xref: /openbmc/linux/kernel/time/tick-sched.c (revision 555e0c1e)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static unsigned long tick_dep_mask;
161 
162 static void trace_tick_dependency(unsigned long dep)
163 {
164 	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 		return;
167 	}
168 
169 	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 		return;
172 	}
173 
174 	if (dep & TICK_DEP_MASK_SCHED) {
175 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 		return;
177 	}
178 
179 	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 }
182 
183 static bool can_stop_full_tick(struct tick_sched *ts)
184 {
185 	WARN_ON_ONCE(!irqs_disabled());
186 
187 	if (tick_dep_mask) {
188 		trace_tick_dependency(tick_dep_mask);
189 		return false;
190 	}
191 
192 	if (ts->tick_dep_mask) {
193 		trace_tick_dependency(ts->tick_dep_mask);
194 		return false;
195 	}
196 
197 	if (current->tick_dep_mask) {
198 		trace_tick_dependency(current->tick_dep_mask);
199 		return false;
200 	}
201 
202 	if (current->signal->tick_dep_mask) {
203 		trace_tick_dependency(current->signal->tick_dep_mask);
204 		return false;
205 	}
206 
207 	if (!sched_can_stop_tick()) {
208 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
209 		return false;
210 	}
211 
212 	if (!posix_cpu_timers_can_stop_tick(current)) {
213 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
214 		return false;
215 	}
216 
217 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
218 	/*
219 	 * sched_clock_tick() needs us?
220 	 *
221 	 * TODO: kick full dynticks CPUs when
222 	 * sched_clock_stable is set.
223 	 */
224 	if (!sched_clock_stable()) {
225 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
226 		/*
227 		 * Don't allow the user to think they can get
228 		 * full NO_HZ with this machine.
229 		 */
230 		WARN_ONCE(tick_nohz_full_running,
231 			  "NO_HZ FULL will not work with unstable sched clock");
232 		return false;
233 	}
234 #endif
235 
236 	return true;
237 }
238 
239 static void nohz_full_kick_func(struct irq_work *work)
240 {
241 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
242 }
243 
244 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
245 	.func = nohz_full_kick_func,
246 };
247 
248 /*
249  * Kick this CPU if it's full dynticks in order to force it to
250  * re-evaluate its dependency on the tick and restart it if necessary.
251  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
252  * is NMI safe.
253  */
254 static void tick_nohz_full_kick(void)
255 {
256 	if (!tick_nohz_full_cpu(smp_processor_id()))
257 		return;
258 
259 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
260 }
261 
262 /*
263  * Kick the CPU if it's full dynticks in order to force it to
264  * re-evaluate its dependency on the tick and restart it if necessary.
265  */
266 void tick_nohz_full_kick_cpu(int cpu)
267 {
268 	if (!tick_nohz_full_cpu(cpu))
269 		return;
270 
271 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
272 }
273 
274 /*
275  * Kick all full dynticks CPUs in order to force these to re-evaluate
276  * their dependency on the tick and restart it if necessary.
277  */
278 void tick_nohz_full_kick_all(void)
279 {
280 	int cpu;
281 
282 	if (!tick_nohz_full_running)
283 		return;
284 
285 	preempt_disable();
286 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
287 		tick_nohz_full_kick_cpu(cpu);
288 	preempt_enable();
289 }
290 
291 static void tick_nohz_dep_set_all(unsigned long *dep,
292 				  enum tick_dep_bits bit)
293 {
294 	unsigned long prev;
295 
296 	prev = fetch_or(dep, BIT_MASK(bit));
297 	if (!prev)
298 		tick_nohz_full_kick_all();
299 }
300 
301 /*
302  * Set a global tick dependency. Used by perf events that rely on freq and
303  * by unstable clock.
304  */
305 void tick_nohz_dep_set(enum tick_dep_bits bit)
306 {
307 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
308 }
309 
310 void tick_nohz_dep_clear(enum tick_dep_bits bit)
311 {
312 	clear_bit(bit, &tick_dep_mask);
313 }
314 
315 /*
316  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
317  * manage events throttling.
318  */
319 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
320 {
321 	unsigned long prev;
322 	struct tick_sched *ts;
323 
324 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
325 
326 	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
327 	if (!prev) {
328 		preempt_disable();
329 		/* Perf needs local kick that is NMI safe */
330 		if (cpu == smp_processor_id()) {
331 			tick_nohz_full_kick();
332 		} else {
333 			/* Remote irq work not NMI-safe */
334 			if (!WARN_ON_ONCE(in_nmi()))
335 				tick_nohz_full_kick_cpu(cpu);
336 		}
337 		preempt_enable();
338 	}
339 }
340 
341 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
342 {
343 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
344 
345 	clear_bit(bit, &ts->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
350  * per task timers.
351  */
352 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
353 {
354 	/*
355 	 * We could optimize this with just kicking the target running the task
356 	 * if that noise matters for nohz full users.
357 	 */
358 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
359 }
360 
361 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
362 {
363 	clear_bit(bit, &tsk->tick_dep_mask);
364 }
365 
366 /*
367  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
368  * per process timers.
369  */
370 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
371 {
372 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
373 }
374 
375 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
376 {
377 	clear_bit(bit, &sig->tick_dep_mask);
378 }
379 
380 /*
381  * Re-evaluate the need for the tick as we switch the current task.
382  * It might need the tick due to per task/process properties:
383  * perf events, posix cpu timers, ...
384  */
385 void __tick_nohz_task_switch(void)
386 {
387 	unsigned long flags;
388 	struct tick_sched *ts;
389 
390 	local_irq_save(flags);
391 
392 	if (!tick_nohz_full_cpu(smp_processor_id()))
393 		goto out;
394 
395 	ts = this_cpu_ptr(&tick_cpu_sched);
396 
397 	if (ts->tick_stopped) {
398 		if (current->tick_dep_mask || current->signal->tick_dep_mask)
399 			tick_nohz_full_kick();
400 	}
401 out:
402 	local_irq_restore(flags);
403 }
404 
405 /* Parse the boot-time nohz CPU list from the kernel parameters. */
406 static int __init tick_nohz_full_setup(char *str)
407 {
408 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
409 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
410 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
411 		free_bootmem_cpumask_var(tick_nohz_full_mask);
412 		return 1;
413 	}
414 	tick_nohz_full_running = true;
415 
416 	return 1;
417 }
418 __setup("nohz_full=", tick_nohz_full_setup);
419 
420 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
421 				       unsigned long action,
422 				       void *hcpu)
423 {
424 	unsigned int cpu = (unsigned long)hcpu;
425 
426 	switch (action & ~CPU_TASKS_FROZEN) {
427 	case CPU_DOWN_PREPARE:
428 		/*
429 		 * The boot CPU handles housekeeping duty (unbound timers,
430 		 * workqueues, timekeeping, ...) on behalf of full dynticks
431 		 * CPUs. It must remain online when nohz full is enabled.
432 		 */
433 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
434 			return NOTIFY_BAD;
435 		break;
436 	}
437 	return NOTIFY_OK;
438 }
439 
440 static int tick_nohz_init_all(void)
441 {
442 	int err = -1;
443 
444 #ifdef CONFIG_NO_HZ_FULL_ALL
445 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
446 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
447 		return err;
448 	}
449 	err = 0;
450 	cpumask_setall(tick_nohz_full_mask);
451 	tick_nohz_full_running = true;
452 #endif
453 	return err;
454 }
455 
456 void __init tick_nohz_init(void)
457 {
458 	int cpu;
459 
460 	if (!tick_nohz_full_running) {
461 		if (tick_nohz_init_all() < 0)
462 			return;
463 	}
464 
465 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
466 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
467 		cpumask_clear(tick_nohz_full_mask);
468 		tick_nohz_full_running = false;
469 		return;
470 	}
471 
472 	/*
473 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
474 	 * locking contexts. But then we need irq work to raise its own
475 	 * interrupts to avoid circular dependency on the tick
476 	 */
477 	if (!arch_irq_work_has_interrupt()) {
478 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
479 			   "support irq work self-IPIs\n");
480 		cpumask_clear(tick_nohz_full_mask);
481 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
482 		tick_nohz_full_running = false;
483 		return;
484 	}
485 
486 	cpu = smp_processor_id();
487 
488 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
489 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
490 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
491 	}
492 
493 	cpumask_andnot(housekeeping_mask,
494 		       cpu_possible_mask, tick_nohz_full_mask);
495 
496 	for_each_cpu(cpu, tick_nohz_full_mask)
497 		context_tracking_cpu_set(cpu);
498 
499 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
500 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
501 		cpumask_pr_args(tick_nohz_full_mask));
502 
503 	/*
504 	 * We need at least one CPU to handle housekeeping work such
505 	 * as timekeeping, unbound timers, workqueues, ...
506 	 */
507 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
508 }
509 #endif
510 
511 /*
512  * NOHZ - aka dynamic tick functionality
513  */
514 #ifdef CONFIG_NO_HZ_COMMON
515 /*
516  * NO HZ enabled ?
517  */
518 int tick_nohz_enabled __read_mostly = 1;
519 unsigned long tick_nohz_active  __read_mostly;
520 /*
521  * Enable / Disable tickless mode
522  */
523 static int __init setup_tick_nohz(char *str)
524 {
525 	if (!strcmp(str, "off"))
526 		tick_nohz_enabled = 0;
527 	else if (!strcmp(str, "on"))
528 		tick_nohz_enabled = 1;
529 	else
530 		return 0;
531 	return 1;
532 }
533 
534 __setup("nohz=", setup_tick_nohz);
535 
536 int tick_nohz_tick_stopped(void)
537 {
538 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
539 }
540 
541 /**
542  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
543  *
544  * Called from interrupt entry when the CPU was idle
545  *
546  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
547  * must be updated. Otherwise an interrupt handler could use a stale jiffy
548  * value. We do this unconditionally on any cpu, as we don't know whether the
549  * cpu, which has the update task assigned is in a long sleep.
550  */
551 static void tick_nohz_update_jiffies(ktime_t now)
552 {
553 	unsigned long flags;
554 
555 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
556 
557 	local_irq_save(flags);
558 	tick_do_update_jiffies64(now);
559 	local_irq_restore(flags);
560 
561 	touch_softlockup_watchdog_sched();
562 }
563 
564 /*
565  * Updates the per cpu time idle statistics counters
566  */
567 static void
568 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
569 {
570 	ktime_t delta;
571 
572 	if (ts->idle_active) {
573 		delta = ktime_sub(now, ts->idle_entrytime);
574 		if (nr_iowait_cpu(cpu) > 0)
575 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
576 		else
577 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
578 		ts->idle_entrytime = now;
579 	}
580 
581 	if (last_update_time)
582 		*last_update_time = ktime_to_us(now);
583 
584 }
585 
586 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
587 {
588 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
589 	ts->idle_active = 0;
590 
591 	sched_clock_idle_wakeup_event(0);
592 }
593 
594 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
595 {
596 	ktime_t now = ktime_get();
597 
598 	ts->idle_entrytime = now;
599 	ts->idle_active = 1;
600 	sched_clock_idle_sleep_event();
601 	return now;
602 }
603 
604 /**
605  * get_cpu_idle_time_us - get the total idle time of a cpu
606  * @cpu: CPU number to query
607  * @last_update_time: variable to store update time in. Do not update
608  * counters if NULL.
609  *
610  * Return the cummulative idle time (since boot) for a given
611  * CPU, in microseconds.
612  *
613  * This time is measured via accounting rather than sampling,
614  * and is as accurate as ktime_get() is.
615  *
616  * This function returns -1 if NOHZ is not enabled.
617  */
618 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
619 {
620 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
621 	ktime_t now, idle;
622 
623 	if (!tick_nohz_active)
624 		return -1;
625 
626 	now = ktime_get();
627 	if (last_update_time) {
628 		update_ts_time_stats(cpu, ts, now, last_update_time);
629 		idle = ts->idle_sleeptime;
630 	} else {
631 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
632 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
633 
634 			idle = ktime_add(ts->idle_sleeptime, delta);
635 		} else {
636 			idle = ts->idle_sleeptime;
637 		}
638 	}
639 
640 	return ktime_to_us(idle);
641 
642 }
643 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
644 
645 /**
646  * get_cpu_iowait_time_us - get the total iowait time of a cpu
647  * @cpu: CPU number to query
648  * @last_update_time: variable to store update time in. Do not update
649  * counters if NULL.
650  *
651  * Return the cummulative iowait time (since boot) for a given
652  * CPU, in microseconds.
653  *
654  * This time is measured via accounting rather than sampling,
655  * and is as accurate as ktime_get() is.
656  *
657  * This function returns -1 if NOHZ is not enabled.
658  */
659 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
660 {
661 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
662 	ktime_t now, iowait;
663 
664 	if (!tick_nohz_active)
665 		return -1;
666 
667 	now = ktime_get();
668 	if (last_update_time) {
669 		update_ts_time_stats(cpu, ts, now, last_update_time);
670 		iowait = ts->iowait_sleeptime;
671 	} else {
672 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
673 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
674 
675 			iowait = ktime_add(ts->iowait_sleeptime, delta);
676 		} else {
677 			iowait = ts->iowait_sleeptime;
678 		}
679 	}
680 
681 	return ktime_to_us(iowait);
682 }
683 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
684 
685 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
686 {
687 	hrtimer_cancel(&ts->sched_timer);
688 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
689 
690 	/* Forward the time to expire in the future */
691 	hrtimer_forward(&ts->sched_timer, now, tick_period);
692 
693 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
695 	else
696 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
697 }
698 
699 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
700 					 ktime_t now, int cpu)
701 {
702 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
703 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
704 	unsigned long seq, basejiff;
705 	ktime_t	tick;
706 
707 	/* Read jiffies and the time when jiffies were updated last */
708 	do {
709 		seq = read_seqbegin(&jiffies_lock);
710 		basemono = last_jiffies_update.tv64;
711 		basejiff = jiffies;
712 	} while (read_seqretry(&jiffies_lock, seq));
713 	ts->last_jiffies = basejiff;
714 
715 	if (rcu_needs_cpu(basemono, &next_rcu) ||
716 	    arch_needs_cpu() || irq_work_needs_cpu()) {
717 		next_tick = basemono + TICK_NSEC;
718 	} else {
719 		/*
720 		 * Get the next pending timer. If high resolution
721 		 * timers are enabled this only takes the timer wheel
722 		 * timers into account. If high resolution timers are
723 		 * disabled this also looks at the next expiring
724 		 * hrtimer.
725 		 */
726 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
727 		ts->next_timer = next_tmr;
728 		/* Take the next rcu event into account */
729 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
730 	}
731 
732 	/*
733 	 * If the tick is due in the next period, keep it ticking or
734 	 * force prod the timer.
735 	 */
736 	delta = next_tick - basemono;
737 	if (delta <= (u64)TICK_NSEC) {
738 		tick.tv64 = 0;
739 		/*
740 		 * We've not stopped the tick yet, and there's a timer in the
741 		 * next period, so no point in stopping it either, bail.
742 		 */
743 		if (!ts->tick_stopped)
744 			goto out;
745 
746 		/*
747 		 * If, OTOH, we did stop it, but there's a pending (expired)
748 		 * timer reprogram the timer hardware to fire now.
749 		 *
750 		 * We will not restart the tick proper, just prod the timer
751 		 * hardware into firing an interrupt to process the pending
752 		 * timers. Just like tick_irq_exit() will not restart the tick
753 		 * for 'normal' interrupts.
754 		 *
755 		 * Only once we exit the idle loop will we re-enable the tick,
756 		 * see tick_nohz_idle_exit().
757 		 */
758 		if (delta == 0) {
759 			tick_nohz_restart(ts, now);
760 			goto out;
761 		}
762 	}
763 
764 	/*
765 	 * If this cpu is the one which updates jiffies, then give up
766 	 * the assignment and let it be taken by the cpu which runs
767 	 * the tick timer next, which might be this cpu as well. If we
768 	 * don't drop this here the jiffies might be stale and
769 	 * do_timer() never invoked. Keep track of the fact that it
770 	 * was the one which had the do_timer() duty last. If this cpu
771 	 * is the one which had the do_timer() duty last, we limit the
772 	 * sleep time to the timekeeping max_deferement value.
773 	 * Otherwise we can sleep as long as we want.
774 	 */
775 	delta = timekeeping_max_deferment();
776 	if (cpu == tick_do_timer_cpu) {
777 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
778 		ts->do_timer_last = 1;
779 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
780 		delta = KTIME_MAX;
781 		ts->do_timer_last = 0;
782 	} else if (!ts->do_timer_last) {
783 		delta = KTIME_MAX;
784 	}
785 
786 #ifdef CONFIG_NO_HZ_FULL
787 	/* Limit the tick delta to the maximum scheduler deferment */
788 	if (!ts->inidle)
789 		delta = min(delta, scheduler_tick_max_deferment());
790 #endif
791 
792 	/* Calculate the next expiry time */
793 	if (delta < (KTIME_MAX - basemono))
794 		expires = basemono + delta;
795 	else
796 		expires = KTIME_MAX;
797 
798 	expires = min_t(u64, expires, next_tick);
799 	tick.tv64 = expires;
800 
801 	/* Skip reprogram of event if its not changed */
802 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
803 		goto out;
804 
805 	/*
806 	 * nohz_stop_sched_tick can be called several times before
807 	 * the nohz_restart_sched_tick is called. This happens when
808 	 * interrupts arrive which do not cause a reschedule. In the
809 	 * first call we save the current tick time, so we can restart
810 	 * the scheduler tick in nohz_restart_sched_tick.
811 	 */
812 	if (!ts->tick_stopped) {
813 		nohz_balance_enter_idle(cpu);
814 		calc_load_enter_idle();
815 
816 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
817 		ts->tick_stopped = 1;
818 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
819 	}
820 
821 	/*
822 	 * If the expiration time == KTIME_MAX, then we simply stop
823 	 * the tick timer.
824 	 */
825 	if (unlikely(expires == KTIME_MAX)) {
826 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
827 			hrtimer_cancel(&ts->sched_timer);
828 		goto out;
829 	}
830 
831 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
832 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
833 	else
834 		tick_program_event(tick, 1);
835 out:
836 	/* Update the estimated sleep length */
837 	ts->sleep_length = ktime_sub(dev->next_event, now);
838 	return tick;
839 }
840 
841 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
842 {
843 	/* Update jiffies first */
844 	tick_do_update_jiffies64(now);
845 	update_cpu_load_nohz(active);
846 
847 	calc_load_exit_idle();
848 	touch_softlockup_watchdog_sched();
849 	/*
850 	 * Cancel the scheduled timer and restore the tick
851 	 */
852 	ts->tick_stopped  = 0;
853 	ts->idle_exittime = now;
854 
855 	tick_nohz_restart(ts, now);
856 }
857 
858 static void tick_nohz_full_update_tick(struct tick_sched *ts)
859 {
860 #ifdef CONFIG_NO_HZ_FULL
861 	int cpu = smp_processor_id();
862 
863 	if (!tick_nohz_full_cpu(cpu))
864 		return;
865 
866 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
867 		return;
868 
869 	if (can_stop_full_tick(ts))
870 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
871 	else if (ts->tick_stopped)
872 		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
873 #endif
874 }
875 
876 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
877 {
878 	/*
879 	 * If this cpu is offline and it is the one which updates
880 	 * jiffies, then give up the assignment and let it be taken by
881 	 * the cpu which runs the tick timer next. If we don't drop
882 	 * this here the jiffies might be stale and do_timer() never
883 	 * invoked.
884 	 */
885 	if (unlikely(!cpu_online(cpu))) {
886 		if (cpu == tick_do_timer_cpu)
887 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
888 		return false;
889 	}
890 
891 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
892 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
893 		return false;
894 	}
895 
896 	if (need_resched())
897 		return false;
898 
899 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
900 		static int ratelimit;
901 
902 		if (ratelimit < 10 &&
903 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
904 			pr_warn("NOHZ: local_softirq_pending %02x\n",
905 				(unsigned int) local_softirq_pending());
906 			ratelimit++;
907 		}
908 		return false;
909 	}
910 
911 	if (tick_nohz_full_enabled()) {
912 		/*
913 		 * Keep the tick alive to guarantee timekeeping progression
914 		 * if there are full dynticks CPUs around
915 		 */
916 		if (tick_do_timer_cpu == cpu)
917 			return false;
918 		/*
919 		 * Boot safety: make sure the timekeeping duty has been
920 		 * assigned before entering dyntick-idle mode,
921 		 */
922 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
923 			return false;
924 	}
925 
926 	return true;
927 }
928 
929 static void __tick_nohz_idle_enter(struct tick_sched *ts)
930 {
931 	ktime_t now, expires;
932 	int cpu = smp_processor_id();
933 
934 	now = tick_nohz_start_idle(ts);
935 
936 	if (can_stop_idle_tick(cpu, ts)) {
937 		int was_stopped = ts->tick_stopped;
938 
939 		ts->idle_calls++;
940 
941 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
942 		if (expires.tv64 > 0LL) {
943 			ts->idle_sleeps++;
944 			ts->idle_expires = expires;
945 		}
946 
947 		if (!was_stopped && ts->tick_stopped)
948 			ts->idle_jiffies = ts->last_jiffies;
949 	}
950 }
951 
952 /**
953  * tick_nohz_idle_enter - stop the idle tick from the idle task
954  *
955  * When the next event is more than a tick into the future, stop the idle tick
956  * Called when we start the idle loop.
957  *
958  * The arch is responsible of calling:
959  *
960  * - rcu_idle_enter() after its last use of RCU before the CPU is put
961  *  to sleep.
962  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
963  */
964 void tick_nohz_idle_enter(void)
965 {
966 	struct tick_sched *ts;
967 
968 	WARN_ON_ONCE(irqs_disabled());
969 
970 	/*
971  	 * Update the idle state in the scheduler domain hierarchy
972  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
973  	 * State will be updated to busy during the first busy tick after
974  	 * exiting idle.
975  	 */
976 	set_cpu_sd_state_idle();
977 
978 	local_irq_disable();
979 
980 	ts = this_cpu_ptr(&tick_cpu_sched);
981 	ts->inidle = 1;
982 	__tick_nohz_idle_enter(ts);
983 
984 	local_irq_enable();
985 }
986 
987 /**
988  * tick_nohz_irq_exit - update next tick event from interrupt exit
989  *
990  * When an interrupt fires while we are idle and it doesn't cause
991  * a reschedule, it may still add, modify or delete a timer, enqueue
992  * an RCU callback, etc...
993  * So we need to re-calculate and reprogram the next tick event.
994  */
995 void tick_nohz_irq_exit(void)
996 {
997 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
998 
999 	if (ts->inidle)
1000 		__tick_nohz_idle_enter(ts);
1001 	else
1002 		tick_nohz_full_update_tick(ts);
1003 }
1004 
1005 /**
1006  * tick_nohz_get_sleep_length - return the length of the current sleep
1007  *
1008  * Called from power state control code with interrupts disabled
1009  */
1010 ktime_t tick_nohz_get_sleep_length(void)
1011 {
1012 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013 
1014 	return ts->sleep_length;
1015 }
1016 
1017 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1018 {
1019 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1020 	unsigned long ticks;
1021 
1022 	if (vtime_accounting_cpu_enabled())
1023 		return;
1024 	/*
1025 	 * We stopped the tick in idle. Update process times would miss the
1026 	 * time we slept as update_process_times does only a 1 tick
1027 	 * accounting. Enforce that this is accounted to idle !
1028 	 */
1029 	ticks = jiffies - ts->idle_jiffies;
1030 	/*
1031 	 * We might be one off. Do not randomly account a huge number of ticks!
1032 	 */
1033 	if (ticks && ticks < LONG_MAX)
1034 		account_idle_ticks(ticks);
1035 #endif
1036 }
1037 
1038 /**
1039  * tick_nohz_idle_exit - restart the idle tick from the idle task
1040  *
1041  * Restart the idle tick when the CPU is woken up from idle
1042  * This also exit the RCU extended quiescent state. The CPU
1043  * can use RCU again after this function is called.
1044  */
1045 void tick_nohz_idle_exit(void)
1046 {
1047 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1048 	ktime_t now;
1049 
1050 	local_irq_disable();
1051 
1052 	WARN_ON_ONCE(!ts->inidle);
1053 
1054 	ts->inidle = 0;
1055 
1056 	if (ts->idle_active || ts->tick_stopped)
1057 		now = ktime_get();
1058 
1059 	if (ts->idle_active)
1060 		tick_nohz_stop_idle(ts, now);
1061 
1062 	if (ts->tick_stopped) {
1063 		tick_nohz_restart_sched_tick(ts, now, 0);
1064 		tick_nohz_account_idle_ticks(ts);
1065 	}
1066 
1067 	local_irq_enable();
1068 }
1069 
1070 /*
1071  * The nohz low res interrupt handler
1072  */
1073 static void tick_nohz_handler(struct clock_event_device *dev)
1074 {
1075 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1076 	struct pt_regs *regs = get_irq_regs();
1077 	ktime_t now = ktime_get();
1078 
1079 	dev->next_event.tv64 = KTIME_MAX;
1080 
1081 	tick_sched_do_timer(now);
1082 	tick_sched_handle(ts, regs);
1083 
1084 	/* No need to reprogram if we are running tickless  */
1085 	if (unlikely(ts->tick_stopped))
1086 		return;
1087 
1088 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1089 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1090 }
1091 
1092 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1093 {
1094 	if (!tick_nohz_enabled)
1095 		return;
1096 	ts->nohz_mode = mode;
1097 	/* One update is enough */
1098 	if (!test_and_set_bit(0, &tick_nohz_active))
1099 		timers_update_migration(true);
1100 }
1101 
1102 /**
1103  * tick_nohz_switch_to_nohz - switch to nohz mode
1104  */
1105 static void tick_nohz_switch_to_nohz(void)
1106 {
1107 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 	ktime_t next;
1109 
1110 	if (!tick_nohz_enabled)
1111 		return;
1112 
1113 	if (tick_switch_to_oneshot(tick_nohz_handler))
1114 		return;
1115 
1116 	/*
1117 	 * Recycle the hrtimer in ts, so we can share the
1118 	 * hrtimer_forward with the highres code.
1119 	 */
1120 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1121 	/* Get the next period */
1122 	next = tick_init_jiffy_update();
1123 
1124 	hrtimer_set_expires(&ts->sched_timer, next);
1125 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1126 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1127 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1128 }
1129 
1130 /*
1131  * When NOHZ is enabled and the tick is stopped, we need to kick the
1132  * tick timer from irq_enter() so that the jiffies update is kept
1133  * alive during long running softirqs. That's ugly as hell, but
1134  * correctness is key even if we need to fix the offending softirq in
1135  * the first place.
1136  *
1137  * Note, this is different to tick_nohz_restart. We just kick the
1138  * timer and do not touch the other magic bits which need to be done
1139  * when idle is left.
1140  */
1141 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1142 {
1143 #if 0
1144 	/* Switch back to 2.6.27 behaviour */
1145 	ktime_t delta;
1146 
1147 	/*
1148 	 * Do not touch the tick device, when the next expiry is either
1149 	 * already reached or less/equal than the tick period.
1150 	 */
1151 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1152 	if (delta.tv64 <= tick_period.tv64)
1153 		return;
1154 
1155 	tick_nohz_restart(ts, now);
1156 #endif
1157 }
1158 
1159 static inline void tick_nohz_irq_enter(void)
1160 {
1161 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162 	ktime_t now;
1163 
1164 	if (!ts->idle_active && !ts->tick_stopped)
1165 		return;
1166 	now = ktime_get();
1167 	if (ts->idle_active)
1168 		tick_nohz_stop_idle(ts, now);
1169 	if (ts->tick_stopped) {
1170 		tick_nohz_update_jiffies(now);
1171 		tick_nohz_kick_tick(ts, now);
1172 	}
1173 }
1174 
1175 #else
1176 
1177 static inline void tick_nohz_switch_to_nohz(void) { }
1178 static inline void tick_nohz_irq_enter(void) { }
1179 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1180 
1181 #endif /* CONFIG_NO_HZ_COMMON */
1182 
1183 /*
1184  * Called from irq_enter to notify about the possible interruption of idle()
1185  */
1186 void tick_irq_enter(void)
1187 {
1188 	tick_check_oneshot_broadcast_this_cpu();
1189 	tick_nohz_irq_enter();
1190 }
1191 
1192 /*
1193  * High resolution timer specific code
1194  */
1195 #ifdef CONFIG_HIGH_RES_TIMERS
1196 /*
1197  * We rearm the timer until we get disabled by the idle code.
1198  * Called with interrupts disabled.
1199  */
1200 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1201 {
1202 	struct tick_sched *ts =
1203 		container_of(timer, struct tick_sched, sched_timer);
1204 	struct pt_regs *regs = get_irq_regs();
1205 	ktime_t now = ktime_get();
1206 
1207 	tick_sched_do_timer(now);
1208 
1209 	/*
1210 	 * Do not call, when we are not in irq context and have
1211 	 * no valid regs pointer
1212 	 */
1213 	if (regs)
1214 		tick_sched_handle(ts, regs);
1215 
1216 	/* No need to reprogram if we are in idle or full dynticks mode */
1217 	if (unlikely(ts->tick_stopped))
1218 		return HRTIMER_NORESTART;
1219 
1220 	hrtimer_forward(timer, now, tick_period);
1221 
1222 	return HRTIMER_RESTART;
1223 }
1224 
1225 static int sched_skew_tick;
1226 
1227 static int __init skew_tick(char *str)
1228 {
1229 	get_option(&str, &sched_skew_tick);
1230 
1231 	return 0;
1232 }
1233 early_param("skew_tick", skew_tick);
1234 
1235 /**
1236  * tick_setup_sched_timer - setup the tick emulation timer
1237  */
1238 void tick_setup_sched_timer(void)
1239 {
1240 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1241 	ktime_t now = ktime_get();
1242 
1243 	/*
1244 	 * Emulate tick processing via per-CPU hrtimers:
1245 	 */
1246 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1247 	ts->sched_timer.function = tick_sched_timer;
1248 
1249 	/* Get the next period (per cpu) */
1250 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1251 
1252 	/* Offset the tick to avert jiffies_lock contention. */
1253 	if (sched_skew_tick) {
1254 		u64 offset = ktime_to_ns(tick_period) >> 1;
1255 		do_div(offset, num_possible_cpus());
1256 		offset *= smp_processor_id();
1257 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1258 	}
1259 
1260 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1261 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1262 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1263 }
1264 #endif /* HIGH_RES_TIMERS */
1265 
1266 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1267 void tick_cancel_sched_timer(int cpu)
1268 {
1269 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1270 
1271 # ifdef CONFIG_HIGH_RES_TIMERS
1272 	if (ts->sched_timer.base)
1273 		hrtimer_cancel(&ts->sched_timer);
1274 # endif
1275 
1276 	memset(ts, 0, sizeof(*ts));
1277 }
1278 #endif
1279 
1280 /**
1281  * Async notification about clocksource changes
1282  */
1283 void tick_clock_notify(void)
1284 {
1285 	int cpu;
1286 
1287 	for_each_possible_cpu(cpu)
1288 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1289 }
1290 
1291 /*
1292  * Async notification about clock event changes
1293  */
1294 void tick_oneshot_notify(void)
1295 {
1296 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1297 
1298 	set_bit(0, &ts->check_clocks);
1299 }
1300 
1301 /**
1302  * Check, if a change happened, which makes oneshot possible.
1303  *
1304  * Called cyclic from the hrtimer softirq (driven by the timer
1305  * softirq) allow_nohz signals, that we can switch into low-res nohz
1306  * mode, because high resolution timers are disabled (either compile
1307  * or runtime). Called with interrupts disabled.
1308  */
1309 int tick_check_oneshot_change(int allow_nohz)
1310 {
1311 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1312 
1313 	if (!test_and_clear_bit(0, &ts->check_clocks))
1314 		return 0;
1315 
1316 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1317 		return 0;
1318 
1319 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1320 		return 0;
1321 
1322 	if (!allow_nohz)
1323 		return 1;
1324 
1325 	tick_nohz_switch_to_nohz();
1326 	return 0;
1327 }
1328