues, ...
476 	 */
477 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
478 }
479 #endif
480 
481 /*
482  * NOHZ - aka dynamic tick functionality
483  */
484 #ifdef CONFIG_NO_HZ_COMMON
485 /*
486  * NO HZ enabled ?
487  */
488 bool tick_nohz_enabled __read_mostly  = true;
489 unsigned long tick_nohz_active  __read_mostly;
490 /*
491  * Enable / Disable tickless mode
492  */
493 static int __init setup_tick_nohz(char *str)
494 {
495 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
496 }
497 
498 __setup("nohz=", setup_tick_nohz);
499 
500 int tick_nohz_tick_stopped(void)
501 {
502 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
503 }
504 
505 /**
506  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
507  *
508  * Called from interrupt entry when the CPU was idle
509  *
510  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511  * must be updated. Otherwise an interrupt handler could use a stale jiffy
512  * value. We do this unconditionally on any cpu, as we don't know whether the
513  * cpu, which has the update task assigned is in a long sleep.
514  */
515 static void tick_nohz_update_jiffies(ktime_t now)
516 {
517 	unsigned long flags;
518 
519 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
520 
521 	local_irq_save(flags);
522 	tick_do_update_jiffies64(now);
523 	local_irq_restore(flags);
524 
525 	touch_softlockup_watchdog_sched();
526 }
527 
528 /*
529  * Updates the per cpu time idle statistics counters
530  */
531 static void
532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
533 {
534 	ktime_t delta;
535 
536 	if (ts->idle_active) {
537 		delta = ktime_sub(now, ts->idle_entrytime);
538 		if (nr_iowait_cpu(cpu) > 0)
539 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
540 		else
541 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542 		ts->idle_entrytime = now;
543 	}
544 
545 	if (last_update_time)
546 		*last_update_time = ktime_to_us(now);
547 
548 }
549 
550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
551 {
552 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
553 	ts->idle_active = 0;
554 
555 	sched_clock_idle_wakeup_event(0);
556 }
557 
558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
559 {
560 	ktime_t now = ktime_get();
561 
562 	ts->idle_entrytime = now;
563 	ts->idle_active = 1;
564 	sched_clock_idle_sleep_event();
565 	return now;
566 }
567 
568 /**
569  * get_cpu_idle_time_us - get the total idle time of a cpu
570  * @cpu: CPU number to query
571  * @last_update_time: variable to store update time in. Do not update
572  * counters if NULL.
573  *
574  * Return the cumulative idle time (since boot) for a given
575  * CPU, in microseconds.
576  *
577  * This time is measured via accounting rather than sampling,
578  * and is as accurate as ktime_get() is.
579  *
580  * This function returns -1 if NOHZ is not enabled.
581  */
582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
583 {
584 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585 	ktime_t now, idle;
586 
587 	if (!tick_nohz_active)
588 		return -1;
589 
590 	now = ktime_get();
591 	if (last_update_time) {
592 		update_ts_time_stats(cpu, ts, now, last_update_time);
593 		idle = ts->idle_sleeptime;
594 	} else {
595 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
597 
598 			idle = ktime_add(ts->idle_sleeptime, delta);
599 		} else {
600 			idle = ts->idle_sleeptime;
601 		}
602 	}
603 
604 	return ktime_to_us(idle);
605 
606 }
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608 
609 /**
610  * get_cpu_iowait_time_us - get the total iowait time of a cpu
611  * @cpu: CPU number to query
612  * @last_update_time: variable to store update time in. Do not update
613  * counters if NULL.
614  *
615  * Return the cumulative iowait time (since boot) for a given
616  * CPU, in microseconds.
617  *
618  * This time is measured via accounting rather than sampling,
619  * and is as accurate as ktime_get() is.
620  *
621  * This function returns -1 if NOHZ is not enabled.
622  */
623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
624 {
625 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626 	ktime_t now, iowait;
627 
628 	if (!tick_nohz_active)
629 		return -1;
630 
631 	now = ktime_get();
632 	if (last_update_time) {
633 		update_ts_time_stats(cpu, ts, now, last_update_time);
634 		iowait = ts->iowait_sleeptime;
635 	} else {
636 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638 
639 			iowait = ktime_add(ts->iowait_sleeptime, delta);
640 		} else {
641 			iowait = ts->iowait_sleeptime;
642 		}
643 	}
644 
645 	return ktime_to_us(iowait);
646 }
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
648 
649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
650 {
651 	hrtimer_cancel(&ts->sched_timer);
652 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
653 
654 	/* Forward the time to expire in the future */
655 	hrtimer_forward(&ts->sched_timer, now, tick_period);
656 
657 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
658 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
659 	else
660 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
661 }
662 
663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
664 					 ktime_t now, int cpu)
665 {
666 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
668 	unsigned long seq, basejiff;
669 	ktime_t	tick;
670 
671 	/* Read jiffies and the time when jiffies were updated last */
672 	do {
673 		seq = read_seqbegin(&jiffies_lock);
674 		basemono = last_jiffies_update.tv64;
675 		basejiff = jiffies;
676 	} while (read_seqretry(&jiffies_lock, seq));
677 	ts->last_jiffies = basejiff;
678 
679 	if (rcu_needs_cpu(basemono, &next_rcu) ||
680 	    arch_needs_cpu() || irq_work_needs_cpu()) {
681 		next_tick = basemono + TICK_NSEC;
682 	} else {
683 		/*
684 		 * Get the next pending timer. If high resolution
685 		 * timers are enabled this only takes the timer wheel
686 		 * timers into account. If high resolution timers are
687 		 * disabled this also looks at the next expiring
688 		 * hrtimer.
689 		 */
690 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 		ts->next_timer = next_tmr;
692 		/* Take the next rcu event into account */
693 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 	}
695 
696 	/*
697 	 * If the tick is due in the next period, keep it ticking or
698 	 * force prod the timer.
699 	 */
700 	delta = next_tick - basemono;
701 	if (delta <= (u64)TICK_NSEC) {
702 		tick.tv64 = 0;
703 		/*
704 		 * We've not stopped the tick yet, and there's a timer in the
705 		 * next period, so no point in stopping it either, bail.
706 		 */
707 		if (!ts->tick_stopped)
708 			goto out;
709 
710 		/*
711 		 * If, OTOH, we did stop it, but there's a pending (expired)
712 		 * timer reprogram the timer hardware to fire now.
713 		 *
714 		 * We will not restart the tick proper, just prod the timer
715 		 * hardware into firing an interrupt to process the pending
716 		 * timers. Just like tick_irq_exit() will not restart the tick
717 		 * for 'normal' interrupts.
718 		 *
719 		 * Only once we exit the idle loop will we re-enable the tick,
720 		 * see tick_nohz_idle_exit().
721 		 */
722 		if (delta == 0) {
723 			tick_nohz_restart(ts, now);
724 			goto out;
725 		}
726 	}
727 
728 	/*
729 	 * If this cpu is the one which updates jiffies, then give up
730 	 * the assignment and let it be taken by the cpu which runs
731 	 * the tick timer next, which might be this cpu as well. If we
732 	 * don't drop this here the jiffies might be stale and
733 	 * do_timer() never invoked. Keep track of the fact that it
734 	 * was the one which had the do_timer() duty last. If this cpu
735 	 * is the one which had the do_timer() duty last, we limit the
736 	 * sleep time to the timekeeping max_deferment value.
737 	 * Otherwise we can sleep as long as we want.
738 	 */
739 	delta = timekeeping_max_deferment();
740 	if (cpu == tick_do_timer_cpu) {
741 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
742 		ts->do_timer_last = 1;
743 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
744 		delta = KTIME_MAX;
745 		ts->do_timer_last = 0;
746 	} else if (!ts->do_timer_last) {
747 		delta = KTIME_MAX;
748 	}
749 
750 #ifdef CONFIG_NO_HZ_FULL
751 	/* Limit the tick delta to the maximum scheduler deferment */
752 	if (!ts->inidle)
753 		delta = min(delta, scheduler_tick_max_deferment());
754 #endif
755 
756 	/* Calculate the next expiry time */
757 	if (delta < (KTIME_MAX - basemono))
758 		expires = basemono + delta;
759 	else
760 		expires = KTIME_MAX;
761 
762 	expires = min_t(u64, expires, next_tick);
763 	tick.tv64 = expires;
764 
765 	/* Skip reprogram of event if its not changed */
766 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
767 		goto out;
768 
769 	/*
770 	 * nohz_stop_sched_tick can be called several times before
771 	 * the nohz_restart_sched_tick is called. This happens when
772 	 * interrupts arrive which do not cause a reschedule. In the
773 	 * first call we save the current tick time, so we can restart
774 	 * the scheduler tick in nohz_restart_sched_tick.
775 	 */
776 	if (!ts->tick_stopped) {
777 		nohz_balance_enter_idle(cpu);
778 		calc_load_enter_idle();
779 		cpu_load_update_nohz_start();
780 
781 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
782 		ts->tick_stopped = 1;
783 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
784 	}
785 
786 	/*
787 	 * If the expiration time == KTIME_MAX, then we simply stop
788 	 * the tick timer.
789 	 */
790 	if (unlikely(expires == KTIME_MAX)) {
791 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
792 			hrtimer_cancel(&ts->sched_timer);
793 		goto out;
794 	}
795 
796 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
797 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
798 	else
799 		tick_program_event(tick, 1);
800 out:
801 	/* Update the estimated sleep length */
802 	ts->sleep_length = ktime_sub(dev->next_event, now);
803 	return tick;
804 }
805 
806 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
807 {
808 	/* Update jiffies first */
809 	tick_do_update_jiffies64(now);
810 	cpu_load_update_nohz_stop();
811 
812 	calc_load_exit_idle();
813 	touch_softlockup_watchdog_sched();
814 	/*
815 	 * Cancel the scheduled timer and restore the tick
816 	 */
817 	ts->tick_stopped  = 0;
818 	ts->idle_exittime = now;
819 
820 	tick_nohz_restart(ts, now);
821 }
822 
823 static void tick_nohz_full_update_tick(struct tick_sched *ts)
824 {
825 #ifdef CONFIG_NO_HZ_FULL
826 	int cpu = smp_processor_id();
827 
828 	if (!tick_nohz_full_cpu(cpu))
829 		return;
830 
831 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
832 		return;
833 
834 	if (can_stop_full_tick(ts))
835 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
836 	else if (ts->tick_stopped)
837 		tick_nohz_restart_sched_tick(ts, ktime_get());
838 #endif
839 }
840 
841 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
842 {
843 	/*
844 	 * If this cpu is offline and it is the one which updates
845 	 * jiffies, then give up the assignment and let it be taken by
846 	 * the cpu which runs the tick timer next. If we don't drop
847 	 * this here the jiffies might be stale and do_timer() never
848 	 * invoked.
849 	 */
850 	if (unlikely(!cpu_online(cpu))) {
851 		if (cpu == tick_do_timer_cpu)
852 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
853 		return false;
854 	}
855 
856 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
857 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
858 		return false;
859 	}
860 
861 	if (need_resched())
862 		return false;
863 
864 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
865 		static int ratelimit;
866 
867 		if (ratelimit < 10 &&
868 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
869 			pr_warn("NOHZ: local_softirq_pending %02x\n",
870 				(unsigned int) local_softirq_pending());
871 			ratelimit++;
872 		}
873 		return false;
874 	}
875 
876 	if (tick_nohz_full_enabled()) {
877 		/*
878 		 * Keep the tick alive to guarantee timekeeping progression
879 		 * if there are full dynticks CPUs around
880 		 */
881 		if (tick_do_timer_cpu == cpu)
882 			return false;
883 		/*
884 		 * Boot safety: make sure the timekeeping duty has been
885 		 * assigned before entering dyntick-idle mode,
886 		 */
887 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
888 			return false;
889 	}
890 
891 	return true;
892 }
893 
894 static void __tick_nohz_idle_enter(struct tick_sched *ts)
895 {
896 	ktime_t now, expires;
897 	int cpu = smp_processor_id();
898 
899 	now = tick_nohz_start_idle(ts);
900 
901 	if (can_stop_idle_tick(cpu, ts)) {
902 		int was_stopped = ts->tick_stopped;
903 
904 		ts->idle_calls++;
905 
906 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
907 		if (expires.tv64 > 0LL) {
908 			ts->idle_sleeps++;
909 			ts->idle_expires = expires;
910 		}
911 
912 		if (!was_stopped && ts->tick_stopped)
913 			ts->idle_jiffies = ts->last_jiffies;
914 	}
915 }
916 
917 /**
918  * tick_nohz_idle_enter - stop the idle tick from the idle task
919  *
920  * When the next event is more than a tick into the future, stop the idle tick
921  * Called when we start the idle loop.
922  *
923  * The arch is responsible of calling:
924  *
925  * - rcu_idle_enter() after its last use of RCU before the CPU is put
926  *  to sleep.
927  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
928  */
929 void tick_nohz_idle_enter(void)
930 {
931 	struct tick_sched *ts;
932 
933 	WARN_ON_ONCE(irqs_disabled());
934 
935 	/*
936  	 * Update the idle state in the scheduler domain hierarchy
937  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
938  	 * State will be updated to busy during the first busy tick after
939  	 * exiting idle.
940  	 */
941 	set_cpu_sd_state_idle();
942 
943 	local_irq_disable();
944 
945 	ts = this_cpu_ptr(&tick_cpu_sched);
946 	ts->inidle = 1;
947 	__tick_nohz_idle_enter(ts);
948 
949 	local_irq_enable();
950 }
951 
952 /**
953  * tick_nohz_irq_exit - update next tick event from interrupt exit
954  *
955  * When an interrupt fires while we are idle and it doesn't cause
956  * a reschedule, it may still add, modify or delete a timer, enqueue
957  * an RCU callback, etc...
958  * So we need to re-calculate and reprogram the next tick event.
959  */
960 void tick_nohz_irq_exit(void)
961 {
962 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
963 
964 	if (ts->inidle)
965 		__tick_nohz_idle_enter(ts);
966 	else
967 		tick_nohz_full_update_tick(ts);
968 }
969 
970 /**
971  * tick_nohz_get_sleep_length - return the length of the current sleep
972  *
973  * Called from power state control code with interrupts disabled
974  */
975 ktime_t tick_nohz_get_sleep_length(void)
976 {
977 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
978 
979 	return ts->sleep_length;
980 }
981 
982 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
983 {
984 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
985 	unsigned long ticks;
986 
987 	if (vtime_accounting_cpu_enabled())
988 		return;
989 	/*
990 	 * We stopped the tick in idle. Update process times would miss the
991 	 * time we slept as update_process_times does only a 1 tick
992 	 * accounting. Enforce that this is accounted to idle !
993 	 */
994 	ticks = jiffies - ts->idle_jiffies;
995 	/*
996 	 * We might be one off. Do not randomly account a huge number of ticks!
997 	 */
998 	if (ticks && ticks < LONG_MAX)
999 		account_idle_ticks(ticks);
1000 #endif
1001 }
1002 
1003 /**
1004  * tick_nohz_idle_exit - restart the idle tick from the idle task
1005  *
1006  * Restart the idle tick when the CPU is woken up from idle
1007  * This also exit the RCU extended quiescent state. The CPU
1008  * can use RCU again after this function is called.
1009  */
1010 void tick_nohz_idle_exit(void)
1011 {
1012 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013 	ktime_t now;
1014 
1015 	local_irq_disable();
1016 
1017 	WARN_ON_ONCE(!ts->inidle);
1018 
1019 	ts->inidle = 0;
1020 
1021 	if (ts->idle_active || ts->tick_stopped)
1022 		now = ktime_get();
1023 
1024 	if (ts->idle_active)
1025 		tick_nohz_stop_idle(ts, now);
1026 
1027 	if (ts->tick_stopped) {
1028 		tick_nohz_restart_sched_tick(ts, now);
1029 		tick_nohz_account_idle_ticks(ts);
1030 	}
1031 
1032 	local_irq_enable();
1033 }
1034 
1035 /*
1036  * The nohz low res interrupt handler
1037  */
1038 static void tick_nohz_handler(struct clock_event_device *dev)
1039 {
1040 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1041 	struct pt_regs *regs = get_irq_regs();
1042 	ktime_t now = ktime_get();
1043 
1044 	dev->next_event.tv64 = KTIME_MAX;
1045 
1046 	tick_sched_do_timer(now);
1047 	tick_sched_handle(ts, regs);
1048 
1049 	/* No need to reprogram if we are running tickless  */
1050 	if (unlikely(ts->tick_stopped))
1051 		return;
1052 
1053 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1054 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1055 }
1056 
1057 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1058 {
1059 	if (!tick_nohz_enabled)
1060 		return;
1061 	ts->nohz_mode = mode;
1062 	/* One update is enough */
1063 	if (!test_and_set_bit(0, &tick_nohz_active))
1064 		timers_update_migration(true);
1065 }
1066 
1067 /**
1068  * tick_nohz_switch_to_nohz - switch to nohz mode
1069  */
1070 static void tick_nohz_switch_to_nohz(void)
1071 {
1072 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073 	ktime_t next;
1074 
1075 	if (!tick_nohz_enabled)
1076 		return;
1077 
1078 	if (tick_switch_to_oneshot(tick_nohz_handler))
1079 		return;
1080 
1081 	/*
1082 	 * Recycle the hrtimer in ts, so we can share the
1083 	 * hrtimer_forward with the highres code.
1084 	 */
1085 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1086 	/* Get the next period */
1087 	next = tick_init_jiffy_update();
1088 
1089 	hrtimer_set_expires(&ts->sched_timer, next);
1090 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1091 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1092 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1093 }
1094 
1095 /*
1096  * When NOHZ is enabled and the tick is stopped, we need to kick the
1097  * tick timer from irq_enter() so that the jiffies update is kept
1098  * alive during long running softirqs. That's ugly as hell, but
1099  * correctness is key even if we need to fix the offending softirq in
1100  * the first place.
1101  *
1102  * Note, this is different to tick_nohz_restart. We just kick the
1103  * timer and do not touch the other magic bits which need to be done
1104  * when idle is left.
1105  */
1106 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1107 {
1108 #if 0
1109 	/* Switch back to 2.6.27 behaviour */
1110 	ktime_t delta;
1111 
1112 	/*
1113 	 * Do not touch the tick device, when the next expiry is either
1114 	 * already reached or less/equal than the tick period.
1115 	 */
1116 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1117 	if (delta.tv64 <= tick_period.tv64)
1118 		return;
1119 
1120 	tick_nohz_restart(ts, now);
1121 #endif
1122 }
1123 
1124 static inline void tick_nohz_irq_enter(void)
1125 {
1126 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1127 	ktime_t now;
1128 
1129 	if (!ts->idle_active && !ts->tick_stopped)
1130 		return;
1131 	now = ktime_get();
1132 	if (ts->idle_active)
1133 		tick_nohz_stop_idle(ts, now);
1134 	if (ts->tick_stopped) {
1135 		tick_nohz_update_jiffies(now);
1136 		tick_nohz_kick_tick(ts, now);
1137 	}
1138 }
1139 
1140 #else
1141 
1142 static inline void tick_nohz_switch_to_nohz(void) { }
1143 static inline void tick_nohz_irq_enter(void) { }
1144 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1145 
1146 #endif /* CONFIG_NO_HZ_COMMON */
1147 
1148 /*
1149  * Called from irq_enter to notify about the possible interruption of idle()
1150  */
1151 void tick_irq_enter(void)
1152 {
1153 	tick_check_oneshot_broadcast_this_cpu();
1154 	tick_nohz_irq_enter();
1155 }
1156 
1157 /*
1158  * High resolution timer specific code
1159  */
1160 #ifdef CONFIG_HIGH_RES_TIMERS
1161 /*
1162  * We rearm the timer until we get disabled by the idle code.
1163  * Called with interrupts disabled.
1164  */
1165 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1166 {
1167 	struct tick_sched *ts =
1168 		container_of(timer, struct tick_sched, sched_timer);
1169 	struct pt_regs *regs = get_irq_regs();
1170 	ktime_t now = ktime_get();
1171 
1172 	tick_sched_do_timer(now);
1173 
1174 	/*
1175 	 * Do not call, when we are not in irq context and have
1176 	 * no valid regs pointer
1177 	 */
1178 	if (regs)
1179 		tick_sched_handle(ts, regs);
1180 
1181 	/* No need to reprogram if we are in idle or full dynticks mode */
1182 	if (unlikely(ts->tick_stopped))
1183 		return HRTIMER_NORESTART;
1184 
1185 	hrtimer_forward(timer, now, tick_period);
1186 
1187 	return HRTIMER_RESTART;
1188 }
1189 
1190 static int sched_skew_tick;
1191 
1192 static int __init skew_tick(char *str)
1193 {
1194 	get_option(&str, &sched_skew_tick);
1195 
1196 	return 0;
1197 }
1198 early_param("skew_tick", skew_tick);
1199 
1200 /**
1201  * tick_setup_sched_timer - setup the tick emulation timer
1202  */
1203 void tick_setup_sched_timer(void)
1204 {
1205 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1206 	ktime_t now = ktime_get();
1207 
1208 	/*
1209 	 * Emulate tick processing via per-CPU hrtimers:
1210 	 */
1211 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1212 	ts->sched_timer.function = tick_sched_timer;
1213 
1214 	/* Get the next period (per cpu) */
1215 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1216 
1217 	/* Offset the tick to avert jiffies_lock contention. */
1218 	if (sched_skew_tick) {
1219 		u64 offset = ktime_to_ns(tick_period) >> 1;
1220 		do_div(offset, num_possible_cpus());
1221 		offset *= smp_processor_id();
1222 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1223 	}
1224 
1225 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1226 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1227 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1228 }
1229 #endif /* HIGH_RES_TIMERS */
1230 
1231 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1232 void tick_cancel_sched_timer(int cpu)
1233 {
1234 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1235 
1236 # ifdef CONFIG_HIGH_RES_TIMERS
1237 	if (ts->sched_timer.base)
1238 		hrtimer_cancel(&ts->sched_timer);
1239 # endif
1240 
1241 	memset(ts, 0, sizeof(*ts));
1242 }
1243 #endif
1244 
1245 /**
1246  * Async notification about clocksource changes
1247  */
1248 void tick_clock_notify(void)
1249 {
1250 	int cpu;
1251 
1252 	for_each_possible_cpu(cpu)
1253 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1254 }
1255 
1256 /*
1257  * Async notification about clock event changes
1258  */
1259 void tick_oneshot_notify(void)
1260 {
1261 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1262 
1263 	set_bit(0, &ts->check_clocks);
1264 }
1265 
1266 /**
1267  * Check, if a change happened, which makes oneshot possible.
1268  *
1269  * Called cyclic from the hrtimer softirq (driven by the timer
1270  * softirq) allow_nohz signals, that we can switch into low-res nohz
1271  * mode, because high resolution timers are disabled (either compile
1272  * or runtime). Called with interrupts disabled.
1273  */
1274 int tick_check_oneshot_change(int allow_nohz)
1275 {
1276 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1277 
1278 	if (!test_and_clear_bit(0, &ts->check_clocks))
1279 		return 0;
1280 
1281 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1282 		return 0;
1283 
1284 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1285 		return 0;
1286 
1287 	if (!allow_nohz)
1288 		return 1;
1289 
1290 	tick_nohz_switch_to_nohz();
1291 	return 0;
1292 }
1293