xref: /openbmc/linux/kernel/time/tick-sched.c (revision 58d76682)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 #define MAX_STALLED_JIFFIES 5
173 
174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176 	int cpu = smp_processor_id();
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 	/*
180 	 * Check if the do_timer duty was dropped. We don't care about
181 	 * concurrency: This happens only when the CPU in charge went
182 	 * into a long sleep. If two CPUs happen to assign themselves to
183 	 * this duty, then the jiffies update is still serialized by
184 	 * jiffies_lock.
185 	 *
186 	 * If nohz_full is enabled, this should not happen because the
187 	 * tick_do_timer_cpu never relinquishes.
188 	 */
189 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191 		WARN_ON_ONCE(tick_nohz_full_running);
192 #endif
193 		tick_do_timer_cpu = cpu;
194 	}
195 #endif
196 
197 	/* Check, if the jiffies need an update */
198 	if (tick_do_timer_cpu == cpu)
199 		tick_do_update_jiffies64(now);
200 
201 	/*
202 	 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 	 * or VMEXIT'ed for several msecs), force an update.
204 	 */
205 	if (ts->last_tick_jiffies != jiffies) {
206 		ts->stalled_jiffies = 0;
207 		ts->last_tick_jiffies = READ_ONCE(jiffies);
208 	} else {
209 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 			tick_do_update_jiffies64(now);
211 			ts->stalled_jiffies = 0;
212 			ts->last_tick_jiffies = READ_ONCE(jiffies);
213 		}
214 	}
215 
216 	if (ts->inidle)
217 		ts->got_idle_tick = 1;
218 }
219 
220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223 	/*
224 	 * When we are idle and the tick is stopped, we have to touch
225 	 * the watchdog as we might not schedule for a really long
226 	 * time. This happens on complete idle SMP systems while
227 	 * waiting on the login prompt. We also increment the "start of
228 	 * idle" jiffy stamp so the idle accounting adjustment we do
229 	 * when we go busy again does not account too much ticks.
230 	 */
231 	if (ts->tick_stopped) {
232 		touch_softlockup_watchdog_sched();
233 		if (is_idle_task(current))
234 			ts->idle_jiffies++;
235 		/*
236 		 * In case the current tick fired too early past its expected
237 		 * expiration, make sure we don't bypass the next clock reprogramming
238 		 * to the same deadline.
239 		 */
240 		ts->next_tick = 0;
241 	}
242 #endif
243 	update_process_times(user_mode(regs));
244 	profile_tick(CPU_PROFILING);
245 }
246 #endif
247 
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254 
255 static bool check_tick_dependency(atomic_t *dep)
256 {
257 	int val = atomic_read(dep);
258 
259 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
260 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261 		return true;
262 	}
263 
264 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
265 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266 		return true;
267 	}
268 
269 	if (val & TICK_DEP_MASK_SCHED) {
270 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271 		return true;
272 	}
273 
274 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276 		return true;
277 	}
278 
279 	if (val & TICK_DEP_MASK_RCU) {
280 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 		return true;
282 	}
283 
284 	return false;
285 }
286 
287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289 	lockdep_assert_irqs_disabled();
290 
291 	if (unlikely(!cpu_online(cpu)))
292 		return false;
293 
294 	if (check_tick_dependency(&tick_dep_mask))
295 		return false;
296 
297 	if (check_tick_dependency(&ts->tick_dep_mask))
298 		return false;
299 
300 	if (check_tick_dependency(&current->tick_dep_mask))
301 		return false;
302 
303 	if (check_tick_dependency(&current->signal->tick_dep_mask))
304 		return false;
305 
306 	return true;
307 }
308 
309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313 
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316 
317 /*
318  * Kick this CPU if it's full dynticks in order to force it to
319  * re-evaluate its dependency on the tick and restart it if necessary.
320  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321  * is NMI safe.
322  */
323 static void tick_nohz_full_kick(void)
324 {
325 	if (!tick_nohz_full_cpu(smp_processor_id()))
326 		return;
327 
328 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330 
331 /*
332  * Kick the CPU if it's full dynticks in order to force it to
333  * re-evaluate its dependency on the tick and restart it if necessary.
334  */
335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337 	if (!tick_nohz_full_cpu(cpu))
338 		return;
339 
340 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342 
343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345 	int cpu;
346 
347 	/*
348 	 * If the task is not running, run_posix_cpu_timers()
349 	 * has nothing to elapse, IPI can then be spared.
350 	 *
351 	 * activate_task()                      STORE p->tick_dep_mask
352 	 *   STORE p->on_rq
353 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
354 	 *   LOCK rq->lock                      LOAD p->on_rq
355 	 *   smp_mb__after_spin_lock()
356 	 *   tick_nohz_task_switch()
357 	 *     LOAD p->tick_dep_mask
358 	 */
359 	if (!sched_task_on_rq(tsk))
360 		return;
361 
362 	/*
363 	 * If the task concurrently migrates to another CPU,
364 	 * we guarantee it sees the new tick dependency upon
365 	 * schedule.
366 	 *
367 	 * set_task_cpu(p, cpu);
368 	 *   STORE p->cpu = @cpu
369 	 * __schedule() (switch to task 'p')
370 	 *   LOCK rq->lock
371 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
372 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
373 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
374 	 */
375 	cpu = task_cpu(tsk);
376 
377 	preempt_disable();
378 	if (cpu_online(cpu))
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
383 /*
384  * Kick all full dynticks CPUs in order to force these to re-evaluate
385  * their dependency on the tick and restart it if necessary.
386  */
387 static void tick_nohz_full_kick_all(void)
388 {
389 	int cpu;
390 
391 	if (!tick_nohz_full_running)
392 		return;
393 
394 	preempt_disable();
395 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 		tick_nohz_full_kick_cpu(cpu);
397 	preempt_enable();
398 }
399 
400 static void tick_nohz_dep_set_all(atomic_t *dep,
401 				  enum tick_dep_bits bit)
402 {
403 	int prev;
404 
405 	prev = atomic_fetch_or(BIT(bit), dep);
406 	if (!prev)
407 		tick_nohz_full_kick_all();
408 }
409 
410 /*
411  * Set a global tick dependency. Used by perf events that rely on freq and
412  * by unstable clock.
413  */
414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418 
419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421 	atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423 
424 /*
425  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426  * manage events throttling.
427  */
428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430 	int prev;
431 	struct tick_sched *ts;
432 
433 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434 
435 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436 	if (!prev) {
437 		preempt_disable();
438 		/* Perf needs local kick that is NMI safe */
439 		if (cpu == smp_processor_id()) {
440 			tick_nohz_full_kick();
441 		} else {
442 			/* Remote irq work not NMI-safe */
443 			if (!WARN_ON_ONCE(in_nmi()))
444 				tick_nohz_full_kick_cpu(cpu);
445 		}
446 		preempt_enable();
447 	}
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450 
451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454 
455 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458 
459 /*
460  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461  * in order to elapse per task timers.
462  */
463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 		tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469 
470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475 
476 /*
477  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478  * per process timers.
479  */
480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 			      enum tick_dep_bits bit)
482 {
483 	int prev;
484 	struct signal_struct *sig = tsk->signal;
485 
486 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 	if (!prev) {
488 		struct task_struct *t;
489 
490 		lockdep_assert_held(&tsk->sighand->siglock);
491 		__for_each_thread(sig, t)
492 			tick_nohz_kick_task(t);
493 	}
494 }
495 
496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500 
501 /*
502  * Re-evaluate the need for the tick as we switch the current task.
503  * It might need the tick due to per task/process properties:
504  * perf events, posix CPU timers, ...
505  */
506 void __tick_nohz_task_switch(void)
507 {
508 	struct tick_sched *ts;
509 
510 	if (!tick_nohz_full_cpu(smp_processor_id()))
511 		return;
512 
513 	ts = this_cpu_ptr(&tick_cpu_sched);
514 
515 	if (ts->tick_stopped) {
516 		if (atomic_read(&current->tick_dep_mask) ||
517 		    atomic_read(&current->signal->tick_dep_mask))
518 			tick_nohz_full_kick();
519 	}
520 }
521 
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526 	cpumask_copy(tick_nohz_full_mask, cpumask);
527 	tick_nohz_full_running = true;
528 }
529 
530 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
531 {
532 	/*
533 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
534 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
535 	 * CPUs. It must remain online when nohz full is enabled.
536 	 */
537 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
538 		return false;
539 	return true;
540 }
541 
542 static int tick_nohz_cpu_down(unsigned int cpu)
543 {
544 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
545 }
546 
547 void __init tick_nohz_init(void)
548 {
549 	int cpu, ret;
550 
551 	if (!tick_nohz_full_running)
552 		return;
553 
554 	/*
555 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
556 	 * locking contexts. But then we need irq work to raise its own
557 	 * interrupts to avoid circular dependency on the tick
558 	 */
559 	if (!arch_irq_work_has_interrupt()) {
560 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
561 		cpumask_clear(tick_nohz_full_mask);
562 		tick_nohz_full_running = false;
563 		return;
564 	}
565 
566 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
567 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
568 		cpu = smp_processor_id();
569 
570 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
571 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
572 				"for timekeeping\n", cpu);
573 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
574 		}
575 	}
576 
577 	for_each_cpu(cpu, tick_nohz_full_mask)
578 		ct_cpu_track_user(cpu);
579 
580 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
581 					"kernel/nohz:predown", NULL,
582 					tick_nohz_cpu_down);
583 	WARN_ON(ret < 0);
584 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
585 		cpumask_pr_args(tick_nohz_full_mask));
586 }
587 #endif
588 
589 /*
590  * NOHZ - aka dynamic tick functionality
591  */
592 #ifdef CONFIG_NO_HZ_COMMON
593 /*
594  * NO HZ enabled ?
595  */
596 bool tick_nohz_enabled __read_mostly  = true;
597 unsigned long tick_nohz_active  __read_mostly;
598 /*
599  * Enable / Disable tickless mode
600  */
601 static int __init setup_tick_nohz(char *str)
602 {
603 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
604 }
605 
606 __setup("nohz=", setup_tick_nohz);
607 
608 bool tick_nohz_tick_stopped(void)
609 {
610 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
611 
612 	return ts->tick_stopped;
613 }
614 
615 bool tick_nohz_tick_stopped_cpu(int cpu)
616 {
617 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
618 
619 	return ts->tick_stopped;
620 }
621 
622 /**
623  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
624  *
625  * Called from interrupt entry when the CPU was idle
626  *
627  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
628  * must be updated. Otherwise an interrupt handler could use a stale jiffy
629  * value. We do this unconditionally on any CPU, as we don't know whether the
630  * CPU, which has the update task assigned is in a long sleep.
631  */
632 static void tick_nohz_update_jiffies(ktime_t now)
633 {
634 	unsigned long flags;
635 
636 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
637 
638 	local_irq_save(flags);
639 	tick_do_update_jiffies64(now);
640 	local_irq_restore(flags);
641 
642 	touch_softlockup_watchdog_sched();
643 }
644 
645 /*
646  * Updates the per-CPU time idle statistics counters
647  */
648 static void
649 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
650 {
651 	ktime_t delta;
652 
653 	if (ts->idle_active) {
654 		delta = ktime_sub(now, ts->idle_entrytime);
655 		if (nr_iowait_cpu(cpu) > 0)
656 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
657 		else
658 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
659 		ts->idle_entrytime = now;
660 	}
661 
662 	if (last_update_time)
663 		*last_update_time = ktime_to_us(now);
664 
665 }
666 
667 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
668 {
669 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
670 	ts->idle_active = 0;
671 
672 	sched_clock_idle_wakeup_event();
673 }
674 
675 static void tick_nohz_start_idle(struct tick_sched *ts)
676 {
677 	ts->idle_entrytime = ktime_get();
678 	ts->idle_active = 1;
679 	sched_clock_idle_sleep_event();
680 }
681 
682 /**
683  * get_cpu_idle_time_us - get the total idle time of a CPU
684  * @cpu: CPU number to query
685  * @last_update_time: variable to store update time in. Do not update
686  * counters if NULL.
687  *
688  * Return the cumulative idle time (since boot) for a given
689  * CPU, in microseconds.
690  *
691  * This time is measured via accounting rather than sampling,
692  * and is as accurate as ktime_get() is.
693  *
694  * This function returns -1 if NOHZ is not enabled.
695  */
696 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
697 {
698 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
699 	ktime_t now, idle;
700 
701 	if (!tick_nohz_active)
702 		return -1;
703 
704 	now = ktime_get();
705 	if (last_update_time) {
706 		update_ts_time_stats(cpu, ts, now, last_update_time);
707 		idle = ts->idle_sleeptime;
708 	} else {
709 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
710 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
711 
712 			idle = ktime_add(ts->idle_sleeptime, delta);
713 		} else {
714 			idle = ts->idle_sleeptime;
715 		}
716 	}
717 
718 	return ktime_to_us(idle);
719 
720 }
721 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
722 
723 /**
724  * get_cpu_iowait_time_us - get the total iowait time of a CPU
725  * @cpu: CPU number to query
726  * @last_update_time: variable to store update time in. Do not update
727  * counters if NULL.
728  *
729  * Return the cumulative iowait time (since boot) for a given
730  * CPU, in microseconds.
731  *
732  * This time is measured via accounting rather than sampling,
733  * and is as accurate as ktime_get() is.
734  *
735  * This function returns -1 if NOHZ is not enabled.
736  */
737 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
738 {
739 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
740 	ktime_t now, iowait;
741 
742 	if (!tick_nohz_active)
743 		return -1;
744 
745 	now = ktime_get();
746 	if (last_update_time) {
747 		update_ts_time_stats(cpu, ts, now, last_update_time);
748 		iowait = ts->iowait_sleeptime;
749 	} else {
750 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
751 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
752 
753 			iowait = ktime_add(ts->iowait_sleeptime, delta);
754 		} else {
755 			iowait = ts->iowait_sleeptime;
756 		}
757 	}
758 
759 	return ktime_to_us(iowait);
760 }
761 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
762 
763 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
764 {
765 	hrtimer_cancel(&ts->sched_timer);
766 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
767 
768 	/* Forward the time to expire in the future */
769 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
770 
771 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
772 		hrtimer_start_expires(&ts->sched_timer,
773 				      HRTIMER_MODE_ABS_PINNED_HARD);
774 	} else {
775 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
776 	}
777 
778 	/*
779 	 * Reset to make sure next tick stop doesn't get fooled by past
780 	 * cached clock deadline.
781 	 */
782 	ts->next_tick = 0;
783 }
784 
785 static inline bool local_timer_softirq_pending(void)
786 {
787 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
788 }
789 
790 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
791 {
792 	u64 basemono, next_tick, delta, expires;
793 	unsigned long basejiff;
794 	unsigned int seq;
795 
796 	/* Read jiffies and the time when jiffies were updated last */
797 	do {
798 		seq = read_seqcount_begin(&jiffies_seq);
799 		basemono = last_jiffies_update;
800 		basejiff = jiffies;
801 	} while (read_seqcount_retry(&jiffies_seq, seq));
802 	ts->last_jiffies = basejiff;
803 	ts->timer_expires_base = basemono;
804 
805 	/*
806 	 * Keep the periodic tick, when RCU, architecture or irq_work
807 	 * requests it.
808 	 * Aside of that check whether the local timer softirq is
809 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
810 	 * because there is an already expired timer, so it will request
811 	 * immediate expiry, which rearms the hardware timer with a
812 	 * minimal delta which brings us back to this place
813 	 * immediately. Lather, rinse and repeat...
814 	 */
815 	if (rcu_needs_cpu() || arch_needs_cpu() ||
816 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
817 		next_tick = basemono + TICK_NSEC;
818 	} else {
819 		/*
820 		 * Get the next pending timer. If high resolution
821 		 * timers are enabled this only takes the timer wheel
822 		 * timers into account. If high resolution timers are
823 		 * disabled this also looks at the next expiring
824 		 * hrtimer.
825 		 */
826 		next_tick = get_next_timer_interrupt(basejiff, basemono);
827 		ts->next_timer = next_tick;
828 	}
829 
830 	/*
831 	 * If the tick is due in the next period, keep it ticking or
832 	 * force prod the timer.
833 	 */
834 	delta = next_tick - basemono;
835 	if (delta <= (u64)TICK_NSEC) {
836 		/*
837 		 * Tell the timer code that the base is not idle, i.e. undo
838 		 * the effect of get_next_timer_interrupt():
839 		 */
840 		timer_clear_idle();
841 		/*
842 		 * We've not stopped the tick yet, and there's a timer in the
843 		 * next period, so no point in stopping it either, bail.
844 		 */
845 		if (!ts->tick_stopped) {
846 			ts->timer_expires = 0;
847 			goto out;
848 		}
849 	}
850 
851 	/*
852 	 * If this CPU is the one which had the do_timer() duty last, we limit
853 	 * the sleep time to the timekeeping max_deferment value.
854 	 * Otherwise we can sleep as long as we want.
855 	 */
856 	delta = timekeeping_max_deferment();
857 	if (cpu != tick_do_timer_cpu &&
858 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
859 		delta = KTIME_MAX;
860 
861 	/* Calculate the next expiry time */
862 	if (delta < (KTIME_MAX - basemono))
863 		expires = basemono + delta;
864 	else
865 		expires = KTIME_MAX;
866 
867 	ts->timer_expires = min_t(u64, expires, next_tick);
868 
869 out:
870 	return ts->timer_expires;
871 }
872 
873 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
874 {
875 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
876 	u64 basemono = ts->timer_expires_base;
877 	u64 expires = ts->timer_expires;
878 	ktime_t tick = expires;
879 
880 	/* Make sure we won't be trying to stop it twice in a row. */
881 	ts->timer_expires_base = 0;
882 
883 	/*
884 	 * If this CPU is the one which updates jiffies, then give up
885 	 * the assignment and let it be taken by the CPU which runs
886 	 * the tick timer next, which might be this CPU as well. If we
887 	 * don't drop this here the jiffies might be stale and
888 	 * do_timer() never invoked. Keep track of the fact that it
889 	 * was the one which had the do_timer() duty last.
890 	 */
891 	if (cpu == tick_do_timer_cpu) {
892 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
893 		ts->do_timer_last = 1;
894 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
895 		ts->do_timer_last = 0;
896 	}
897 
898 	/* Skip reprogram of event if its not changed */
899 	if (ts->tick_stopped && (expires == ts->next_tick)) {
900 		/* Sanity check: make sure clockevent is actually programmed */
901 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
902 			return;
903 
904 		WARN_ON_ONCE(1);
905 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
906 			    basemono, ts->next_tick, dev->next_event,
907 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
908 	}
909 
910 	/*
911 	 * nohz_stop_sched_tick can be called several times before
912 	 * the nohz_restart_sched_tick is called. This happens when
913 	 * interrupts arrive which do not cause a reschedule. In the
914 	 * first call we save the current tick time, so we can restart
915 	 * the scheduler tick in nohz_restart_sched_tick.
916 	 */
917 	if (!ts->tick_stopped) {
918 		calc_load_nohz_start();
919 		quiet_vmstat();
920 
921 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
922 		ts->tick_stopped = 1;
923 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
924 	}
925 
926 	ts->next_tick = tick;
927 
928 	/*
929 	 * If the expiration time == KTIME_MAX, then we simply stop
930 	 * the tick timer.
931 	 */
932 	if (unlikely(expires == KTIME_MAX)) {
933 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
934 			hrtimer_cancel(&ts->sched_timer);
935 		else
936 			tick_program_event(KTIME_MAX, 1);
937 		return;
938 	}
939 
940 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
941 		hrtimer_start(&ts->sched_timer, tick,
942 			      HRTIMER_MODE_ABS_PINNED_HARD);
943 	} else {
944 		hrtimer_set_expires(&ts->sched_timer, tick);
945 		tick_program_event(tick, 1);
946 	}
947 }
948 
949 static void tick_nohz_retain_tick(struct tick_sched *ts)
950 {
951 	ts->timer_expires_base = 0;
952 }
953 
954 #ifdef CONFIG_NO_HZ_FULL
955 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
956 {
957 	if (tick_nohz_next_event(ts, cpu))
958 		tick_nohz_stop_tick(ts, cpu);
959 	else
960 		tick_nohz_retain_tick(ts);
961 }
962 #endif /* CONFIG_NO_HZ_FULL */
963 
964 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
965 {
966 	/* Update jiffies first */
967 	tick_do_update_jiffies64(now);
968 
969 	/*
970 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
971 	 * the clock forward checks in the enqueue path:
972 	 */
973 	timer_clear_idle();
974 
975 	calc_load_nohz_stop();
976 	touch_softlockup_watchdog_sched();
977 	/*
978 	 * Cancel the scheduled timer and restore the tick
979 	 */
980 	ts->tick_stopped  = 0;
981 	tick_nohz_restart(ts, now);
982 }
983 
984 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
985 					 ktime_t now)
986 {
987 #ifdef CONFIG_NO_HZ_FULL
988 	int cpu = smp_processor_id();
989 
990 	if (can_stop_full_tick(cpu, ts))
991 		tick_nohz_stop_sched_tick(ts, cpu);
992 	else if (ts->tick_stopped)
993 		tick_nohz_restart_sched_tick(ts, now);
994 #endif
995 }
996 
997 static void tick_nohz_full_update_tick(struct tick_sched *ts)
998 {
999 	if (!tick_nohz_full_cpu(smp_processor_id()))
1000 		return;
1001 
1002 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
1003 		return;
1004 
1005 	__tick_nohz_full_update_tick(ts, ktime_get());
1006 }
1007 
1008 /*
1009  * A pending softirq outside an IRQ (or softirq disabled section) context
1010  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1011  * reach here due to the need_resched() early check in can_stop_idle_tick().
1012  *
1013  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1014  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1015  * triggering the below since wakep_softirqd() is ignored.
1016  *
1017  */
1018 static bool report_idle_softirq(void)
1019 {
1020 	static int ratelimit;
1021 	unsigned int pending = local_softirq_pending();
1022 
1023 	if (likely(!pending))
1024 		return false;
1025 
1026 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1027 	if (!cpu_active(smp_processor_id())) {
1028 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1029 		if (!pending)
1030 			return false;
1031 	}
1032 
1033 	if (ratelimit < 10)
1034 		return false;
1035 
1036 	/* On RT, softirqs handling may be waiting on some lock */
1037 	if (!local_bh_blocked())
1038 		return false;
1039 
1040 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1041 		pending);
1042 	ratelimit++;
1043 
1044 	return true;
1045 }
1046 
1047 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1048 {
1049 	/*
1050 	 * If this CPU is offline and it is the one which updates
1051 	 * jiffies, then give up the assignment and let it be taken by
1052 	 * the CPU which runs the tick timer next. If we don't drop
1053 	 * this here the jiffies might be stale and do_timer() never
1054 	 * invoked.
1055 	 */
1056 	if (unlikely(!cpu_online(cpu))) {
1057 		if (cpu == tick_do_timer_cpu)
1058 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1059 		/*
1060 		 * Make sure the CPU doesn't get fooled by obsolete tick
1061 		 * deadline if it comes back online later.
1062 		 */
1063 		ts->next_tick = 0;
1064 		return false;
1065 	}
1066 
1067 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1068 		return false;
1069 
1070 	if (need_resched())
1071 		return false;
1072 
1073 	if (unlikely(report_idle_softirq()))
1074 		return false;
1075 
1076 	if (tick_nohz_full_enabled()) {
1077 		/*
1078 		 * Keep the tick alive to guarantee timekeeping progression
1079 		 * if there are full dynticks CPUs around
1080 		 */
1081 		if (tick_do_timer_cpu == cpu)
1082 			return false;
1083 
1084 		/* Should not happen for nohz-full */
1085 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1086 			return false;
1087 	}
1088 
1089 	return true;
1090 }
1091 
1092 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1093 {
1094 	ktime_t expires;
1095 	int cpu = smp_processor_id();
1096 
1097 	/*
1098 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1099 	 * tick timer expiration time is known already.
1100 	 */
1101 	if (ts->timer_expires_base)
1102 		expires = ts->timer_expires;
1103 	else if (can_stop_idle_tick(cpu, ts))
1104 		expires = tick_nohz_next_event(ts, cpu);
1105 	else
1106 		return;
1107 
1108 	ts->idle_calls++;
1109 
1110 	if (expires > 0LL) {
1111 		int was_stopped = ts->tick_stopped;
1112 
1113 		tick_nohz_stop_tick(ts, cpu);
1114 
1115 		ts->idle_sleeps++;
1116 		ts->idle_expires = expires;
1117 
1118 		if (!was_stopped && ts->tick_stopped) {
1119 			ts->idle_jiffies = ts->last_jiffies;
1120 			nohz_balance_enter_idle(cpu);
1121 		}
1122 	} else {
1123 		tick_nohz_retain_tick(ts);
1124 	}
1125 }
1126 
1127 /**
1128  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1129  *
1130  * When the next event is more than a tick into the future, stop the idle tick
1131  */
1132 void tick_nohz_idle_stop_tick(void)
1133 {
1134 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1135 }
1136 
1137 void tick_nohz_idle_retain_tick(void)
1138 {
1139 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1140 	/*
1141 	 * Undo the effect of get_next_timer_interrupt() called from
1142 	 * tick_nohz_next_event().
1143 	 */
1144 	timer_clear_idle();
1145 }
1146 
1147 /**
1148  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1149  *
1150  * Called when we start the idle loop.
1151  */
1152 void tick_nohz_idle_enter(void)
1153 {
1154 	struct tick_sched *ts;
1155 
1156 	lockdep_assert_irqs_enabled();
1157 
1158 	local_irq_disable();
1159 
1160 	ts = this_cpu_ptr(&tick_cpu_sched);
1161 
1162 	WARN_ON_ONCE(ts->timer_expires_base);
1163 
1164 	ts->inidle = 1;
1165 	tick_nohz_start_idle(ts);
1166 
1167 	local_irq_enable();
1168 }
1169 
1170 /**
1171  * tick_nohz_irq_exit - update next tick event from interrupt exit
1172  *
1173  * When an interrupt fires while we are idle and it doesn't cause
1174  * a reschedule, it may still add, modify or delete a timer, enqueue
1175  * an RCU callback, etc...
1176  * So we need to re-calculate and reprogram the next tick event.
1177  */
1178 void tick_nohz_irq_exit(void)
1179 {
1180 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1181 
1182 	if (ts->inidle)
1183 		tick_nohz_start_idle(ts);
1184 	else
1185 		tick_nohz_full_update_tick(ts);
1186 }
1187 
1188 /**
1189  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1190  */
1191 bool tick_nohz_idle_got_tick(void)
1192 {
1193 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1194 
1195 	if (ts->got_idle_tick) {
1196 		ts->got_idle_tick = 0;
1197 		return true;
1198 	}
1199 	return false;
1200 }
1201 
1202 /**
1203  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1204  * or the tick, whatever that expires first. Note that, if the tick has been
1205  * stopped, it returns the next hrtimer.
1206  *
1207  * Called from power state control code with interrupts disabled
1208  */
1209 ktime_t tick_nohz_get_next_hrtimer(void)
1210 {
1211 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1212 }
1213 
1214 /**
1215  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1216  * @delta_next: duration until the next event if the tick cannot be stopped
1217  *
1218  * Called from power state control code with interrupts disabled.
1219  *
1220  * The return value of this function and/or the value returned by it through the
1221  * @delta_next pointer can be negative which must be taken into account by its
1222  * callers.
1223  */
1224 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1225 {
1226 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1227 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1228 	int cpu = smp_processor_id();
1229 	/*
1230 	 * The idle entry time is expected to be a sufficient approximation of
1231 	 * the current time at this point.
1232 	 */
1233 	ktime_t now = ts->idle_entrytime;
1234 	ktime_t next_event;
1235 
1236 	WARN_ON_ONCE(!ts->inidle);
1237 
1238 	*delta_next = ktime_sub(dev->next_event, now);
1239 
1240 	if (!can_stop_idle_tick(cpu, ts))
1241 		return *delta_next;
1242 
1243 	next_event = tick_nohz_next_event(ts, cpu);
1244 	if (!next_event)
1245 		return *delta_next;
1246 
1247 	/*
1248 	 * If the next highres timer to expire is earlier than next_event, the
1249 	 * idle governor needs to know that.
1250 	 */
1251 	next_event = min_t(u64, next_event,
1252 			   hrtimer_next_event_without(&ts->sched_timer));
1253 
1254 	return ktime_sub(next_event, now);
1255 }
1256 
1257 /**
1258  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1259  * for a particular CPU.
1260  *
1261  * Called from the schedutil frequency scaling governor in scheduler context.
1262  */
1263 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1264 {
1265 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1266 
1267 	return ts->idle_calls;
1268 }
1269 
1270 /**
1271  * tick_nohz_get_idle_calls - return the current idle calls counter value
1272  *
1273  * Called from the schedutil frequency scaling governor in scheduler context.
1274  */
1275 unsigned long tick_nohz_get_idle_calls(void)
1276 {
1277 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278 
1279 	return ts->idle_calls;
1280 }
1281 
1282 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1283 					ktime_t now)
1284 {
1285 	unsigned long ticks;
1286 
1287 	ts->idle_exittime = now;
1288 
1289 	if (vtime_accounting_enabled_this_cpu())
1290 		return;
1291 	/*
1292 	 * We stopped the tick in idle. Update process times would miss the
1293 	 * time we slept as update_process_times does only a 1 tick
1294 	 * accounting. Enforce that this is accounted to idle !
1295 	 */
1296 	ticks = jiffies - ts->idle_jiffies;
1297 	/*
1298 	 * We might be one off. Do not randomly account a huge number of ticks!
1299 	 */
1300 	if (ticks && ticks < LONG_MAX)
1301 		account_idle_ticks(ticks);
1302 }
1303 
1304 void tick_nohz_idle_restart_tick(void)
1305 {
1306 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1307 
1308 	if (ts->tick_stopped) {
1309 		ktime_t now = ktime_get();
1310 		tick_nohz_restart_sched_tick(ts, now);
1311 		tick_nohz_account_idle_time(ts, now);
1312 	}
1313 }
1314 
1315 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1316 {
1317 	if (tick_nohz_full_cpu(smp_processor_id()))
1318 		__tick_nohz_full_update_tick(ts, now);
1319 	else
1320 		tick_nohz_restart_sched_tick(ts, now);
1321 
1322 	tick_nohz_account_idle_time(ts, now);
1323 }
1324 
1325 /**
1326  * tick_nohz_idle_exit - restart the idle tick from the idle task
1327  *
1328  * Restart the idle tick when the CPU is woken up from idle
1329  * This also exit the RCU extended quiescent state. The CPU
1330  * can use RCU again after this function is called.
1331  */
1332 void tick_nohz_idle_exit(void)
1333 {
1334 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1335 	bool idle_active, tick_stopped;
1336 	ktime_t now;
1337 
1338 	local_irq_disable();
1339 
1340 	WARN_ON_ONCE(!ts->inidle);
1341 	WARN_ON_ONCE(ts->timer_expires_base);
1342 
1343 	ts->inidle = 0;
1344 	idle_active = ts->idle_active;
1345 	tick_stopped = ts->tick_stopped;
1346 
1347 	if (idle_active || tick_stopped)
1348 		now = ktime_get();
1349 
1350 	if (idle_active)
1351 		tick_nohz_stop_idle(ts, now);
1352 
1353 	if (tick_stopped)
1354 		tick_nohz_idle_update_tick(ts, now);
1355 
1356 	local_irq_enable();
1357 }
1358 
1359 /*
1360  * The nohz low res interrupt handler
1361  */
1362 static void tick_nohz_handler(struct clock_event_device *dev)
1363 {
1364 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1365 	struct pt_regs *regs = get_irq_regs();
1366 	ktime_t now = ktime_get();
1367 
1368 	dev->next_event = KTIME_MAX;
1369 
1370 	tick_sched_do_timer(ts, now);
1371 	tick_sched_handle(ts, regs);
1372 
1373 	if (unlikely(ts->tick_stopped)) {
1374 		/*
1375 		 * The clockevent device is not reprogrammed, so change the
1376 		 * clock event device to ONESHOT_STOPPED to avoid spurious
1377 		 * interrupts on devices which might not be truly one shot.
1378 		 */
1379 		tick_program_event(KTIME_MAX, 1);
1380 		return;
1381 	}
1382 
1383 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1384 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1385 }
1386 
1387 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1388 {
1389 	if (!tick_nohz_enabled)
1390 		return;
1391 	ts->nohz_mode = mode;
1392 	/* One update is enough */
1393 	if (!test_and_set_bit(0, &tick_nohz_active))
1394 		timers_update_nohz();
1395 }
1396 
1397 /**
1398  * tick_nohz_switch_to_nohz - switch to nohz mode
1399  */
1400 static void tick_nohz_switch_to_nohz(void)
1401 {
1402 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403 	ktime_t next;
1404 
1405 	if (!tick_nohz_enabled)
1406 		return;
1407 
1408 	if (tick_switch_to_oneshot(tick_nohz_handler))
1409 		return;
1410 
1411 	/*
1412 	 * Recycle the hrtimer in ts, so we can share the
1413 	 * hrtimer_forward with the highres code.
1414 	 */
1415 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1416 	/* Get the next period */
1417 	next = tick_init_jiffy_update();
1418 
1419 	hrtimer_set_expires(&ts->sched_timer, next);
1420 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1421 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1422 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1423 }
1424 
1425 static inline void tick_nohz_irq_enter(void)
1426 {
1427 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428 	ktime_t now;
1429 
1430 	if (!ts->idle_active && !ts->tick_stopped)
1431 		return;
1432 	now = ktime_get();
1433 	if (ts->idle_active)
1434 		tick_nohz_stop_idle(ts, now);
1435 	/*
1436 	 * If all CPUs are idle. We may need to update a stale jiffies value.
1437 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1438 	 * alive but it might be busy looping with interrupts disabled in some
1439 	 * rare case (typically stop machine). So we must make sure we have a
1440 	 * last resort.
1441 	 */
1442 	if (ts->tick_stopped)
1443 		tick_nohz_update_jiffies(now);
1444 }
1445 
1446 #else
1447 
1448 static inline void tick_nohz_switch_to_nohz(void) { }
1449 static inline void tick_nohz_irq_enter(void) { }
1450 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1451 
1452 #endif /* CONFIG_NO_HZ_COMMON */
1453 
1454 /*
1455  * Called from irq_enter to notify about the possible interruption of idle()
1456  */
1457 void tick_irq_enter(void)
1458 {
1459 	tick_check_oneshot_broadcast_this_cpu();
1460 	tick_nohz_irq_enter();
1461 }
1462 
1463 /*
1464  * High resolution timer specific code
1465  */
1466 #ifdef CONFIG_HIGH_RES_TIMERS
1467 /*
1468  * We rearm the timer until we get disabled by the idle code.
1469  * Called with interrupts disabled.
1470  */
1471 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1472 {
1473 	struct tick_sched *ts =
1474 		container_of(timer, struct tick_sched, sched_timer);
1475 	struct pt_regs *regs = get_irq_regs();
1476 	ktime_t now = ktime_get();
1477 
1478 	tick_sched_do_timer(ts, now);
1479 
1480 	/*
1481 	 * Do not call, when we are not in irq context and have
1482 	 * no valid regs pointer
1483 	 */
1484 	if (regs)
1485 		tick_sched_handle(ts, regs);
1486 	else
1487 		ts->next_tick = 0;
1488 
1489 	/* No need to reprogram if we are in idle or full dynticks mode */
1490 	if (unlikely(ts->tick_stopped))
1491 		return HRTIMER_NORESTART;
1492 
1493 	hrtimer_forward(timer, now, TICK_NSEC);
1494 
1495 	return HRTIMER_RESTART;
1496 }
1497 
1498 static int sched_skew_tick;
1499 
1500 static int __init skew_tick(char *str)
1501 {
1502 	get_option(&str, &sched_skew_tick);
1503 
1504 	return 0;
1505 }
1506 early_param("skew_tick", skew_tick);
1507 
1508 /**
1509  * tick_setup_sched_timer - setup the tick emulation timer
1510  */
1511 void tick_setup_sched_timer(void)
1512 {
1513 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1514 	ktime_t now = ktime_get();
1515 
1516 	/*
1517 	 * Emulate tick processing via per-CPU hrtimers:
1518 	 */
1519 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1520 	ts->sched_timer.function = tick_sched_timer;
1521 
1522 	/* Get the next period (per-CPU) */
1523 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1524 
1525 	/* Offset the tick to avert jiffies_lock contention. */
1526 	if (sched_skew_tick) {
1527 		u64 offset = TICK_NSEC >> 1;
1528 		do_div(offset, num_possible_cpus());
1529 		offset *= smp_processor_id();
1530 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1531 	}
1532 
1533 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1534 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1535 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1536 }
1537 #endif /* HIGH_RES_TIMERS */
1538 
1539 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1540 void tick_cancel_sched_timer(int cpu)
1541 {
1542 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1543 
1544 # ifdef CONFIG_HIGH_RES_TIMERS
1545 	if (ts->sched_timer.base)
1546 		hrtimer_cancel(&ts->sched_timer);
1547 # endif
1548 
1549 	memset(ts, 0, sizeof(*ts));
1550 }
1551 #endif
1552 
1553 /*
1554  * Async notification about clocksource changes
1555  */
1556 void tick_clock_notify(void)
1557 {
1558 	int cpu;
1559 
1560 	for_each_possible_cpu(cpu)
1561 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1562 }
1563 
1564 /*
1565  * Async notification about clock event changes
1566  */
1567 void tick_oneshot_notify(void)
1568 {
1569 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1570 
1571 	set_bit(0, &ts->check_clocks);
1572 }
1573 
1574 /*
1575  * Check, if a change happened, which makes oneshot possible.
1576  *
1577  * Called cyclic from the hrtimer softirq (driven by the timer
1578  * softirq) allow_nohz signals, that we can switch into low-res nohz
1579  * mode, because high resolution timers are disabled (either compile
1580  * or runtime). Called with interrupts disabled.
1581  */
1582 int tick_check_oneshot_change(int allow_nohz)
1583 {
1584 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1585 
1586 	if (!test_and_clear_bit(0, &ts->check_clocks))
1587 		return 0;
1588 
1589 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1590 		return 0;
1591 
1592 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1593 		return 0;
1594 
1595 	if (!allow_nohz)
1596 		return 1;
1597 
1598 	tick_nohz_switch_to_nohz();
1599 	return 0;
1600 }
1601