xref: /openbmc/linux/kernel/time/tick-sched.c (revision 5b39939a)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/*
52 	 * Do a quick check without holding xtime_lock:
53 	 */
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 < tick_period.tv64)
56 		return;
57 
58 	/* Reevalute with xtime_lock held */
59 	write_seqlock(&xtime_lock);
60 
61 	delta = ktime_sub(now, last_jiffies_update);
62 	if (delta.tv64 >= tick_period.tv64) {
63 
64 		delta = ktime_sub(delta, tick_period);
65 		last_jiffies_update = ktime_add(last_jiffies_update,
66 						tick_period);
67 
68 		/* Slow path for long timeouts */
69 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 			s64 incr = ktime_to_ns(tick_period);
71 
72 			ticks = ktime_divns(delta, incr);
73 
74 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 							   incr * ticks);
76 		}
77 		do_timer(++ticks);
78 
79 		/* Keep the tick_next_period variable up to date */
80 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 	}
82 	write_sequnlock(&xtime_lock);
83 }
84 
85 /*
86  * Initialize and return retrieve the jiffies update.
87  */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 	ktime_t period;
91 
92 	write_seqlock(&xtime_lock);
93 	/* Did we start the jiffies update yet ? */
94 	if (last_jiffies_update.tv64 == 0)
95 		last_jiffies_update = tick_next_period;
96 	period = last_jiffies_update;
97 	write_sequnlock(&xtime_lock);
98 	return period;
99 }
100 
101 /*
102  * NOHZ - aka dynamic tick functionality
103  */
104 #ifdef CONFIG_NO_HZ
105 /*
106  * NO HZ enabled ?
107  */
108 static int tick_nohz_enabled __read_mostly  = 1;
109 
110 /*
111  * Enable / Disable tickless mode
112  */
113 static int __init setup_tick_nohz(char *str)
114 {
115 	if (!strcmp(str, "off"))
116 		tick_nohz_enabled = 0;
117 	else if (!strcmp(str, "on"))
118 		tick_nohz_enabled = 1;
119 	else
120 		return 0;
121 	return 1;
122 }
123 
124 __setup("nohz=", setup_tick_nohz);
125 
126 /**
127  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128  *
129  * Called from interrupt entry when the CPU was idle
130  *
131  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132  * must be updated. Otherwise an interrupt handler could use a stale jiffy
133  * value. We do this unconditionally on any cpu, as we don't know whether the
134  * cpu, which has the update task assigned is in a long sleep.
135  */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 	int cpu = smp_processor_id();
139 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 	unsigned long flags;
141 
142 	ts->idle_waketime = now;
143 
144 	local_irq_save(flags);
145 	tick_do_update_jiffies64(now);
146 	local_irq_restore(flags);
147 
148 	touch_softlockup_watchdog();
149 }
150 
151 /*
152  * Updates the per cpu time idle statistics counters
153  */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 	ktime_t delta;
158 
159 	if (ts->idle_active) {
160 		delta = ktime_sub(now, ts->idle_entrytime);
161 		if (nr_iowait_cpu(cpu) > 0)
162 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 		else
164 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 		ts->idle_entrytime = now;
166 	}
167 
168 	if (last_update_time)
169 		*last_update_time = ktime_to_us(now);
170 
171 }
172 
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176 
177 	update_ts_time_stats(cpu, ts, now, NULL);
178 	ts->idle_active = 0;
179 
180 	sched_clock_idle_wakeup_event(0);
181 }
182 
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 	ktime_t now = ktime_get();
186 
187 	ts->idle_entrytime = now;
188 	ts->idle_active = 1;
189 	sched_clock_idle_sleep_event();
190 	return now;
191 }
192 
193 /**
194  * get_cpu_idle_time_us - get the total idle time of a cpu
195  * @cpu: CPU number to query
196  * @last_update_time: variable to store update time in. Do not update
197  * counters if NULL.
198  *
199  * Return the cummulative idle time (since boot) for a given
200  * CPU, in microseconds.
201  *
202  * This time is measured via accounting rather than sampling,
203  * and is as accurate as ktime_get() is.
204  *
205  * This function returns -1 if NOHZ is not enabled.
206  */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 	ktime_t now, idle;
211 
212 	if (!tick_nohz_enabled)
213 		return -1;
214 
215 	now = ktime_get();
216 	if (last_update_time) {
217 		update_ts_time_stats(cpu, ts, now, last_update_time);
218 		idle = ts->idle_sleeptime;
219 	} else {
220 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222 
223 			idle = ktime_add(ts->idle_sleeptime, delta);
224 		} else {
225 			idle = ts->idle_sleeptime;
226 		}
227 	}
228 
229 	return ktime_to_us(idle);
230 
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233 
234 /**
235  * get_cpu_iowait_time_us - get the total iowait time of a cpu
236  * @cpu: CPU number to query
237  * @last_update_time: variable to store update time in. Do not update
238  * counters if NULL.
239  *
240  * Return the cummulative iowait time (since boot) for a given
241  * CPU, in microseconds.
242  *
243  * This time is measured via accounting rather than sampling,
244  * and is as accurate as ktime_get() is.
245  *
246  * This function returns -1 if NOHZ is not enabled.
247  */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 	ktime_t now, iowait;
252 
253 	if (!tick_nohz_enabled)
254 		return -1;
255 
256 	now = ktime_get();
257 	if (last_update_time) {
258 		update_ts_time_stats(cpu, ts, now, last_update_time);
259 		iowait = ts->iowait_sleeptime;
260 	} else {
261 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263 
264 			iowait = ktime_add(ts->iowait_sleeptime, delta);
265 		} else {
266 			iowait = ts->iowait_sleeptime;
267 		}
268 	}
269 
270 	return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273 
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts,
275 				      ktime_t now, int cpu)
276 {
277 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
278 	ktime_t last_update, expires;
279 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
280 	u64 time_delta;
281 
282 
283 	/* Read jiffies and the time when jiffies were updated last */
284 	do {
285 		seq = read_seqbegin(&xtime_lock);
286 		last_update = last_jiffies_update;
287 		last_jiffies = jiffies;
288 		time_delta = timekeeping_max_deferment();
289 	} while (read_seqretry(&xtime_lock, seq));
290 
291 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
292 	    arch_needs_cpu(cpu)) {
293 		next_jiffies = last_jiffies + 1;
294 		delta_jiffies = 1;
295 	} else {
296 		/* Get the next timer wheel timer */
297 		next_jiffies = get_next_timer_interrupt(last_jiffies);
298 		delta_jiffies = next_jiffies - last_jiffies;
299 	}
300 	/*
301 	 * Do not stop the tick, if we are only one off
302 	 * or if the cpu is required for rcu
303 	 */
304 	if (!ts->tick_stopped && delta_jiffies == 1)
305 		goto out;
306 
307 	/* Schedule the tick, if we are at least one jiffie off */
308 	if ((long)delta_jiffies >= 1) {
309 
310 		/*
311 		 * If this cpu is the one which updates jiffies, then
312 		 * give up the assignment and let it be taken by the
313 		 * cpu which runs the tick timer next, which might be
314 		 * this cpu as well. If we don't drop this here the
315 		 * jiffies might be stale and do_timer() never
316 		 * invoked. Keep track of the fact that it was the one
317 		 * which had the do_timer() duty last. If this cpu is
318 		 * the one which had the do_timer() duty last, we
319 		 * limit the sleep time to the timekeeping
320 		 * max_deferement value which we retrieved
321 		 * above. Otherwise we can sleep as long as we want.
322 		 */
323 		if (cpu == tick_do_timer_cpu) {
324 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
325 			ts->do_timer_last = 1;
326 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
327 			time_delta = KTIME_MAX;
328 			ts->do_timer_last = 0;
329 		} else if (!ts->do_timer_last) {
330 			time_delta = KTIME_MAX;
331 		}
332 
333 		/*
334 		 * calculate the expiry time for the next timer wheel
335 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
336 		 * that there is no timer pending or at least extremely
337 		 * far into the future (12 days for HZ=1000). In this
338 		 * case we set the expiry to the end of time.
339 		 */
340 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
341 			/*
342 			 * Calculate the time delta for the next timer event.
343 			 * If the time delta exceeds the maximum time delta
344 			 * permitted by the current clocksource then adjust
345 			 * the time delta accordingly to ensure the
346 			 * clocksource does not wrap.
347 			 */
348 			time_delta = min_t(u64, time_delta,
349 					   tick_period.tv64 * delta_jiffies);
350 		}
351 
352 		if (time_delta < KTIME_MAX)
353 			expires = ktime_add_ns(last_update, time_delta);
354 		else
355 			expires.tv64 = KTIME_MAX;
356 
357 		/* Skip reprogram of event if its not changed */
358 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
359 			goto out;
360 
361 		/*
362 		 * nohz_stop_sched_tick can be called several times before
363 		 * the nohz_restart_sched_tick is called. This happens when
364 		 * interrupts arrive which do not cause a reschedule. In the
365 		 * first call we save the current tick time, so we can restart
366 		 * the scheduler tick in nohz_restart_sched_tick.
367 		 */
368 		if (!ts->tick_stopped) {
369 			select_nohz_load_balancer(1);
370 
371 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
372 			ts->tick_stopped = 1;
373 		}
374 
375 		ts->idle_sleeps++;
376 
377 		/* Mark expires */
378 		ts->idle_expires = expires;
379 
380 		/*
381 		 * If the expiration time == KTIME_MAX, then
382 		 * in this case we simply stop the tick timer.
383 		 */
384 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
385 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
386 				hrtimer_cancel(&ts->sched_timer);
387 			goto out;
388 		}
389 
390 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
391 			hrtimer_start(&ts->sched_timer, expires,
392 				      HRTIMER_MODE_ABS_PINNED);
393 			/* Check, if the timer was already in the past */
394 			if (hrtimer_active(&ts->sched_timer))
395 				goto out;
396 		} else if (!tick_program_event(expires, 0))
397 				goto out;
398 		/*
399 		 * We are past the event already. So we crossed a
400 		 * jiffie boundary. Update jiffies and raise the
401 		 * softirq.
402 		 */
403 		tick_do_update_jiffies64(ktime_get());
404 	}
405 	raise_softirq_irqoff(TIMER_SOFTIRQ);
406 out:
407 	ts->next_jiffies = next_jiffies;
408 	ts->last_jiffies = last_jiffies;
409 	ts->sleep_length = ktime_sub(dev->next_event, now);
410 }
411 
412 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
413 {
414 	/*
415 	 * If this cpu is offline and it is the one which updates
416 	 * jiffies, then give up the assignment and let it be taken by
417 	 * the cpu which runs the tick timer next. If we don't drop
418 	 * this here the jiffies might be stale and do_timer() never
419 	 * invoked.
420 	 */
421 	if (unlikely(!cpu_online(cpu))) {
422 		if (cpu == tick_do_timer_cpu)
423 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
424 	}
425 
426 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
427 		return false;
428 
429 	if (need_resched())
430 		return false;
431 
432 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
433 		static int ratelimit;
434 
435 		if (ratelimit < 10) {
436 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
437 			       (unsigned int) local_softirq_pending());
438 			ratelimit++;
439 		}
440 		return false;
441 	}
442 
443 	return true;
444 }
445 
446 static void __tick_nohz_idle_enter(struct tick_sched *ts)
447 {
448 	ktime_t now;
449 	int cpu = smp_processor_id();
450 
451 	now = tick_nohz_start_idle(cpu, ts);
452 
453 	if (can_stop_idle_tick(cpu, ts)) {
454 		int was_stopped = ts->tick_stopped;
455 
456 		ts->idle_calls++;
457 		tick_nohz_stop_sched_tick(ts, now, cpu);
458 
459 		if (!was_stopped && ts->tick_stopped)
460 			ts->idle_jiffies = ts->last_jiffies;
461 	}
462 }
463 
464 /**
465  * tick_nohz_idle_enter - stop the idle tick from the idle task
466  *
467  * When the next event is more than a tick into the future, stop the idle tick
468  * Called when we start the idle loop.
469  *
470  * The arch is responsible of calling:
471  *
472  * - rcu_idle_enter() after its last use of RCU before the CPU is put
473  *  to sleep.
474  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
475  */
476 void tick_nohz_idle_enter(void)
477 {
478 	struct tick_sched *ts;
479 
480 	WARN_ON_ONCE(irqs_disabled());
481 
482 	/*
483  	 * Update the idle state in the scheduler domain hierarchy
484  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
485  	 * State will be updated to busy during the first busy tick after
486  	 * exiting idle.
487  	 */
488 	set_cpu_sd_state_idle();
489 
490 	local_irq_disable();
491 
492 	ts = &__get_cpu_var(tick_cpu_sched);
493 	/*
494 	 * set ts->inidle unconditionally. even if the system did not
495 	 * switch to nohz mode the cpu frequency governers rely on the
496 	 * update of the idle time accounting in tick_nohz_start_idle().
497 	 */
498 	ts->inidle = 1;
499 	__tick_nohz_idle_enter(ts);
500 
501 	local_irq_enable();
502 }
503 
504 /**
505  * tick_nohz_irq_exit - update next tick event from interrupt exit
506  *
507  * When an interrupt fires while we are idle and it doesn't cause
508  * a reschedule, it may still add, modify or delete a timer, enqueue
509  * an RCU callback, etc...
510  * So we need to re-calculate and reprogram the next tick event.
511  */
512 void tick_nohz_irq_exit(void)
513 {
514 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
515 
516 	if (!ts->inidle)
517 		return;
518 
519 	__tick_nohz_idle_enter(ts);
520 }
521 
522 /**
523  * tick_nohz_get_sleep_length - return the length of the current sleep
524  *
525  * Called from power state control code with interrupts disabled
526  */
527 ktime_t tick_nohz_get_sleep_length(void)
528 {
529 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
530 
531 	return ts->sleep_length;
532 }
533 
534 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
535 {
536 	hrtimer_cancel(&ts->sched_timer);
537 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
538 
539 	while (1) {
540 		/* Forward the time to expire in the future */
541 		hrtimer_forward(&ts->sched_timer, now, tick_period);
542 
543 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
544 			hrtimer_start_expires(&ts->sched_timer,
545 					      HRTIMER_MODE_ABS_PINNED);
546 			/* Check, if the timer was already in the past */
547 			if (hrtimer_active(&ts->sched_timer))
548 				break;
549 		} else {
550 			if (!tick_program_event(
551 				hrtimer_get_expires(&ts->sched_timer), 0))
552 				break;
553 		}
554 		/* Reread time and update jiffies */
555 		now = ktime_get();
556 		tick_do_update_jiffies64(now);
557 	}
558 }
559 
560 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
561 {
562 	/* Update jiffies first */
563 	select_nohz_load_balancer(0);
564 	tick_do_update_jiffies64(now);
565 	update_cpu_load_nohz();
566 
567 	touch_softlockup_watchdog();
568 	/*
569 	 * Cancel the scheduled timer and restore the tick
570 	 */
571 	ts->tick_stopped  = 0;
572 	ts->idle_exittime = now;
573 
574 	tick_nohz_restart(ts, now);
575 }
576 
577 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
578 {
579 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
580 	unsigned long ticks;
581 	/*
582 	 * We stopped the tick in idle. Update process times would miss the
583 	 * time we slept as update_process_times does only a 1 tick
584 	 * accounting. Enforce that this is accounted to idle !
585 	 */
586 	ticks = jiffies - ts->idle_jiffies;
587 	/*
588 	 * We might be one off. Do not randomly account a huge number of ticks!
589 	 */
590 	if (ticks && ticks < LONG_MAX)
591 		account_idle_ticks(ticks);
592 #endif
593 }
594 
595 /**
596  * tick_nohz_idle_exit - restart the idle tick from the idle task
597  *
598  * Restart the idle tick when the CPU is woken up from idle
599  * This also exit the RCU extended quiescent state. The CPU
600  * can use RCU again after this function is called.
601  */
602 void tick_nohz_idle_exit(void)
603 {
604 	int cpu = smp_processor_id();
605 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
606 	ktime_t now;
607 
608 	local_irq_disable();
609 
610 	WARN_ON_ONCE(!ts->inidle);
611 
612 	ts->inidle = 0;
613 
614 	if (ts->idle_active || ts->tick_stopped)
615 		now = ktime_get();
616 
617 	if (ts->idle_active)
618 		tick_nohz_stop_idle(cpu, now);
619 
620 	if (ts->tick_stopped) {
621 		tick_nohz_restart_sched_tick(ts, now);
622 		tick_nohz_account_idle_ticks(ts);
623 	}
624 
625 	local_irq_enable();
626 }
627 
628 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
629 {
630 	hrtimer_forward(&ts->sched_timer, now, tick_period);
631 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
632 }
633 
634 /*
635  * The nohz low res interrupt handler
636  */
637 static void tick_nohz_handler(struct clock_event_device *dev)
638 {
639 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
640 	struct pt_regs *regs = get_irq_regs();
641 	int cpu = smp_processor_id();
642 	ktime_t now = ktime_get();
643 
644 	dev->next_event.tv64 = KTIME_MAX;
645 
646 	/*
647 	 * Check if the do_timer duty was dropped. We don't care about
648 	 * concurrency: This happens only when the cpu in charge went
649 	 * into a long sleep. If two cpus happen to assign themself to
650 	 * this duty, then the jiffies update is still serialized by
651 	 * xtime_lock.
652 	 */
653 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
654 		tick_do_timer_cpu = cpu;
655 
656 	/* Check, if the jiffies need an update */
657 	if (tick_do_timer_cpu == cpu)
658 		tick_do_update_jiffies64(now);
659 
660 	/*
661 	 * When we are idle and the tick is stopped, we have to touch
662 	 * the watchdog as we might not schedule for a really long
663 	 * time. This happens on complete idle SMP systems while
664 	 * waiting on the login prompt. We also increment the "start
665 	 * of idle" jiffy stamp so the idle accounting adjustment we
666 	 * do when we go busy again does not account too much ticks.
667 	 */
668 	if (ts->tick_stopped) {
669 		touch_softlockup_watchdog();
670 		ts->idle_jiffies++;
671 	}
672 
673 	update_process_times(user_mode(regs));
674 	profile_tick(CPU_PROFILING);
675 
676 	while (tick_nohz_reprogram(ts, now)) {
677 		now = ktime_get();
678 		tick_do_update_jiffies64(now);
679 	}
680 }
681 
682 /**
683  * tick_nohz_switch_to_nohz - switch to nohz mode
684  */
685 static void tick_nohz_switch_to_nohz(void)
686 {
687 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
688 	ktime_t next;
689 
690 	if (!tick_nohz_enabled)
691 		return;
692 
693 	local_irq_disable();
694 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
695 		local_irq_enable();
696 		return;
697 	}
698 
699 	ts->nohz_mode = NOHZ_MODE_LOWRES;
700 
701 	/*
702 	 * Recycle the hrtimer in ts, so we can share the
703 	 * hrtimer_forward with the highres code.
704 	 */
705 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
706 	/* Get the next period */
707 	next = tick_init_jiffy_update();
708 
709 	for (;;) {
710 		hrtimer_set_expires(&ts->sched_timer, next);
711 		if (!tick_program_event(next, 0))
712 			break;
713 		next = ktime_add(next, tick_period);
714 	}
715 	local_irq_enable();
716 }
717 
718 /*
719  * When NOHZ is enabled and the tick is stopped, we need to kick the
720  * tick timer from irq_enter() so that the jiffies update is kept
721  * alive during long running softirqs. That's ugly as hell, but
722  * correctness is key even if we need to fix the offending softirq in
723  * the first place.
724  *
725  * Note, this is different to tick_nohz_restart. We just kick the
726  * timer and do not touch the other magic bits which need to be done
727  * when idle is left.
728  */
729 static void tick_nohz_kick_tick(int cpu, ktime_t now)
730 {
731 #if 0
732 	/* Switch back to 2.6.27 behaviour */
733 
734 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
735 	ktime_t delta;
736 
737 	/*
738 	 * Do not touch the tick device, when the next expiry is either
739 	 * already reached or less/equal than the tick period.
740 	 */
741 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
742 	if (delta.tv64 <= tick_period.tv64)
743 		return;
744 
745 	tick_nohz_restart(ts, now);
746 #endif
747 }
748 
749 static inline void tick_check_nohz(int cpu)
750 {
751 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
752 	ktime_t now;
753 
754 	if (!ts->idle_active && !ts->tick_stopped)
755 		return;
756 	now = ktime_get();
757 	if (ts->idle_active)
758 		tick_nohz_stop_idle(cpu, now);
759 	if (ts->tick_stopped) {
760 		tick_nohz_update_jiffies(now);
761 		tick_nohz_kick_tick(cpu, now);
762 	}
763 }
764 
765 #else
766 
767 static inline void tick_nohz_switch_to_nohz(void) { }
768 static inline void tick_check_nohz(int cpu) { }
769 
770 #endif /* NO_HZ */
771 
772 /*
773  * Called from irq_enter to notify about the possible interruption of idle()
774  */
775 void tick_check_idle(int cpu)
776 {
777 	tick_check_oneshot_broadcast(cpu);
778 	tick_check_nohz(cpu);
779 }
780 
781 /*
782  * High resolution timer specific code
783  */
784 #ifdef CONFIG_HIGH_RES_TIMERS
785 /*
786  * We rearm the timer until we get disabled by the idle code.
787  * Called with interrupts disabled and timer->base->cpu_base->lock held.
788  */
789 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
790 {
791 	struct tick_sched *ts =
792 		container_of(timer, struct tick_sched, sched_timer);
793 	struct pt_regs *regs = get_irq_regs();
794 	ktime_t now = ktime_get();
795 	int cpu = smp_processor_id();
796 
797 #ifdef CONFIG_NO_HZ
798 	/*
799 	 * Check if the do_timer duty was dropped. We don't care about
800 	 * concurrency: This happens only when the cpu in charge went
801 	 * into a long sleep. If two cpus happen to assign themself to
802 	 * this duty, then the jiffies update is still serialized by
803 	 * xtime_lock.
804 	 */
805 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
806 		tick_do_timer_cpu = cpu;
807 #endif
808 
809 	/* Check, if the jiffies need an update */
810 	if (tick_do_timer_cpu == cpu)
811 		tick_do_update_jiffies64(now);
812 
813 	/*
814 	 * Do not call, when we are not in irq context and have
815 	 * no valid regs pointer
816 	 */
817 	if (regs) {
818 		/*
819 		 * When we are idle and the tick is stopped, we have to touch
820 		 * the watchdog as we might not schedule for a really long
821 		 * time. This happens on complete idle SMP systems while
822 		 * waiting on the login prompt. We also increment the "start of
823 		 * idle" jiffy stamp so the idle accounting adjustment we do
824 		 * when we go busy again does not account too much ticks.
825 		 */
826 		if (ts->tick_stopped) {
827 			touch_softlockup_watchdog();
828 			if (idle_cpu(cpu))
829 				ts->idle_jiffies++;
830 		}
831 		update_process_times(user_mode(regs));
832 		profile_tick(CPU_PROFILING);
833 	}
834 
835 	hrtimer_forward(timer, now, tick_period);
836 
837 	return HRTIMER_RESTART;
838 }
839 
840 static int sched_skew_tick;
841 
842 static int __init skew_tick(char *str)
843 {
844 	get_option(&str, &sched_skew_tick);
845 
846 	return 0;
847 }
848 early_param("skew_tick", skew_tick);
849 
850 /**
851  * tick_setup_sched_timer - setup the tick emulation timer
852  */
853 void tick_setup_sched_timer(void)
854 {
855 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
856 	ktime_t now = ktime_get();
857 
858 	/*
859 	 * Emulate tick processing via per-CPU hrtimers:
860 	 */
861 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
862 	ts->sched_timer.function = tick_sched_timer;
863 
864 	/* Get the next period (per cpu) */
865 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
866 
867 	/* Offset the tick to avert xtime_lock contention. */
868 	if (sched_skew_tick) {
869 		u64 offset = ktime_to_ns(tick_period) >> 1;
870 		do_div(offset, num_possible_cpus());
871 		offset *= smp_processor_id();
872 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
873 	}
874 
875 	for (;;) {
876 		hrtimer_forward(&ts->sched_timer, now, tick_period);
877 		hrtimer_start_expires(&ts->sched_timer,
878 				      HRTIMER_MODE_ABS_PINNED);
879 		/* Check, if the timer was already in the past */
880 		if (hrtimer_active(&ts->sched_timer))
881 			break;
882 		now = ktime_get();
883 	}
884 
885 #ifdef CONFIG_NO_HZ
886 	if (tick_nohz_enabled)
887 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
888 #endif
889 }
890 #endif /* HIGH_RES_TIMERS */
891 
892 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
893 void tick_cancel_sched_timer(int cpu)
894 {
895 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
896 
897 # ifdef CONFIG_HIGH_RES_TIMERS
898 	if (ts->sched_timer.base)
899 		hrtimer_cancel(&ts->sched_timer);
900 # endif
901 
902 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
903 }
904 #endif
905 
906 /**
907  * Async notification about clocksource changes
908  */
909 void tick_clock_notify(void)
910 {
911 	int cpu;
912 
913 	for_each_possible_cpu(cpu)
914 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
915 }
916 
917 /*
918  * Async notification about clock event changes
919  */
920 void tick_oneshot_notify(void)
921 {
922 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
923 
924 	set_bit(0, &ts->check_clocks);
925 }
926 
927 /**
928  * Check, if a change happened, which makes oneshot possible.
929  *
930  * Called cyclic from the hrtimer softirq (driven by the timer
931  * softirq) allow_nohz signals, that we can switch into low-res nohz
932  * mode, because high resolution timers are disabled (either compile
933  * or runtime).
934  */
935 int tick_check_oneshot_change(int allow_nohz)
936 {
937 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
938 
939 	if (!test_and_clear_bit(0, &ts->check_clocks))
940 		return 0;
941 
942 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
943 		return 0;
944 
945 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
946 		return 0;
947 
948 	if (!allow_nohz)
949 		return 1;
950 
951 	tick_nohz_switch_to_nohz();
952 	return 0;
953 }
954