1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Per cpu nohz control structure 30 */ 31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 32 33 /* 34 * The time, when the last jiffy update happened. Protected by xtime_lock. 35 */ 36 static ktime_t last_jiffies_update; 37 38 struct tick_sched *tick_get_tick_sched(int cpu) 39 { 40 return &per_cpu(tick_cpu_sched, cpu); 41 } 42 43 /* 44 * Must be called with interrupts disabled ! 45 */ 46 static void tick_do_update_jiffies64(ktime_t now) 47 { 48 unsigned long ticks = 0; 49 ktime_t delta; 50 51 /* 52 * Do a quick check without holding xtime_lock: 53 */ 54 delta = ktime_sub(now, last_jiffies_update); 55 if (delta.tv64 < tick_period.tv64) 56 return; 57 58 /* Reevalute with xtime_lock held */ 59 write_seqlock(&xtime_lock); 60 61 delta = ktime_sub(now, last_jiffies_update); 62 if (delta.tv64 >= tick_period.tv64) { 63 64 delta = ktime_sub(delta, tick_period); 65 last_jiffies_update = ktime_add(last_jiffies_update, 66 tick_period); 67 68 /* Slow path for long timeouts */ 69 if (unlikely(delta.tv64 >= tick_period.tv64)) { 70 s64 incr = ktime_to_ns(tick_period); 71 72 ticks = ktime_divns(delta, incr); 73 74 last_jiffies_update = ktime_add_ns(last_jiffies_update, 75 incr * ticks); 76 } 77 do_timer(++ticks); 78 79 /* Keep the tick_next_period variable up to date */ 80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 81 } 82 write_sequnlock(&xtime_lock); 83 } 84 85 /* 86 * Initialize and return retrieve the jiffies update. 87 */ 88 static ktime_t tick_init_jiffy_update(void) 89 { 90 ktime_t period; 91 92 write_seqlock(&xtime_lock); 93 /* Did we start the jiffies update yet ? */ 94 if (last_jiffies_update.tv64 == 0) 95 last_jiffies_update = tick_next_period; 96 period = last_jiffies_update; 97 write_sequnlock(&xtime_lock); 98 return period; 99 } 100 101 /* 102 * NOHZ - aka dynamic tick functionality 103 */ 104 #ifdef CONFIG_NO_HZ 105 /* 106 * NO HZ enabled ? 107 */ 108 static int tick_nohz_enabled __read_mostly = 1; 109 110 /* 111 * Enable / Disable tickless mode 112 */ 113 static int __init setup_tick_nohz(char *str) 114 { 115 if (!strcmp(str, "off")) 116 tick_nohz_enabled = 0; 117 else if (!strcmp(str, "on")) 118 tick_nohz_enabled = 1; 119 else 120 return 0; 121 return 1; 122 } 123 124 __setup("nohz=", setup_tick_nohz); 125 126 /** 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 128 * 129 * Called from interrupt entry when the CPU was idle 130 * 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy 133 * value. We do this unconditionally on any cpu, as we don't know whether the 134 * cpu, which has the update task assigned is in a long sleep. 135 */ 136 static void tick_nohz_update_jiffies(ktime_t now) 137 { 138 int cpu = smp_processor_id(); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 140 unsigned long flags; 141 142 cpumask_clear_cpu(cpu, nohz_cpu_mask); 143 ts->idle_waketime = now; 144 145 local_irq_save(flags); 146 tick_do_update_jiffies64(now); 147 local_irq_restore(flags); 148 149 touch_softlockup_watchdog(); 150 } 151 152 /* 153 * Updates the per cpu time idle statistics counters 154 */ 155 static void 156 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 157 { 158 ktime_t delta; 159 160 if (ts->idle_active) { 161 delta = ktime_sub(now, ts->idle_entrytime); 162 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 163 if (nr_iowait_cpu(cpu) > 0) 164 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 165 ts->idle_entrytime = now; 166 } 167 168 if (last_update_time) 169 *last_update_time = ktime_to_us(now); 170 171 } 172 173 static void tick_nohz_stop_idle(int cpu, ktime_t now) 174 { 175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 176 177 update_ts_time_stats(cpu, ts, now, NULL); 178 ts->idle_active = 0; 179 180 sched_clock_idle_wakeup_event(0); 181 } 182 183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 184 { 185 ktime_t now; 186 187 now = ktime_get(); 188 189 update_ts_time_stats(cpu, ts, now, NULL); 190 191 ts->idle_entrytime = now; 192 ts->idle_active = 1; 193 sched_clock_idle_sleep_event(); 194 return now; 195 } 196 197 /** 198 * get_cpu_idle_time_us - get the total idle time of a cpu 199 * @cpu: CPU number to query 200 * @last_update_time: variable to store update time in 201 * 202 * Return the cummulative idle time (since boot) for a given 203 * CPU, in microseconds. The idle time returned includes 204 * the iowait time (unlike what "top" and co report). 205 * 206 * This time is measured via accounting rather than sampling, 207 * and is as accurate as ktime_get() is. 208 * 209 * This function returns -1 if NOHZ is not enabled. 210 */ 211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 212 { 213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 214 215 if (!tick_nohz_enabled) 216 return -1; 217 218 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time); 219 220 return ktime_to_us(ts->idle_sleeptime); 221 } 222 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 223 224 /* 225 * get_cpu_iowait_time_us - get the total iowait time of a cpu 226 * @cpu: CPU number to query 227 * @last_update_time: variable to store update time in 228 * 229 * Return the cummulative iowait time (since boot) for a given 230 * CPU, in microseconds. 231 * 232 * This time is measured via accounting rather than sampling, 233 * and is as accurate as ktime_get() is. 234 * 235 * This function returns -1 if NOHZ is not enabled. 236 */ 237 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 238 { 239 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 240 241 if (!tick_nohz_enabled) 242 return -1; 243 244 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time); 245 246 return ktime_to_us(ts->iowait_sleeptime); 247 } 248 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 249 250 /** 251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task 252 * 253 * When the next event is more than a tick into the future, stop the idle tick 254 * Called either from the idle loop or from irq_exit() when an idle period was 255 * just interrupted by an interrupt which did not cause a reschedule. 256 */ 257 void tick_nohz_stop_sched_tick(int inidle) 258 { 259 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; 260 struct tick_sched *ts; 261 ktime_t last_update, expires, now; 262 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 263 u64 time_delta; 264 int cpu; 265 266 local_irq_save(flags); 267 268 cpu = smp_processor_id(); 269 ts = &per_cpu(tick_cpu_sched, cpu); 270 271 /* 272 * Call to tick_nohz_start_idle stops the last_update_time from being 273 * updated. Thus, it must not be called in the event we are called from 274 * irq_exit() with the prior state different than idle. 275 */ 276 if (!inidle && !ts->inidle) 277 goto end; 278 279 /* 280 * Set ts->inidle unconditionally. Even if the system did not 281 * switch to NOHZ mode the cpu frequency governers rely on the 282 * update of the idle time accounting in tick_nohz_start_idle(). 283 */ 284 ts->inidle = 1; 285 286 now = tick_nohz_start_idle(cpu, ts); 287 288 /* 289 * If this cpu is offline and it is the one which updates 290 * jiffies, then give up the assignment and let it be taken by 291 * the cpu which runs the tick timer next. If we don't drop 292 * this here the jiffies might be stale and do_timer() never 293 * invoked. 294 */ 295 if (unlikely(!cpu_online(cpu))) { 296 if (cpu == tick_do_timer_cpu) 297 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 298 } 299 300 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 301 goto end; 302 303 if (need_resched()) 304 goto end; 305 306 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 307 static int ratelimit; 308 309 if (ratelimit < 10) { 310 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", 311 (unsigned int) local_softirq_pending()); 312 ratelimit++; 313 } 314 goto end; 315 } 316 317 ts->idle_calls++; 318 /* Read jiffies and the time when jiffies were updated last */ 319 do { 320 seq = read_seqbegin(&xtime_lock); 321 last_update = last_jiffies_update; 322 last_jiffies = jiffies; 323 time_delta = timekeeping_max_deferment(); 324 } while (read_seqretry(&xtime_lock, seq)); 325 326 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || 327 arch_needs_cpu(cpu)) { 328 next_jiffies = last_jiffies + 1; 329 delta_jiffies = 1; 330 } else { 331 /* Get the next timer wheel timer */ 332 next_jiffies = get_next_timer_interrupt(last_jiffies); 333 delta_jiffies = next_jiffies - last_jiffies; 334 } 335 /* 336 * Do not stop the tick, if we are only one off 337 * or if the cpu is required for rcu 338 */ 339 if (!ts->tick_stopped && delta_jiffies == 1) 340 goto out; 341 342 /* Schedule the tick, if we are at least one jiffie off */ 343 if ((long)delta_jiffies >= 1) { 344 345 /* 346 * If this cpu is the one which updates jiffies, then 347 * give up the assignment and let it be taken by the 348 * cpu which runs the tick timer next, which might be 349 * this cpu as well. If we don't drop this here the 350 * jiffies might be stale and do_timer() never 351 * invoked. Keep track of the fact that it was the one 352 * which had the do_timer() duty last. If this cpu is 353 * the one which had the do_timer() duty last, we 354 * limit the sleep time to the timekeeping 355 * max_deferement value which we retrieved 356 * above. Otherwise we can sleep as long as we want. 357 */ 358 if (cpu == tick_do_timer_cpu) { 359 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 360 ts->do_timer_last = 1; 361 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 362 time_delta = KTIME_MAX; 363 ts->do_timer_last = 0; 364 } else if (!ts->do_timer_last) { 365 time_delta = KTIME_MAX; 366 } 367 368 /* 369 * calculate the expiry time for the next timer wheel 370 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 371 * that there is no timer pending or at least extremely 372 * far into the future (12 days for HZ=1000). In this 373 * case we set the expiry to the end of time. 374 */ 375 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 376 /* 377 * Calculate the time delta for the next timer event. 378 * If the time delta exceeds the maximum time delta 379 * permitted by the current clocksource then adjust 380 * the time delta accordingly to ensure the 381 * clocksource does not wrap. 382 */ 383 time_delta = min_t(u64, time_delta, 384 tick_period.tv64 * delta_jiffies); 385 } 386 387 if (time_delta < KTIME_MAX) 388 expires = ktime_add_ns(last_update, time_delta); 389 else 390 expires.tv64 = KTIME_MAX; 391 392 if (delta_jiffies > 1) 393 cpumask_set_cpu(cpu, nohz_cpu_mask); 394 395 /* Skip reprogram of event if its not changed */ 396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 397 goto out; 398 399 /* 400 * nohz_stop_sched_tick can be called several times before 401 * the nohz_restart_sched_tick is called. This happens when 402 * interrupts arrive which do not cause a reschedule. In the 403 * first call we save the current tick time, so we can restart 404 * the scheduler tick in nohz_restart_sched_tick. 405 */ 406 if (!ts->tick_stopped) { 407 select_nohz_load_balancer(1); 408 409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); 410 ts->tick_stopped = 1; 411 ts->idle_jiffies = last_jiffies; 412 rcu_enter_nohz(); 413 } 414 415 ts->idle_sleeps++; 416 417 /* Mark expires */ 418 ts->idle_expires = expires; 419 420 /* 421 * If the expiration time == KTIME_MAX, then 422 * in this case we simply stop the tick timer. 423 */ 424 if (unlikely(expires.tv64 == KTIME_MAX)) { 425 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 426 hrtimer_cancel(&ts->sched_timer); 427 goto out; 428 } 429 430 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 431 hrtimer_start(&ts->sched_timer, expires, 432 HRTIMER_MODE_ABS_PINNED); 433 /* Check, if the timer was already in the past */ 434 if (hrtimer_active(&ts->sched_timer)) 435 goto out; 436 } else if (!tick_program_event(expires, 0)) 437 goto out; 438 /* 439 * We are past the event already. So we crossed a 440 * jiffie boundary. Update jiffies and raise the 441 * softirq. 442 */ 443 tick_do_update_jiffies64(ktime_get()); 444 cpumask_clear_cpu(cpu, nohz_cpu_mask); 445 } 446 raise_softirq_irqoff(TIMER_SOFTIRQ); 447 out: 448 ts->next_jiffies = next_jiffies; 449 ts->last_jiffies = last_jiffies; 450 ts->sleep_length = ktime_sub(dev->next_event, now); 451 end: 452 local_irq_restore(flags); 453 } 454 455 /** 456 * tick_nohz_get_sleep_length - return the length of the current sleep 457 * 458 * Called from power state control code with interrupts disabled 459 */ 460 ktime_t tick_nohz_get_sleep_length(void) 461 { 462 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 463 464 return ts->sleep_length; 465 } 466 467 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 468 { 469 hrtimer_cancel(&ts->sched_timer); 470 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); 471 472 while (1) { 473 /* Forward the time to expire in the future */ 474 hrtimer_forward(&ts->sched_timer, now, tick_period); 475 476 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 477 hrtimer_start_expires(&ts->sched_timer, 478 HRTIMER_MODE_ABS_PINNED); 479 /* Check, if the timer was already in the past */ 480 if (hrtimer_active(&ts->sched_timer)) 481 break; 482 } else { 483 if (!tick_program_event( 484 hrtimer_get_expires(&ts->sched_timer), 0)) 485 break; 486 } 487 /* Update jiffies and reread time */ 488 tick_do_update_jiffies64(now); 489 now = ktime_get(); 490 } 491 } 492 493 /** 494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task 495 * 496 * Restart the idle tick when the CPU is woken up from idle 497 */ 498 void tick_nohz_restart_sched_tick(void) 499 { 500 int cpu = smp_processor_id(); 501 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 502 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 503 unsigned long ticks; 504 #endif 505 ktime_t now; 506 507 local_irq_disable(); 508 if (ts->idle_active || (ts->inidle && ts->tick_stopped)) 509 now = ktime_get(); 510 511 if (ts->idle_active) 512 tick_nohz_stop_idle(cpu, now); 513 514 if (!ts->inidle || !ts->tick_stopped) { 515 ts->inidle = 0; 516 local_irq_enable(); 517 return; 518 } 519 520 ts->inidle = 0; 521 522 rcu_exit_nohz(); 523 524 /* Update jiffies first */ 525 select_nohz_load_balancer(0); 526 tick_do_update_jiffies64(now); 527 cpumask_clear_cpu(cpu, nohz_cpu_mask); 528 529 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 530 /* 531 * We stopped the tick in idle. Update process times would miss the 532 * time we slept as update_process_times does only a 1 tick 533 * accounting. Enforce that this is accounted to idle ! 534 */ 535 ticks = jiffies - ts->idle_jiffies; 536 /* 537 * We might be one off. Do not randomly account a huge number of ticks! 538 */ 539 if (ticks && ticks < LONG_MAX) 540 account_idle_ticks(ticks); 541 #endif 542 543 touch_softlockup_watchdog(); 544 /* 545 * Cancel the scheduled timer and restore the tick 546 */ 547 ts->tick_stopped = 0; 548 ts->idle_exittime = now; 549 550 tick_nohz_restart(ts, now); 551 552 local_irq_enable(); 553 } 554 555 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 556 { 557 hrtimer_forward(&ts->sched_timer, now, tick_period); 558 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 559 } 560 561 /* 562 * The nohz low res interrupt handler 563 */ 564 static void tick_nohz_handler(struct clock_event_device *dev) 565 { 566 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 567 struct pt_regs *regs = get_irq_regs(); 568 int cpu = smp_processor_id(); 569 ktime_t now = ktime_get(); 570 571 dev->next_event.tv64 = KTIME_MAX; 572 573 /* 574 * Check if the do_timer duty was dropped. We don't care about 575 * concurrency: This happens only when the cpu in charge went 576 * into a long sleep. If two cpus happen to assign themself to 577 * this duty, then the jiffies update is still serialized by 578 * xtime_lock. 579 */ 580 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 581 tick_do_timer_cpu = cpu; 582 583 /* Check, if the jiffies need an update */ 584 if (tick_do_timer_cpu == cpu) 585 tick_do_update_jiffies64(now); 586 587 /* 588 * When we are idle and the tick is stopped, we have to touch 589 * the watchdog as we might not schedule for a really long 590 * time. This happens on complete idle SMP systems while 591 * waiting on the login prompt. We also increment the "start 592 * of idle" jiffy stamp so the idle accounting adjustment we 593 * do when we go busy again does not account too much ticks. 594 */ 595 if (ts->tick_stopped) { 596 touch_softlockup_watchdog(); 597 ts->idle_jiffies++; 598 } 599 600 update_process_times(user_mode(regs)); 601 profile_tick(CPU_PROFILING); 602 603 while (tick_nohz_reprogram(ts, now)) { 604 now = ktime_get(); 605 tick_do_update_jiffies64(now); 606 } 607 } 608 609 /** 610 * tick_nohz_switch_to_nohz - switch to nohz mode 611 */ 612 static void tick_nohz_switch_to_nohz(void) 613 { 614 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 615 ktime_t next; 616 617 if (!tick_nohz_enabled) 618 return; 619 620 local_irq_disable(); 621 if (tick_switch_to_oneshot(tick_nohz_handler)) { 622 local_irq_enable(); 623 return; 624 } 625 626 ts->nohz_mode = NOHZ_MODE_LOWRES; 627 628 /* 629 * Recycle the hrtimer in ts, so we can share the 630 * hrtimer_forward with the highres code. 631 */ 632 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 633 /* Get the next period */ 634 next = tick_init_jiffy_update(); 635 636 for (;;) { 637 hrtimer_set_expires(&ts->sched_timer, next); 638 if (!tick_program_event(next, 0)) 639 break; 640 next = ktime_add(next, tick_period); 641 } 642 local_irq_enable(); 643 644 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id()); 645 } 646 647 /* 648 * When NOHZ is enabled and the tick is stopped, we need to kick the 649 * tick timer from irq_enter() so that the jiffies update is kept 650 * alive during long running softirqs. That's ugly as hell, but 651 * correctness is key even if we need to fix the offending softirq in 652 * the first place. 653 * 654 * Note, this is different to tick_nohz_restart. We just kick the 655 * timer and do not touch the other magic bits which need to be done 656 * when idle is left. 657 */ 658 static void tick_nohz_kick_tick(int cpu, ktime_t now) 659 { 660 #if 0 661 /* Switch back to 2.6.27 behaviour */ 662 663 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 664 ktime_t delta; 665 666 /* 667 * Do not touch the tick device, when the next expiry is either 668 * already reached or less/equal than the tick period. 669 */ 670 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 671 if (delta.tv64 <= tick_period.tv64) 672 return; 673 674 tick_nohz_restart(ts, now); 675 #endif 676 } 677 678 static inline void tick_check_nohz(int cpu) 679 { 680 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 681 ktime_t now; 682 683 if (!ts->idle_active && !ts->tick_stopped) 684 return; 685 now = ktime_get(); 686 if (ts->idle_active) 687 tick_nohz_stop_idle(cpu, now); 688 if (ts->tick_stopped) { 689 tick_nohz_update_jiffies(now); 690 tick_nohz_kick_tick(cpu, now); 691 } 692 } 693 694 #else 695 696 static inline void tick_nohz_switch_to_nohz(void) { } 697 static inline void tick_check_nohz(int cpu) { } 698 699 #endif /* NO_HZ */ 700 701 /* 702 * Called from irq_enter to notify about the possible interruption of idle() 703 */ 704 void tick_check_idle(int cpu) 705 { 706 tick_check_oneshot_broadcast(cpu); 707 tick_check_nohz(cpu); 708 } 709 710 /* 711 * High resolution timer specific code 712 */ 713 #ifdef CONFIG_HIGH_RES_TIMERS 714 /* 715 * We rearm the timer until we get disabled by the idle code. 716 * Called with interrupts disabled and timer->base->cpu_base->lock held. 717 */ 718 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 719 { 720 struct tick_sched *ts = 721 container_of(timer, struct tick_sched, sched_timer); 722 struct pt_regs *regs = get_irq_regs(); 723 ktime_t now = ktime_get(); 724 int cpu = smp_processor_id(); 725 726 #ifdef CONFIG_NO_HZ 727 /* 728 * Check if the do_timer duty was dropped. We don't care about 729 * concurrency: This happens only when the cpu in charge went 730 * into a long sleep. If two cpus happen to assign themself to 731 * this duty, then the jiffies update is still serialized by 732 * xtime_lock. 733 */ 734 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 735 tick_do_timer_cpu = cpu; 736 #endif 737 738 /* Check, if the jiffies need an update */ 739 if (tick_do_timer_cpu == cpu) 740 tick_do_update_jiffies64(now); 741 742 /* 743 * Do not call, when we are not in irq context and have 744 * no valid regs pointer 745 */ 746 if (regs) { 747 /* 748 * When we are idle and the tick is stopped, we have to touch 749 * the watchdog as we might not schedule for a really long 750 * time. This happens on complete idle SMP systems while 751 * waiting on the login prompt. We also increment the "start of 752 * idle" jiffy stamp so the idle accounting adjustment we do 753 * when we go busy again does not account too much ticks. 754 */ 755 if (ts->tick_stopped) { 756 touch_softlockup_watchdog(); 757 ts->idle_jiffies++; 758 } 759 update_process_times(user_mode(regs)); 760 profile_tick(CPU_PROFILING); 761 } 762 763 hrtimer_forward(timer, now, tick_period); 764 765 return HRTIMER_RESTART; 766 } 767 768 /** 769 * tick_setup_sched_timer - setup the tick emulation timer 770 */ 771 void tick_setup_sched_timer(void) 772 { 773 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 774 ktime_t now = ktime_get(); 775 776 /* 777 * Emulate tick processing via per-CPU hrtimers: 778 */ 779 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 780 ts->sched_timer.function = tick_sched_timer; 781 782 /* Get the next period (per cpu) */ 783 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 784 785 for (;;) { 786 hrtimer_forward(&ts->sched_timer, now, tick_period); 787 hrtimer_start_expires(&ts->sched_timer, 788 HRTIMER_MODE_ABS_PINNED); 789 /* Check, if the timer was already in the past */ 790 if (hrtimer_active(&ts->sched_timer)) 791 break; 792 now = ktime_get(); 793 } 794 795 #ifdef CONFIG_NO_HZ 796 if (tick_nohz_enabled) { 797 ts->nohz_mode = NOHZ_MODE_HIGHRES; 798 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id()); 799 } 800 #endif 801 } 802 #endif /* HIGH_RES_TIMERS */ 803 804 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS 805 void tick_cancel_sched_timer(int cpu) 806 { 807 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 808 809 # ifdef CONFIG_HIGH_RES_TIMERS 810 if (ts->sched_timer.base) 811 hrtimer_cancel(&ts->sched_timer); 812 # endif 813 814 ts->nohz_mode = NOHZ_MODE_INACTIVE; 815 } 816 #endif 817 818 /** 819 * Async notification about clocksource changes 820 */ 821 void tick_clock_notify(void) 822 { 823 int cpu; 824 825 for_each_possible_cpu(cpu) 826 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 827 } 828 829 /* 830 * Async notification about clock event changes 831 */ 832 void tick_oneshot_notify(void) 833 { 834 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 835 836 set_bit(0, &ts->check_clocks); 837 } 838 839 /** 840 * Check, if a change happened, which makes oneshot possible. 841 * 842 * Called cyclic from the hrtimer softirq (driven by the timer 843 * softirq) allow_nohz signals, that we can switch into low-res nohz 844 * mode, because high resolution timers are disabled (either compile 845 * or runtime). 846 */ 847 int tick_check_oneshot_change(int allow_nohz) 848 { 849 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 850 851 if (!test_and_clear_bit(0, &ts->check_clocks)) 852 return 0; 853 854 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 855 return 0; 856 857 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 858 return 0; 859 860 if (!allow_nohz) 861 return 1; 862 863 tick_nohz_switch_to_nohz(); 864 return 0; 865 } 866