xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4f49b90a)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26 
27 #include <asm/irq_regs.h>
28 
29 #include "tick-internal.h"
30 
31 #include <trace/events/timer.h>
32 
33 /*
34  * Per cpu nohz control structure
35  */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45  * The time, when the last jiffy update happened. Protected by jiffies_lock.
46  */
47 static ktime_t last_jiffies_update;
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog_sched();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 #endif
155 
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static unsigned long tick_dep_mask;
161 
162 static void trace_tick_dependency(unsigned long dep)
163 {
164 	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 		return;
167 	}
168 
169 	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 		return;
172 	}
173 
174 	if (dep & TICK_DEP_MASK_SCHED) {
175 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 		return;
177 	}
178 
179 	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 }
182 
183 static bool can_stop_full_tick(struct tick_sched *ts)
184 {
185 	WARN_ON_ONCE(!irqs_disabled());
186 
187 	if (tick_dep_mask) {
188 		trace_tick_dependency(tick_dep_mask);
189 		return false;
190 	}
191 
192 	if (ts->tick_dep_mask) {
193 		trace_tick_dependency(ts->tick_dep_mask);
194 		return false;
195 	}
196 
197 	if (current->tick_dep_mask) {
198 		trace_tick_dependency(current->tick_dep_mask);
199 		return false;
200 	}
201 
202 	if (current->signal->tick_dep_mask) {
203 		trace_tick_dependency(current->signal->tick_dep_mask);
204 		return false;
205 	}
206 
207 	return true;
208 }
209 
210 static void nohz_full_kick_func(struct irq_work *work)
211 {
212 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
213 }
214 
215 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
216 	.func = nohz_full_kick_func,
217 };
218 
219 /*
220  * Kick this CPU if it's full dynticks in order to force it to
221  * re-evaluate its dependency on the tick and restart it if necessary.
222  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
223  * is NMI safe.
224  */
225 static void tick_nohz_full_kick(void)
226 {
227 	if (!tick_nohz_full_cpu(smp_processor_id()))
228 		return;
229 
230 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
231 }
232 
233 /*
234  * Kick the CPU if it's full dynticks in order to force it to
235  * re-evaluate its dependency on the tick and restart it if necessary.
236  */
237 void tick_nohz_full_kick_cpu(int cpu)
238 {
239 	if (!tick_nohz_full_cpu(cpu))
240 		return;
241 
242 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
243 }
244 
245 /*
246  * Kick all full dynticks CPUs in order to force these to re-evaluate
247  * their dependency on the tick and restart it if necessary.
248  */
249 static void tick_nohz_full_kick_all(void)
250 {
251 	int cpu;
252 
253 	if (!tick_nohz_full_running)
254 		return;
255 
256 	preempt_disable();
257 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
258 		tick_nohz_full_kick_cpu(cpu);
259 	preempt_enable();
260 }
261 
262 static void tick_nohz_dep_set_all(unsigned long *dep,
263 				  enum tick_dep_bits bit)
264 {
265 	unsigned long prev;
266 
267 	prev = fetch_or(dep, BIT_MASK(bit));
268 	if (!prev)
269 		tick_nohz_full_kick_all();
270 }
271 
272 /*
273  * Set a global tick dependency. Used by perf events that rely on freq and
274  * by unstable clock.
275  */
276 void tick_nohz_dep_set(enum tick_dep_bits bit)
277 {
278 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
279 }
280 
281 void tick_nohz_dep_clear(enum tick_dep_bits bit)
282 {
283 	clear_bit(bit, &tick_dep_mask);
284 }
285 
286 /*
287  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
288  * manage events throttling.
289  */
290 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
291 {
292 	unsigned long prev;
293 	struct tick_sched *ts;
294 
295 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
296 
297 	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
298 	if (!prev) {
299 		preempt_disable();
300 		/* Perf needs local kick that is NMI safe */
301 		if (cpu == smp_processor_id()) {
302 			tick_nohz_full_kick();
303 		} else {
304 			/* Remote irq work not NMI-safe */
305 			if (!WARN_ON_ONCE(in_nmi()))
306 				tick_nohz_full_kick_cpu(cpu);
307 		}
308 		preempt_enable();
309 	}
310 }
311 
312 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
313 {
314 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
315 
316 	clear_bit(bit, &ts->tick_dep_mask);
317 }
318 
319 /*
320  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
321  * per task timers.
322  */
323 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
324 {
325 	/*
326 	 * We could optimize this with just kicking the target running the task
327 	 * if that noise matters for nohz full users.
328 	 */
329 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
330 }
331 
332 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
333 {
334 	clear_bit(bit, &tsk->tick_dep_mask);
335 }
336 
337 /*
338  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
339  * per process timers.
340  */
341 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
342 {
343 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
344 }
345 
346 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
347 {
348 	clear_bit(bit, &sig->tick_dep_mask);
349 }
350 
351 /*
352  * Re-evaluate the need for the tick as we switch the current task.
353  * It might need the tick due to per task/process properties:
354  * perf events, posix cpu timers, ...
355  */
356 void __tick_nohz_task_switch(void)
357 {
358 	unsigned long flags;
359 	struct tick_sched *ts;
360 
361 	local_irq_save(flags);
362 
363 	if (!tick_nohz_full_cpu(smp_processor_id()))
364 		goto out;
365 
366 	ts = this_cpu_ptr(&tick_cpu_sched);
367 
368 	if (ts->tick_stopped) {
369 		if (current->tick_dep_mask || current->signal->tick_dep_mask)
370 			tick_nohz_full_kick();
371 	}
372 out:
373 	local_irq_restore(flags);
374 }
375 
376 /* Parse the boot-time nohz CPU list from the kernel parameters. */
377 static int __init tick_nohz_full_setup(char *str)
378 {
379 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
380 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
381 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
382 		free_bootmem_cpumask_var(tick_nohz_full_mask);
383 		return 1;
384 	}
385 	tick_nohz_full_running = true;
386 
387 	return 1;
388 }
389 __setup("nohz_full=", tick_nohz_full_setup);
390 
391 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
392 				       unsigned long action,
393 				       void *hcpu)
394 {
395 	unsigned int cpu = (unsigned long)hcpu;
396 
397 	switch (action & ~CPU_TASKS_FROZEN) {
398 	case CPU_DOWN_PREPARE:
399 		/*
400 		 * The boot CPU handles housekeeping duty (unbound timers,
401 		 * workqueues, timekeeping, ...) on behalf of full dynticks
402 		 * CPUs. It must remain online when nohz full is enabled.
403 		 */
404 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405 			return NOTIFY_BAD;
406 		break;
407 	}
408 	return NOTIFY_OK;
409 }
410 
411 static int tick_nohz_init_all(void)
412 {
413 	int err = -1;
414 
415 #ifdef CONFIG_NO_HZ_FULL_ALL
416 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
417 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
418 		return err;
419 	}
420 	err = 0;
421 	cpumask_setall(tick_nohz_full_mask);
422 	tick_nohz_full_running = true;
423 #endif
424 	return err;
425 }
426 
427 void __init tick_nohz_init(void)
428 {
429 	int cpu;
430 
431 	if (!tick_nohz_full_running) {
432 		if (tick_nohz_init_all() < 0)
433 			return;
434 	}
435 
436 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
437 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
438 		cpumask_clear(tick_nohz_full_mask);
439 		tick_nohz_full_running = false;
440 		return;
441 	}
442 
443 	/*
444 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
445 	 * locking contexts. But then we need irq work to raise its own
446 	 * interrupts to avoid circular dependency on the tick
447 	 */
448 	if (!arch_irq_work_has_interrupt()) {
449 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
450 			   "support irq work self-IPIs\n");
451 		cpumask_clear(tick_nohz_full_mask);
452 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
453 		tick_nohz_full_running = false;
454 		return;
455 	}
456 
457 	cpu = smp_processor_id();
458 
459 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
460 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
461 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
462 	}
463 
464 	cpumask_andnot(housekeeping_mask,
465 		       cpu_possible_mask, tick_nohz_full_mask);
466 
467 	for_each_cpu(cpu, tick_nohz_full_mask)
468 		context_tracking_cpu_set(cpu);
469 
470 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
471 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
472 		cpumask_pr_args(tick_nohz_full_mask));
473 
474 	/*
475 	 * We need at least one CPU to handle housekeeping work such
476 	 * as timekeeping, unbound timers, workqueues, ...
477 	 */
478 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
479 }
480 #endif
481 
482 /*
483  * NOHZ - aka dynamic tick functionality
484  */
485 #ifdef CONFIG_NO_HZ_COMMON
486 /*
487  * NO HZ enabled ?
488  */
489 int tick_nohz_enabled __read_mostly = 1;
490 unsigned long tick_nohz_active  __read_mostly;
491 /*
492  * Enable / Disable tickless mode
493  */
494 static int __init setup_tick_nohz(char *str)
495 {
496 	if (!strcmp(str, "off"))
497 		tick_nohz_enabled = 0;
498 	else if (!strcmp(str, "on"))
499 		tick_nohz_enabled = 1;
500 	else
501 		return 0;
502 	return 1;
503 }
504 
505 __setup("nohz=", setup_tick_nohz);
506 
507 int tick_nohz_tick_stopped(void)
508 {
509 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
510 }
511 
512 /**
513  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
514  *
515  * Called from interrupt entry when the CPU was idle
516  *
517  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
518  * must be updated. Otherwise an interrupt handler could use a stale jiffy
519  * value. We do this unconditionally on any cpu, as we don't know whether the
520  * cpu, which has the update task assigned is in a long sleep.
521  */
522 static void tick_nohz_update_jiffies(ktime_t now)
523 {
524 	unsigned long flags;
525 
526 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
527 
528 	local_irq_save(flags);
529 	tick_do_update_jiffies64(now);
530 	local_irq_restore(flags);
531 
532 	touch_softlockup_watchdog_sched();
533 }
534 
535 /*
536  * Updates the per cpu time idle statistics counters
537  */
538 static void
539 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
540 {
541 	ktime_t delta;
542 
543 	if (ts->idle_active) {
544 		delta = ktime_sub(now, ts->idle_entrytime);
545 		if (nr_iowait_cpu(cpu) > 0)
546 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
547 		else
548 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
549 		ts->idle_entrytime = now;
550 	}
551 
552 	if (last_update_time)
553 		*last_update_time = ktime_to_us(now);
554 
555 }
556 
557 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
558 {
559 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
560 	ts->idle_active = 0;
561 
562 	sched_clock_idle_wakeup_event(0);
563 }
564 
565 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
566 {
567 	ktime_t now = ktime_get();
568 
569 	ts->idle_entrytime = now;
570 	ts->idle_active = 1;
571 	sched_clock_idle_sleep_event();
572 	return now;
573 }
574 
575 /**
576  * get_cpu_idle_time_us - get the total idle time of a cpu
577  * @cpu: CPU number to query
578  * @last_update_time: variable to store update time in. Do not update
579  * counters if NULL.
580  *
581  * Return the cummulative idle time (since boot) for a given
582  * CPU, in microseconds.
583  *
584  * This time is measured via accounting rather than sampling,
585  * and is as accurate as ktime_get() is.
586  *
587  * This function returns -1 if NOHZ is not enabled.
588  */
589 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
590 {
591 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
592 	ktime_t now, idle;
593 
594 	if (!tick_nohz_active)
595 		return -1;
596 
597 	now = ktime_get();
598 	if (last_update_time) {
599 		update_ts_time_stats(cpu, ts, now, last_update_time);
600 		idle = ts->idle_sleeptime;
601 	} else {
602 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
603 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
604 
605 			idle = ktime_add(ts->idle_sleeptime, delta);
606 		} else {
607 			idle = ts->idle_sleeptime;
608 		}
609 	}
610 
611 	return ktime_to_us(idle);
612 
613 }
614 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
615 
616 /**
617  * get_cpu_iowait_time_us - get the total iowait time of a cpu
618  * @cpu: CPU number to query
619  * @last_update_time: variable to store update time in. Do not update
620  * counters if NULL.
621  *
622  * Return the cummulative iowait time (since boot) for a given
623  * CPU, in microseconds.
624  *
625  * This time is measured via accounting rather than sampling,
626  * and is as accurate as ktime_get() is.
627  *
628  * This function returns -1 if NOHZ is not enabled.
629  */
630 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
631 {
632 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
633 	ktime_t now, iowait;
634 
635 	if (!tick_nohz_active)
636 		return -1;
637 
638 	now = ktime_get();
639 	if (last_update_time) {
640 		update_ts_time_stats(cpu, ts, now, last_update_time);
641 		iowait = ts->iowait_sleeptime;
642 	} else {
643 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
644 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
645 
646 			iowait = ktime_add(ts->iowait_sleeptime, delta);
647 		} else {
648 			iowait = ts->iowait_sleeptime;
649 		}
650 	}
651 
652 	return ktime_to_us(iowait);
653 }
654 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
655 
656 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
657 {
658 	hrtimer_cancel(&ts->sched_timer);
659 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
660 
661 	/* Forward the time to expire in the future */
662 	hrtimer_forward(&ts->sched_timer, now, tick_period);
663 
664 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
665 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
666 	else
667 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
668 }
669 
670 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
671 					 ktime_t now, int cpu)
672 {
673 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
674 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
675 	unsigned long seq, basejiff;
676 	ktime_t	tick;
677 
678 	/* Read jiffies and the time when jiffies were updated last */
679 	do {
680 		seq = read_seqbegin(&jiffies_lock);
681 		basemono = last_jiffies_update.tv64;
682 		basejiff = jiffies;
683 	} while (read_seqretry(&jiffies_lock, seq));
684 	ts->last_jiffies = basejiff;
685 
686 	if (rcu_needs_cpu(basemono, &next_rcu) ||
687 	    arch_needs_cpu() || irq_work_needs_cpu()) {
688 		next_tick = basemono + TICK_NSEC;
689 	} else {
690 		/*
691 		 * Get the next pending timer. If high resolution
692 		 * timers are enabled this only takes the timer wheel
693 		 * timers into account. If high resolution timers are
694 		 * disabled this also looks at the next expiring
695 		 * hrtimer.
696 		 */
697 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
698 		ts->next_timer = next_tmr;
699 		/* Take the next rcu event into account */
700 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
701 	}
702 
703 	/*
704 	 * If the tick is due in the next period, keep it ticking or
705 	 * force prod the timer.
706 	 */
707 	delta = next_tick - basemono;
708 	if (delta <= (u64)TICK_NSEC) {
709 		tick.tv64 = 0;
710 		/*
711 		 * We've not stopped the tick yet, and there's a timer in the
712 		 * next period, so no point in stopping it either, bail.
713 		 */
714 		if (!ts->tick_stopped)
715 			goto out;
716 
717 		/*
718 		 * If, OTOH, we did stop it, but there's a pending (expired)
719 		 * timer reprogram the timer hardware to fire now.
720 		 *
721 		 * We will not restart the tick proper, just prod the timer
722 		 * hardware into firing an interrupt to process the pending
723 		 * timers. Just like tick_irq_exit() will not restart the tick
724 		 * for 'normal' interrupts.
725 		 *
726 		 * Only once we exit the idle loop will we re-enable the tick,
727 		 * see tick_nohz_idle_exit().
728 		 */
729 		if (delta == 0) {
730 			tick_nohz_restart(ts, now);
731 			goto out;
732 		}
733 	}
734 
735 	/*
736 	 * If this cpu is the one which updates jiffies, then give up
737 	 * the assignment and let it be taken by the cpu which runs
738 	 * the tick timer next, which might be this cpu as well. If we
739 	 * don't drop this here the jiffies might be stale and
740 	 * do_timer() never invoked. Keep track of the fact that it
741 	 * was the one which had the do_timer() duty last. If this cpu
742 	 * is the one which had the do_timer() duty last, we limit the
743 	 * sleep time to the timekeeping max_deferement value.
744 	 * Otherwise we can sleep as long as we want.
745 	 */
746 	delta = timekeeping_max_deferment();
747 	if (cpu == tick_do_timer_cpu) {
748 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 		ts->do_timer_last = 1;
750 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
751 		delta = KTIME_MAX;
752 		ts->do_timer_last = 0;
753 	} else if (!ts->do_timer_last) {
754 		delta = KTIME_MAX;
755 	}
756 
757 #ifdef CONFIG_NO_HZ_FULL
758 	/* Limit the tick delta to the maximum scheduler deferment */
759 	if (!ts->inidle)
760 		delta = min(delta, scheduler_tick_max_deferment());
761 #endif
762 
763 	/* Calculate the next expiry time */
764 	if (delta < (KTIME_MAX - basemono))
765 		expires = basemono + delta;
766 	else
767 		expires = KTIME_MAX;
768 
769 	expires = min_t(u64, expires, next_tick);
770 	tick.tv64 = expires;
771 
772 	/* Skip reprogram of event if its not changed */
773 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
774 		goto out;
775 
776 	/*
777 	 * nohz_stop_sched_tick can be called several times before
778 	 * the nohz_restart_sched_tick is called. This happens when
779 	 * interrupts arrive which do not cause a reschedule. In the
780 	 * first call we save the current tick time, so we can restart
781 	 * the scheduler tick in nohz_restart_sched_tick.
782 	 */
783 	if (!ts->tick_stopped) {
784 		nohz_balance_enter_idle(cpu);
785 		calc_load_enter_idle();
786 
787 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 		ts->tick_stopped = 1;
789 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
790 	}
791 
792 	/*
793 	 * If the expiration time == KTIME_MAX, then we simply stop
794 	 * the tick timer.
795 	 */
796 	if (unlikely(expires == KTIME_MAX)) {
797 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 			hrtimer_cancel(&ts->sched_timer);
799 		goto out;
800 	}
801 
802 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
804 	else
805 		tick_program_event(tick, 1);
806 out:
807 	/* Update the estimated sleep length */
808 	ts->sleep_length = ktime_sub(dev->next_event, now);
809 	return tick;
810 }
811 
812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
813 {
814 	/* Update jiffies first */
815 	tick_do_update_jiffies64(now);
816 	update_cpu_load_nohz(active);
817 
818 	calc_load_exit_idle();
819 	touch_softlockup_watchdog_sched();
820 	/*
821 	 * Cancel the scheduled timer and restore the tick
822 	 */
823 	ts->tick_stopped  = 0;
824 	ts->idle_exittime = now;
825 
826 	tick_nohz_restart(ts, now);
827 }
828 
829 static void tick_nohz_full_update_tick(struct tick_sched *ts)
830 {
831 #ifdef CONFIG_NO_HZ_FULL
832 	int cpu = smp_processor_id();
833 
834 	if (!tick_nohz_full_cpu(cpu))
835 		return;
836 
837 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
838 		return;
839 
840 	if (can_stop_full_tick(ts))
841 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
842 	else if (ts->tick_stopped)
843 		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
844 #endif
845 }
846 
847 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
848 {
849 	/*
850 	 * If this cpu is offline and it is the one which updates
851 	 * jiffies, then give up the assignment and let it be taken by
852 	 * the cpu which runs the tick timer next. If we don't drop
853 	 * this here the jiffies might be stale and do_timer() never
854 	 * invoked.
855 	 */
856 	if (unlikely(!cpu_online(cpu))) {
857 		if (cpu == tick_do_timer_cpu)
858 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
859 		return false;
860 	}
861 
862 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
863 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
864 		return false;
865 	}
866 
867 	if (need_resched())
868 		return false;
869 
870 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
871 		static int ratelimit;
872 
873 		if (ratelimit < 10 &&
874 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
875 			pr_warn("NOHZ: local_softirq_pending %02x\n",
876 				(unsigned int) local_softirq_pending());
877 			ratelimit++;
878 		}
879 		return false;
880 	}
881 
882 	if (tick_nohz_full_enabled()) {
883 		/*
884 		 * Keep the tick alive to guarantee timekeeping progression
885 		 * if there are full dynticks CPUs around
886 		 */
887 		if (tick_do_timer_cpu == cpu)
888 			return false;
889 		/*
890 		 * Boot safety: make sure the timekeeping duty has been
891 		 * assigned before entering dyntick-idle mode,
892 		 */
893 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
894 			return false;
895 	}
896 
897 	return true;
898 }
899 
900 static void __tick_nohz_idle_enter(struct tick_sched *ts)
901 {
902 	ktime_t now, expires;
903 	int cpu = smp_processor_id();
904 
905 	now = tick_nohz_start_idle(ts);
906 
907 	if (can_stop_idle_tick(cpu, ts)) {
908 		int was_stopped = ts->tick_stopped;
909 
910 		ts->idle_calls++;
911 
912 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
913 		if (expires.tv64 > 0LL) {
914 			ts->idle_sleeps++;
915 			ts->idle_expires = expires;
916 		}
917 
918 		if (!was_stopped && ts->tick_stopped)
919 			ts->idle_jiffies = ts->last_jiffies;
920 	}
921 }
922 
923 /**
924  * tick_nohz_idle_enter - stop the idle tick from the idle task
925  *
926  * When the next event is more than a tick into the future, stop the idle tick
927  * Called when we start the idle loop.
928  *
929  * The arch is responsible of calling:
930  *
931  * - rcu_idle_enter() after its last use of RCU before the CPU is put
932  *  to sleep.
933  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
934  */
935 void tick_nohz_idle_enter(void)
936 {
937 	struct tick_sched *ts;
938 
939 	WARN_ON_ONCE(irqs_disabled());
940 
941 	/*
942  	 * Update the idle state in the scheduler domain hierarchy
943  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
944  	 * State will be updated to busy during the first busy tick after
945  	 * exiting idle.
946  	 */
947 	set_cpu_sd_state_idle();
948 
949 	local_irq_disable();
950 
951 	ts = this_cpu_ptr(&tick_cpu_sched);
952 	ts->inidle = 1;
953 	__tick_nohz_idle_enter(ts);
954 
955 	local_irq_enable();
956 }
957 
958 /**
959  * tick_nohz_irq_exit - update next tick event from interrupt exit
960  *
961  * When an interrupt fires while we are idle and it doesn't cause
962  * a reschedule, it may still add, modify or delete a timer, enqueue
963  * an RCU callback, etc...
964  * So we need to re-calculate and reprogram the next tick event.
965  */
966 void tick_nohz_irq_exit(void)
967 {
968 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
969 
970 	if (ts->inidle)
971 		__tick_nohz_idle_enter(ts);
972 	else
973 		tick_nohz_full_update_tick(ts);
974 }
975 
976 /**
977  * tick_nohz_get_sleep_length - return the length of the current sleep
978  *
979  * Called from power state control code with interrupts disabled
980  */
981 ktime_t tick_nohz_get_sleep_length(void)
982 {
983 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984 
985 	return ts->sleep_length;
986 }
987 
988 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
989 {
990 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
991 	unsigned long ticks;
992 
993 	if (vtime_accounting_cpu_enabled())
994 		return;
995 	/*
996 	 * We stopped the tick in idle. Update process times would miss the
997 	 * time we slept as update_process_times does only a 1 tick
998 	 * accounting. Enforce that this is accounted to idle !
999 	 */
1000 	ticks = jiffies - ts->idle_jiffies;
1001 	/*
1002 	 * We might be one off. Do not randomly account a huge number of ticks!
1003 	 */
1004 	if (ticks && ticks < LONG_MAX)
1005 		account_idle_ticks(ticks);
1006 #endif
1007 }
1008 
1009 /**
1010  * tick_nohz_idle_exit - restart the idle tick from the idle task
1011  *
1012  * Restart the idle tick when the CPU is woken up from idle
1013  * This also exit the RCU extended quiescent state. The CPU
1014  * can use RCU again after this function is called.
1015  */
1016 void tick_nohz_idle_exit(void)
1017 {
1018 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1019 	ktime_t now;
1020 
1021 	local_irq_disable();
1022 
1023 	WARN_ON_ONCE(!ts->inidle);
1024 
1025 	ts->inidle = 0;
1026 
1027 	if (ts->idle_active || ts->tick_stopped)
1028 		now = ktime_get();
1029 
1030 	if (ts->idle_active)
1031 		tick_nohz_stop_idle(ts, now);
1032 
1033 	if (ts->tick_stopped) {
1034 		tick_nohz_restart_sched_tick(ts, now, 0);
1035 		tick_nohz_account_idle_ticks(ts);
1036 	}
1037 
1038 	local_irq_enable();
1039 }
1040 
1041 /*
1042  * The nohz low res interrupt handler
1043  */
1044 static void tick_nohz_handler(struct clock_event_device *dev)
1045 {
1046 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1047 	struct pt_regs *regs = get_irq_regs();
1048 	ktime_t now = ktime_get();
1049 
1050 	dev->next_event.tv64 = KTIME_MAX;
1051 
1052 	tick_sched_do_timer(now);
1053 	tick_sched_handle(ts, regs);
1054 
1055 	/* No need to reprogram if we are running tickless  */
1056 	if (unlikely(ts->tick_stopped))
1057 		return;
1058 
1059 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1060 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1061 }
1062 
1063 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1064 {
1065 	if (!tick_nohz_enabled)
1066 		return;
1067 	ts->nohz_mode = mode;
1068 	/* One update is enough */
1069 	if (!test_and_set_bit(0, &tick_nohz_active))
1070 		timers_update_migration(true);
1071 }
1072 
1073 /**
1074  * tick_nohz_switch_to_nohz - switch to nohz mode
1075  */
1076 static void tick_nohz_switch_to_nohz(void)
1077 {
1078 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1079 	ktime_t next;
1080 
1081 	if (!tick_nohz_enabled)
1082 		return;
1083 
1084 	if (tick_switch_to_oneshot(tick_nohz_handler))
1085 		return;
1086 
1087 	/*
1088 	 * Recycle the hrtimer in ts, so we can share the
1089 	 * hrtimer_forward with the highres code.
1090 	 */
1091 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1092 	/* Get the next period */
1093 	next = tick_init_jiffy_update();
1094 
1095 	hrtimer_set_expires(&ts->sched_timer, next);
1096 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1097 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1098 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1099 }
1100 
1101 /*
1102  * When NOHZ is enabled and the tick is stopped, we need to kick the
1103  * tick timer from irq_enter() so that the jiffies update is kept
1104  * alive during long running softirqs. That's ugly as hell, but
1105  * correctness is key even if we need to fix the offending softirq in
1106  * the first place.
1107  *
1108  * Note, this is different to tick_nohz_restart. We just kick the
1109  * timer and do not touch the other magic bits which need to be done
1110  * when idle is left.
1111  */
1112 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1113 {
1114 #if 0
1115 	/* Switch back to 2.6.27 behaviour */
1116 	ktime_t delta;
1117 
1118 	/*
1119 	 * Do not touch the tick device, when the next expiry is either
1120 	 * already reached or less/equal than the tick period.
1121 	 */
1122 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1123 	if (delta.tv64 <= tick_period.tv64)
1124 		return;
1125 
1126 	tick_nohz_restart(ts, now);
1127 #endif
1128 }
1129 
1130 static inline void tick_nohz_irq_enter(void)
1131 {
1132 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1133 	ktime_t now;
1134 
1135 	if (!ts->idle_active && !ts->tick_stopped)
1136 		return;
1137 	now = ktime_get();
1138 	if (ts->idle_active)
1139 		tick_nohz_stop_idle(ts, now);
1140 	if (ts->tick_stopped) {
1141 		tick_nohz_update_jiffies(now);
1142 		tick_nohz_kick_tick(ts, now);
1143 	}
1144 }
1145 
1146 #else
1147 
1148 static inline void tick_nohz_switch_to_nohz(void) { }
1149 static inline void tick_nohz_irq_enter(void) { }
1150 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1151 
1152 #endif /* CONFIG_NO_HZ_COMMON */
1153 
1154 /*
1155  * Called from irq_enter to notify about the possible interruption of idle()
1156  */
1157 void tick_irq_enter(void)
1158 {
1159 	tick_check_oneshot_broadcast_this_cpu();
1160 	tick_nohz_irq_enter();
1161 }
1162 
1163 /*
1164  * High resolution timer specific code
1165  */
1166 #ifdef CONFIG_HIGH_RES_TIMERS
1167 /*
1168  * We rearm the timer until we get disabled by the idle code.
1169  * Called with interrupts disabled.
1170  */
1171 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1172 {
1173 	struct tick_sched *ts =
1174 		container_of(timer, struct tick_sched, sched_timer);
1175 	struct pt_regs *regs = get_irq_regs();
1176 	ktime_t now = ktime_get();
1177 
1178 	tick_sched_do_timer(now);
1179 
1180 	/*
1181 	 * Do not call, when we are not in irq context and have
1182 	 * no valid regs pointer
1183 	 */
1184 	if (regs)
1185 		tick_sched_handle(ts, regs);
1186 
1187 	/* No need to reprogram if we are in idle or full dynticks mode */
1188 	if (unlikely(ts->tick_stopped))
1189 		return HRTIMER_NORESTART;
1190 
1191 	hrtimer_forward(timer, now, tick_period);
1192 
1193 	return HRTIMER_RESTART;
1194 }
1195 
1196 static int sched_skew_tick;
1197 
1198 static int __init skew_tick(char *str)
1199 {
1200 	get_option(&str, &sched_skew_tick);
1201 
1202 	return 0;
1203 }
1204 early_param("skew_tick", skew_tick);
1205 
1206 /**
1207  * tick_setup_sched_timer - setup the tick emulation timer
1208  */
1209 void tick_setup_sched_timer(void)
1210 {
1211 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1212 	ktime_t now = ktime_get();
1213 
1214 	/*
1215 	 * Emulate tick processing via per-CPU hrtimers:
1216 	 */
1217 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1218 	ts->sched_timer.function = tick_sched_timer;
1219 
1220 	/* Get the next period (per cpu) */
1221 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1222 
1223 	/* Offset the tick to avert jiffies_lock contention. */
1224 	if (sched_skew_tick) {
1225 		u64 offset = ktime_to_ns(tick_period) >> 1;
1226 		do_div(offset, num_possible_cpus());
1227 		offset *= smp_processor_id();
1228 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1229 	}
1230 
1231 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1232 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1233 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1234 }
1235 #endif /* HIGH_RES_TIMERS */
1236 
1237 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1238 void tick_cancel_sched_timer(int cpu)
1239 {
1240 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1241 
1242 # ifdef CONFIG_HIGH_RES_TIMERS
1243 	if (ts->sched_timer.base)
1244 		hrtimer_cancel(&ts->sched_timer);
1245 # endif
1246 
1247 	memset(ts, 0, sizeof(*ts));
1248 }
1249 #endif
1250 
1251 /**
1252  * Async notification about clocksource changes
1253  */
1254 void tick_clock_notify(void)
1255 {
1256 	int cpu;
1257 
1258 	for_each_possible_cpu(cpu)
1259 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1260 }
1261 
1262 /*
1263  * Async notification about clock event changes
1264  */
1265 void tick_oneshot_notify(void)
1266 {
1267 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1268 
1269 	set_bit(0, &ts->check_clocks);
1270 }
1271 
1272 /**
1273  * Check, if a change happened, which makes oneshot possible.
1274  *
1275  * Called cyclic from the hrtimer softirq (driven by the timer
1276  * softirq) allow_nohz signals, that we can switch into low-res nohz
1277  * mode, because high resolution timers are disabled (either compile
1278  * or runtime). Called with interrupts disabled.
1279  */
1280 int tick_check_oneshot_change(int allow_nohz)
1281 {
1282 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1283 
1284 	if (!test_and_clear_bit(0, &ts->check_clocks))
1285 		return 0;
1286 
1287 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1288 		return 0;
1289 
1290 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1291 		return 0;
1292 
1293 	if (!allow_nohz)
1294 		return 1;
1295 
1296 	tick_nohz_switch_to_nohz();
1297 	return 0;
1298 }
1299