xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4bb1e4e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 */
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta < tick_period)
64 		return;
65 
66 	/* Reevaluate with jiffies_lock held */
67 	write_seqlock(&jiffies_lock);
68 
69 	delta = ktime_sub(now, last_jiffies_update);
70 	if (delta >= tick_period) {
71 
72 		delta = ktime_sub(delta, tick_period);
73 		last_jiffies_update = ktime_add(last_jiffies_update,
74 						tick_period);
75 
76 		/* Slow path for long timeouts */
77 		if (unlikely(delta >= tick_period)) {
78 			s64 incr = ktime_to_ns(tick_period);
79 
80 			ticks = ktime_divns(delta, incr);
81 
82 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 							   incr * ticks);
84 		}
85 		do_timer(++ticks);
86 
87 		/* Keep the tick_next_period variable up to date */
88 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 	} else {
90 		write_sequnlock(&jiffies_lock);
91 		return;
92 	}
93 	write_sequnlock(&jiffies_lock);
94 	update_wall_time();
95 }
96 
97 /*
98  * Initialize and return retrieve the jiffies update.
99  */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 	ktime_t period;
103 
104 	write_seqlock(&jiffies_lock);
105 	/* Did we start the jiffies update yet ? */
106 	if (last_jiffies_update == 0)
107 		last_jiffies_update = tick_next_period;
108 	period = last_jiffies_update;
109 	write_sequnlock(&jiffies_lock);
110 	return period;
111 }
112 
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
114 {
115 	int cpu = smp_processor_id();
116 
117 #ifdef CONFIG_NO_HZ_COMMON
118 	/*
119 	 * Check if the do_timer duty was dropped. We don't care about
120 	 * concurrency: This happens only when the CPU in charge went
121 	 * into a long sleep. If two CPUs happen to assign themselves to
122 	 * this duty, then the jiffies update is still serialized by
123 	 * jiffies_lock.
124 	 *
125 	 * If nohz_full is enabled, this should not happen because the
126 	 * tick_do_timer_cpu never relinquishes.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129 #ifdef CONFIG_NO_HZ_FULL
130 		WARN_ON(tick_nohz_full_running);
131 #endif
132 		tick_do_timer_cpu = cpu;
133 	}
134 #endif
135 
136 	/* Check, if the jiffies need an update */
137 	if (tick_do_timer_cpu == cpu)
138 		tick_do_update_jiffies64(now);
139 
140 	if (ts->inidle)
141 		ts->got_idle_tick = 1;
142 }
143 
144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145 {
146 #ifdef CONFIG_NO_HZ_COMMON
147 	/*
148 	 * When we are idle and the tick is stopped, we have to touch
149 	 * the watchdog as we might not schedule for a really long
150 	 * time. This happens on complete idle SMP systems while
151 	 * waiting on the login prompt. We also increment the "start of
152 	 * idle" jiffy stamp so the idle accounting adjustment we do
153 	 * when we go busy again does not account too much ticks.
154 	 */
155 	if (ts->tick_stopped) {
156 		touch_softlockup_watchdog_sched();
157 		if (is_idle_task(current))
158 			ts->idle_jiffies++;
159 		/*
160 		 * In case the current tick fired too early past its expected
161 		 * expiration, make sure we don't bypass the next clock reprogramming
162 		 * to the same deadline.
163 		 */
164 		ts->next_tick = 0;
165 	}
166 #endif
167 	update_process_times(user_mode(regs));
168 	profile_tick(CPU_PROFILING);
169 }
170 #endif
171 
172 #ifdef CONFIG_NO_HZ_FULL
173 cpumask_var_t tick_nohz_full_mask;
174 bool tick_nohz_full_running;
175 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
176 static atomic_t tick_dep_mask;
177 
178 static bool check_tick_dependency(atomic_t *dep)
179 {
180 	int val = atomic_read(dep);
181 
182 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
183 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
184 		return true;
185 	}
186 
187 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
188 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
189 		return true;
190 	}
191 
192 	if (val & TICK_DEP_MASK_SCHED) {
193 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
194 		return true;
195 	}
196 
197 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
198 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
199 		return true;
200 	}
201 
202 	if (val & TICK_DEP_MASK_RCU) {
203 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
204 		return true;
205 	}
206 
207 	return false;
208 }
209 
210 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
211 {
212 	lockdep_assert_irqs_disabled();
213 
214 	if (unlikely(!cpu_online(cpu)))
215 		return false;
216 
217 	if (check_tick_dependency(&tick_dep_mask))
218 		return false;
219 
220 	if (check_tick_dependency(&ts->tick_dep_mask))
221 		return false;
222 
223 	if (check_tick_dependency(&current->tick_dep_mask))
224 		return false;
225 
226 	if (check_tick_dependency(&current->signal->tick_dep_mask))
227 		return false;
228 
229 	return true;
230 }
231 
232 static void nohz_full_kick_func(struct irq_work *work)
233 {
234 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
235 }
236 
237 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
238 	.func = nohz_full_kick_func,
239 };
240 
241 /*
242  * Kick this CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
245  * is NMI safe.
246  */
247 static void tick_nohz_full_kick(void)
248 {
249 	if (!tick_nohz_full_cpu(smp_processor_id()))
250 		return;
251 
252 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
253 }
254 
255 /*
256  * Kick the CPU if it's full dynticks in order to force it to
257  * re-evaluate its dependency on the tick and restart it if necessary.
258  */
259 void tick_nohz_full_kick_cpu(int cpu)
260 {
261 	if (!tick_nohz_full_cpu(cpu))
262 		return;
263 
264 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
265 }
266 
267 /*
268  * Kick all full dynticks CPUs in order to force these to re-evaluate
269  * their dependency on the tick and restart it if necessary.
270  */
271 static void tick_nohz_full_kick_all(void)
272 {
273 	int cpu;
274 
275 	if (!tick_nohz_full_running)
276 		return;
277 
278 	preempt_disable();
279 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
280 		tick_nohz_full_kick_cpu(cpu);
281 	preempt_enable();
282 }
283 
284 static void tick_nohz_dep_set_all(atomic_t *dep,
285 				  enum tick_dep_bits bit)
286 {
287 	int prev;
288 
289 	prev = atomic_fetch_or(BIT(bit), dep);
290 	if (!prev)
291 		tick_nohz_full_kick_all();
292 }
293 
294 /*
295  * Set a global tick dependency. Used by perf events that rely on freq and
296  * by unstable clock.
297  */
298 void tick_nohz_dep_set(enum tick_dep_bits bit)
299 {
300 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
301 }
302 
303 void tick_nohz_dep_clear(enum tick_dep_bits bit)
304 {
305 	atomic_andnot(BIT(bit), &tick_dep_mask);
306 }
307 
308 /*
309  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
310  * manage events throttling.
311  */
312 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
313 {
314 	int prev;
315 	struct tick_sched *ts;
316 
317 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
318 
319 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
320 	if (!prev) {
321 		preempt_disable();
322 		/* Perf needs local kick that is NMI safe */
323 		if (cpu == smp_processor_id()) {
324 			tick_nohz_full_kick();
325 		} else {
326 			/* Remote irq work not NMI-safe */
327 			if (!WARN_ON_ONCE(in_nmi()))
328 				tick_nohz_full_kick_cpu(cpu);
329 		}
330 		preempt_enable();
331 	}
332 }
333 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
334 
335 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
336 {
337 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
338 
339 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
340 }
341 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
342 
343 /*
344  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
345  * per task timers.
346  */
347 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
348 {
349 	/*
350 	 * We could optimize this with just kicking the target running the task
351 	 * if that noise matters for nohz full users.
352 	 */
353 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
354 }
355 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
356 
357 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
360 }
361 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
362 
363 /*
364  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
365  * per process timers.
366  */
367 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
368 {
369 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
370 }
371 
372 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
373 {
374 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
375 }
376 
377 /*
378  * Re-evaluate the need for the tick as we switch the current task.
379  * It might need the tick due to per task/process properties:
380  * perf events, posix CPU timers, ...
381  */
382 void __tick_nohz_task_switch(void)
383 {
384 	unsigned long flags;
385 	struct tick_sched *ts;
386 
387 	local_irq_save(flags);
388 
389 	if (!tick_nohz_full_cpu(smp_processor_id()))
390 		goto out;
391 
392 	ts = this_cpu_ptr(&tick_cpu_sched);
393 
394 	if (ts->tick_stopped) {
395 		if (atomic_read(&current->tick_dep_mask) ||
396 		    atomic_read(&current->signal->tick_dep_mask))
397 			tick_nohz_full_kick();
398 	}
399 out:
400 	local_irq_restore(flags);
401 }
402 
403 /* Get the boot-time nohz CPU list from the kernel parameters. */
404 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
405 {
406 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
407 	cpumask_copy(tick_nohz_full_mask, cpumask);
408 	tick_nohz_full_running = true;
409 }
410 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
411 
412 static int tick_nohz_cpu_down(unsigned int cpu)
413 {
414 	/*
415 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
416 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
417 	 * CPUs. It must remain online when nohz full is enabled.
418 	 */
419 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
420 		return -EBUSY;
421 	return 0;
422 }
423 
424 void __init tick_nohz_init(void)
425 {
426 	int cpu, ret;
427 
428 	if (!tick_nohz_full_running)
429 		return;
430 
431 	/*
432 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
433 	 * locking contexts. But then we need irq work to raise its own
434 	 * interrupts to avoid circular dependency on the tick
435 	 */
436 	if (!arch_irq_work_has_interrupt()) {
437 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
438 		cpumask_clear(tick_nohz_full_mask);
439 		tick_nohz_full_running = false;
440 		return;
441 	}
442 
443 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
444 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
445 		cpu = smp_processor_id();
446 
447 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
449 				"for timekeeping\n", cpu);
450 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
451 		}
452 	}
453 
454 	for_each_cpu(cpu, tick_nohz_full_mask)
455 		context_tracking_cpu_set(cpu);
456 
457 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
458 					"kernel/nohz:predown", NULL,
459 					tick_nohz_cpu_down);
460 	WARN_ON(ret < 0);
461 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
462 		cpumask_pr_args(tick_nohz_full_mask));
463 }
464 #endif
465 
466 /*
467  * NOHZ - aka dynamic tick functionality
468  */
469 #ifdef CONFIG_NO_HZ_COMMON
470 /*
471  * NO HZ enabled ?
472  */
473 bool tick_nohz_enabled __read_mostly  = true;
474 unsigned long tick_nohz_active  __read_mostly;
475 /*
476  * Enable / Disable tickless mode
477  */
478 static int __init setup_tick_nohz(char *str)
479 {
480 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
481 }
482 
483 __setup("nohz=", setup_tick_nohz);
484 
485 bool tick_nohz_tick_stopped(void)
486 {
487 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
488 
489 	return ts->tick_stopped;
490 }
491 
492 bool tick_nohz_tick_stopped_cpu(int cpu)
493 {
494 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
495 
496 	return ts->tick_stopped;
497 }
498 
499 /**
500  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
501  *
502  * Called from interrupt entry when the CPU was idle
503  *
504  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
505  * must be updated. Otherwise an interrupt handler could use a stale jiffy
506  * value. We do this unconditionally on any CPU, as we don't know whether the
507  * CPU, which has the update task assigned is in a long sleep.
508  */
509 static void tick_nohz_update_jiffies(ktime_t now)
510 {
511 	unsigned long flags;
512 
513 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
514 
515 	local_irq_save(flags);
516 	tick_do_update_jiffies64(now);
517 	local_irq_restore(flags);
518 
519 	touch_softlockup_watchdog_sched();
520 }
521 
522 /*
523  * Updates the per-CPU time idle statistics counters
524  */
525 static void
526 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
527 {
528 	ktime_t delta;
529 
530 	if (ts->idle_active) {
531 		delta = ktime_sub(now, ts->idle_entrytime);
532 		if (nr_iowait_cpu(cpu) > 0)
533 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
534 		else
535 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
536 		ts->idle_entrytime = now;
537 	}
538 
539 	if (last_update_time)
540 		*last_update_time = ktime_to_us(now);
541 
542 }
543 
544 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
545 {
546 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
547 	ts->idle_active = 0;
548 
549 	sched_clock_idle_wakeup_event();
550 }
551 
552 static void tick_nohz_start_idle(struct tick_sched *ts)
553 {
554 	ts->idle_entrytime = ktime_get();
555 	ts->idle_active = 1;
556 	sched_clock_idle_sleep_event();
557 }
558 
559 /**
560  * get_cpu_idle_time_us - get the total idle time of a CPU
561  * @cpu: CPU number to query
562  * @last_update_time: variable to store update time in. Do not update
563  * counters if NULL.
564  *
565  * Return the cumulative idle time (since boot) for a given
566  * CPU, in microseconds.
567  *
568  * This time is measured via accounting rather than sampling,
569  * and is as accurate as ktime_get() is.
570  *
571  * This function returns -1 if NOHZ is not enabled.
572  */
573 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
574 {
575 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
576 	ktime_t now, idle;
577 
578 	if (!tick_nohz_active)
579 		return -1;
580 
581 	now = ktime_get();
582 	if (last_update_time) {
583 		update_ts_time_stats(cpu, ts, now, last_update_time);
584 		idle = ts->idle_sleeptime;
585 	} else {
586 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
587 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
588 
589 			idle = ktime_add(ts->idle_sleeptime, delta);
590 		} else {
591 			idle = ts->idle_sleeptime;
592 		}
593 	}
594 
595 	return ktime_to_us(idle);
596 
597 }
598 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
599 
600 /**
601  * get_cpu_iowait_time_us - get the total iowait time of a CPU
602  * @cpu: CPU number to query
603  * @last_update_time: variable to store update time in. Do not update
604  * counters if NULL.
605  *
606  * Return the cumulative iowait time (since boot) for a given
607  * CPU, in microseconds.
608  *
609  * This time is measured via accounting rather than sampling,
610  * and is as accurate as ktime_get() is.
611  *
612  * This function returns -1 if NOHZ is not enabled.
613  */
614 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
615 {
616 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
617 	ktime_t now, iowait;
618 
619 	if (!tick_nohz_active)
620 		return -1;
621 
622 	now = ktime_get();
623 	if (last_update_time) {
624 		update_ts_time_stats(cpu, ts, now, last_update_time);
625 		iowait = ts->iowait_sleeptime;
626 	} else {
627 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
628 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
629 
630 			iowait = ktime_add(ts->iowait_sleeptime, delta);
631 		} else {
632 			iowait = ts->iowait_sleeptime;
633 		}
634 	}
635 
636 	return ktime_to_us(iowait);
637 }
638 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
639 
640 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
641 {
642 	hrtimer_cancel(&ts->sched_timer);
643 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
644 
645 	/* Forward the time to expire in the future */
646 	hrtimer_forward(&ts->sched_timer, now, tick_period);
647 
648 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
649 		hrtimer_start_expires(&ts->sched_timer,
650 				      HRTIMER_MODE_ABS_PINNED_HARD);
651 	} else {
652 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
653 	}
654 
655 	/*
656 	 * Reset to make sure next tick stop doesn't get fooled by past
657 	 * cached clock deadline.
658 	 */
659 	ts->next_tick = 0;
660 }
661 
662 static inline bool local_timer_softirq_pending(void)
663 {
664 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
665 }
666 
667 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
668 {
669 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 	unsigned long basejiff;
671 	unsigned int seq;
672 
673 	/* Read jiffies and the time when jiffies were updated last */
674 	do {
675 		seq = read_seqbegin(&jiffies_lock);
676 		basemono = last_jiffies_update;
677 		basejiff = jiffies;
678 	} while (read_seqretry(&jiffies_lock, seq));
679 	ts->last_jiffies = basejiff;
680 	ts->timer_expires_base = basemono;
681 
682 	/*
683 	 * Keep the periodic tick, when RCU, architecture or irq_work
684 	 * requests it.
685 	 * Aside of that check whether the local timer softirq is
686 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
687 	 * because there is an already expired timer, so it will request
688 	 * immeditate expiry, which rearms the hardware timer with a
689 	 * minimal delta which brings us back to this place
690 	 * immediately. Lather, rinse and repeat...
691 	 */
692 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
693 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
694 		next_tick = basemono + TICK_NSEC;
695 	} else {
696 		/*
697 		 * Get the next pending timer. If high resolution
698 		 * timers are enabled this only takes the timer wheel
699 		 * timers into account. If high resolution timers are
700 		 * disabled this also looks at the next expiring
701 		 * hrtimer.
702 		 */
703 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
704 		ts->next_timer = next_tmr;
705 		/* Take the next rcu event into account */
706 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
707 	}
708 
709 	/*
710 	 * If the tick is due in the next period, keep it ticking or
711 	 * force prod the timer.
712 	 */
713 	delta = next_tick - basemono;
714 	if (delta <= (u64)TICK_NSEC) {
715 		/*
716 		 * Tell the timer code that the base is not idle, i.e. undo
717 		 * the effect of get_next_timer_interrupt():
718 		 */
719 		timer_clear_idle();
720 		/*
721 		 * We've not stopped the tick yet, and there's a timer in the
722 		 * next period, so no point in stopping it either, bail.
723 		 */
724 		if (!ts->tick_stopped) {
725 			ts->timer_expires = 0;
726 			goto out;
727 		}
728 	}
729 
730 	/*
731 	 * If this CPU is the one which had the do_timer() duty last, we limit
732 	 * the sleep time to the timekeeping max_deferment value.
733 	 * Otherwise we can sleep as long as we want.
734 	 */
735 	delta = timekeeping_max_deferment();
736 	if (cpu != tick_do_timer_cpu &&
737 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
738 		delta = KTIME_MAX;
739 
740 	/* Calculate the next expiry time */
741 	if (delta < (KTIME_MAX - basemono))
742 		expires = basemono + delta;
743 	else
744 		expires = KTIME_MAX;
745 
746 	ts->timer_expires = min_t(u64, expires, next_tick);
747 
748 out:
749 	return ts->timer_expires;
750 }
751 
752 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
753 {
754 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
755 	u64 basemono = ts->timer_expires_base;
756 	u64 expires = ts->timer_expires;
757 	ktime_t tick = expires;
758 
759 	/* Make sure we won't be trying to stop it twice in a row. */
760 	ts->timer_expires_base = 0;
761 
762 	/*
763 	 * If this CPU is the one which updates jiffies, then give up
764 	 * the assignment and let it be taken by the CPU which runs
765 	 * the tick timer next, which might be this CPU as well. If we
766 	 * don't drop this here the jiffies might be stale and
767 	 * do_timer() never invoked. Keep track of the fact that it
768 	 * was the one which had the do_timer() duty last.
769 	 */
770 	if (cpu == tick_do_timer_cpu) {
771 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
772 		ts->do_timer_last = 1;
773 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
774 		ts->do_timer_last = 0;
775 	}
776 
777 	/* Skip reprogram of event if its not changed */
778 	if (ts->tick_stopped && (expires == ts->next_tick)) {
779 		/* Sanity check: make sure clockevent is actually programmed */
780 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
781 			return;
782 
783 		WARN_ON_ONCE(1);
784 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
785 			    basemono, ts->next_tick, dev->next_event,
786 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
787 	}
788 
789 	/*
790 	 * nohz_stop_sched_tick can be called several times before
791 	 * the nohz_restart_sched_tick is called. This happens when
792 	 * interrupts arrive which do not cause a reschedule. In the
793 	 * first call we save the current tick time, so we can restart
794 	 * the scheduler tick in nohz_restart_sched_tick.
795 	 */
796 	if (!ts->tick_stopped) {
797 		calc_load_nohz_start();
798 		quiet_vmstat();
799 
800 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
801 		ts->tick_stopped = 1;
802 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
803 	}
804 
805 	ts->next_tick = tick;
806 
807 	/*
808 	 * If the expiration time == KTIME_MAX, then we simply stop
809 	 * the tick timer.
810 	 */
811 	if (unlikely(expires == KTIME_MAX)) {
812 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
813 			hrtimer_cancel(&ts->sched_timer);
814 		return;
815 	}
816 
817 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
818 		hrtimer_start(&ts->sched_timer, tick,
819 			      HRTIMER_MODE_ABS_PINNED_HARD);
820 	} else {
821 		hrtimer_set_expires(&ts->sched_timer, tick);
822 		tick_program_event(tick, 1);
823 	}
824 }
825 
826 static void tick_nohz_retain_tick(struct tick_sched *ts)
827 {
828 	ts->timer_expires_base = 0;
829 }
830 
831 #ifdef CONFIG_NO_HZ_FULL
832 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
833 {
834 	if (tick_nohz_next_event(ts, cpu))
835 		tick_nohz_stop_tick(ts, cpu);
836 	else
837 		tick_nohz_retain_tick(ts);
838 }
839 #endif /* CONFIG_NO_HZ_FULL */
840 
841 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
842 {
843 	/* Update jiffies first */
844 	tick_do_update_jiffies64(now);
845 
846 	/*
847 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
848 	 * the clock forward checks in the enqueue path:
849 	 */
850 	timer_clear_idle();
851 
852 	calc_load_nohz_stop();
853 	touch_softlockup_watchdog_sched();
854 	/*
855 	 * Cancel the scheduled timer and restore the tick
856 	 */
857 	ts->tick_stopped  = 0;
858 	ts->idle_exittime = now;
859 
860 	tick_nohz_restart(ts, now);
861 }
862 
863 static void tick_nohz_full_update_tick(struct tick_sched *ts)
864 {
865 #ifdef CONFIG_NO_HZ_FULL
866 	int cpu = smp_processor_id();
867 
868 	if (!tick_nohz_full_cpu(cpu))
869 		return;
870 
871 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
872 		return;
873 
874 	if (can_stop_full_tick(cpu, ts))
875 		tick_nohz_stop_sched_tick(ts, cpu);
876 	else if (ts->tick_stopped)
877 		tick_nohz_restart_sched_tick(ts, ktime_get());
878 #endif
879 }
880 
881 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
882 {
883 	/*
884 	 * If this CPU is offline and it is the one which updates
885 	 * jiffies, then give up the assignment and let it be taken by
886 	 * the CPU which runs the tick timer next. If we don't drop
887 	 * this here the jiffies might be stale and do_timer() never
888 	 * invoked.
889 	 */
890 	if (unlikely(!cpu_online(cpu))) {
891 		if (cpu == tick_do_timer_cpu)
892 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
893 		/*
894 		 * Make sure the CPU doesn't get fooled by obsolete tick
895 		 * deadline if it comes back online later.
896 		 */
897 		ts->next_tick = 0;
898 		return false;
899 	}
900 
901 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
902 		return false;
903 
904 	if (need_resched())
905 		return false;
906 
907 	if (unlikely(local_softirq_pending())) {
908 		static int ratelimit;
909 
910 		if (ratelimit < 10 &&
911 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
912 			pr_warn("NOHZ: local_softirq_pending %02x\n",
913 				(unsigned int) local_softirq_pending());
914 			ratelimit++;
915 		}
916 		return false;
917 	}
918 
919 	if (tick_nohz_full_enabled()) {
920 		/*
921 		 * Keep the tick alive to guarantee timekeeping progression
922 		 * if there are full dynticks CPUs around
923 		 */
924 		if (tick_do_timer_cpu == cpu)
925 			return false;
926 		/*
927 		 * Boot safety: make sure the timekeeping duty has been
928 		 * assigned before entering dyntick-idle mode,
929 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
930 		 */
931 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
932 			return false;
933 
934 		/* Should not happen for nohz-full */
935 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
936 			return false;
937 	}
938 
939 	return true;
940 }
941 
942 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
943 {
944 	ktime_t expires;
945 	int cpu = smp_processor_id();
946 
947 	/*
948 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
949 	 * tick timer expiration time is known already.
950 	 */
951 	if (ts->timer_expires_base)
952 		expires = ts->timer_expires;
953 	else if (can_stop_idle_tick(cpu, ts))
954 		expires = tick_nohz_next_event(ts, cpu);
955 	else
956 		return;
957 
958 	ts->idle_calls++;
959 
960 	if (expires > 0LL) {
961 		int was_stopped = ts->tick_stopped;
962 
963 		tick_nohz_stop_tick(ts, cpu);
964 
965 		ts->idle_sleeps++;
966 		ts->idle_expires = expires;
967 
968 		if (!was_stopped && ts->tick_stopped) {
969 			ts->idle_jiffies = ts->last_jiffies;
970 			nohz_balance_enter_idle(cpu);
971 		}
972 	} else {
973 		tick_nohz_retain_tick(ts);
974 	}
975 }
976 
977 /**
978  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
979  *
980  * When the next event is more than a tick into the future, stop the idle tick
981  */
982 void tick_nohz_idle_stop_tick(void)
983 {
984 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
985 }
986 
987 void tick_nohz_idle_retain_tick(void)
988 {
989 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
990 	/*
991 	 * Undo the effect of get_next_timer_interrupt() called from
992 	 * tick_nohz_next_event().
993 	 */
994 	timer_clear_idle();
995 }
996 
997 /**
998  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
999  *
1000  * Called when we start the idle loop.
1001  */
1002 void tick_nohz_idle_enter(void)
1003 {
1004 	struct tick_sched *ts;
1005 
1006 	lockdep_assert_irqs_enabled();
1007 
1008 	local_irq_disable();
1009 
1010 	ts = this_cpu_ptr(&tick_cpu_sched);
1011 
1012 	WARN_ON_ONCE(ts->timer_expires_base);
1013 
1014 	ts->inidle = 1;
1015 	tick_nohz_start_idle(ts);
1016 
1017 	local_irq_enable();
1018 }
1019 
1020 /**
1021  * tick_nohz_irq_exit - update next tick event from interrupt exit
1022  *
1023  * When an interrupt fires while we are idle and it doesn't cause
1024  * a reschedule, it may still add, modify or delete a timer, enqueue
1025  * an RCU callback, etc...
1026  * So we need to re-calculate and reprogram the next tick event.
1027  */
1028 void tick_nohz_irq_exit(void)
1029 {
1030 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1031 
1032 	if (ts->inidle)
1033 		tick_nohz_start_idle(ts);
1034 	else
1035 		tick_nohz_full_update_tick(ts);
1036 }
1037 
1038 /**
1039  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1040  */
1041 bool tick_nohz_idle_got_tick(void)
1042 {
1043 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1044 
1045 	if (ts->got_idle_tick) {
1046 		ts->got_idle_tick = 0;
1047 		return true;
1048 	}
1049 	return false;
1050 }
1051 
1052 /**
1053  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1054  * or the tick, whatever that expires first. Note that, if the tick has been
1055  * stopped, it returns the next hrtimer.
1056  *
1057  * Called from power state control code with interrupts disabled
1058  */
1059 ktime_t tick_nohz_get_next_hrtimer(void)
1060 {
1061 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1062 }
1063 
1064 /**
1065  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1066  * @delta_next: duration until the next event if the tick cannot be stopped
1067  *
1068  * Called from power state control code with interrupts disabled
1069  */
1070 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1071 {
1072 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1073 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1074 	int cpu = smp_processor_id();
1075 	/*
1076 	 * The idle entry time is expected to be a sufficient approximation of
1077 	 * the current time at this point.
1078 	 */
1079 	ktime_t now = ts->idle_entrytime;
1080 	ktime_t next_event;
1081 
1082 	WARN_ON_ONCE(!ts->inidle);
1083 
1084 	*delta_next = ktime_sub(dev->next_event, now);
1085 
1086 	if (!can_stop_idle_tick(cpu, ts))
1087 		return *delta_next;
1088 
1089 	next_event = tick_nohz_next_event(ts, cpu);
1090 	if (!next_event)
1091 		return *delta_next;
1092 
1093 	/*
1094 	 * If the next highres timer to expire is earlier than next_event, the
1095 	 * idle governor needs to know that.
1096 	 */
1097 	next_event = min_t(u64, next_event,
1098 			   hrtimer_next_event_without(&ts->sched_timer));
1099 
1100 	return ktime_sub(next_event, now);
1101 }
1102 
1103 /**
1104  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1105  * for a particular CPU.
1106  *
1107  * Called from the schedutil frequency scaling governor in scheduler context.
1108  */
1109 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1110 {
1111 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1112 
1113 	return ts->idle_calls;
1114 }
1115 
1116 /**
1117  * tick_nohz_get_idle_calls - return the current idle calls counter value
1118  *
1119  * Called from the schedutil frequency scaling governor in scheduler context.
1120  */
1121 unsigned long tick_nohz_get_idle_calls(void)
1122 {
1123 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1124 
1125 	return ts->idle_calls;
1126 }
1127 
1128 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1129 {
1130 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1131 	unsigned long ticks;
1132 
1133 	if (vtime_accounting_enabled_this_cpu())
1134 		return;
1135 	/*
1136 	 * We stopped the tick in idle. Update process times would miss the
1137 	 * time we slept as update_process_times does only a 1 tick
1138 	 * accounting. Enforce that this is accounted to idle !
1139 	 */
1140 	ticks = jiffies - ts->idle_jiffies;
1141 	/*
1142 	 * We might be one off. Do not randomly account a huge number of ticks!
1143 	 */
1144 	if (ticks && ticks < LONG_MAX)
1145 		account_idle_ticks(ticks);
1146 #endif
1147 }
1148 
1149 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1150 {
1151 	tick_nohz_restart_sched_tick(ts, now);
1152 	tick_nohz_account_idle_ticks(ts);
1153 }
1154 
1155 void tick_nohz_idle_restart_tick(void)
1156 {
1157 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1158 
1159 	if (ts->tick_stopped)
1160 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1161 }
1162 
1163 /**
1164  * tick_nohz_idle_exit - restart the idle tick from the idle task
1165  *
1166  * Restart the idle tick when the CPU is woken up from idle
1167  * This also exit the RCU extended quiescent state. The CPU
1168  * can use RCU again after this function is called.
1169  */
1170 void tick_nohz_idle_exit(void)
1171 {
1172 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1173 	bool idle_active, tick_stopped;
1174 	ktime_t now;
1175 
1176 	local_irq_disable();
1177 
1178 	WARN_ON_ONCE(!ts->inidle);
1179 	WARN_ON_ONCE(ts->timer_expires_base);
1180 
1181 	ts->inidle = 0;
1182 	idle_active = ts->idle_active;
1183 	tick_stopped = ts->tick_stopped;
1184 
1185 	if (idle_active || tick_stopped)
1186 		now = ktime_get();
1187 
1188 	if (idle_active)
1189 		tick_nohz_stop_idle(ts, now);
1190 
1191 	if (tick_stopped)
1192 		__tick_nohz_idle_restart_tick(ts, now);
1193 
1194 	local_irq_enable();
1195 }
1196 
1197 /*
1198  * The nohz low res interrupt handler
1199  */
1200 static void tick_nohz_handler(struct clock_event_device *dev)
1201 {
1202 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1203 	struct pt_regs *regs = get_irq_regs();
1204 	ktime_t now = ktime_get();
1205 
1206 	dev->next_event = KTIME_MAX;
1207 
1208 	tick_sched_do_timer(ts, now);
1209 	tick_sched_handle(ts, regs);
1210 
1211 	/* No need to reprogram if we are running tickless  */
1212 	if (unlikely(ts->tick_stopped))
1213 		return;
1214 
1215 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1216 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1217 }
1218 
1219 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1220 {
1221 	if (!tick_nohz_enabled)
1222 		return;
1223 	ts->nohz_mode = mode;
1224 	/* One update is enough */
1225 	if (!test_and_set_bit(0, &tick_nohz_active))
1226 		timers_update_nohz();
1227 }
1228 
1229 /**
1230  * tick_nohz_switch_to_nohz - switch to nohz mode
1231  */
1232 static void tick_nohz_switch_to_nohz(void)
1233 {
1234 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235 	ktime_t next;
1236 
1237 	if (!tick_nohz_enabled)
1238 		return;
1239 
1240 	if (tick_switch_to_oneshot(tick_nohz_handler))
1241 		return;
1242 
1243 	/*
1244 	 * Recycle the hrtimer in ts, so we can share the
1245 	 * hrtimer_forward with the highres code.
1246 	 */
1247 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1248 	/* Get the next period */
1249 	next = tick_init_jiffy_update();
1250 
1251 	hrtimer_set_expires(&ts->sched_timer, next);
1252 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1253 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1254 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1255 }
1256 
1257 static inline void tick_nohz_irq_enter(void)
1258 {
1259 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1260 	ktime_t now;
1261 
1262 	if (!ts->idle_active && !ts->tick_stopped)
1263 		return;
1264 	now = ktime_get();
1265 	if (ts->idle_active)
1266 		tick_nohz_stop_idle(ts, now);
1267 	if (ts->tick_stopped)
1268 		tick_nohz_update_jiffies(now);
1269 }
1270 
1271 #else
1272 
1273 static inline void tick_nohz_switch_to_nohz(void) { }
1274 static inline void tick_nohz_irq_enter(void) { }
1275 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1276 
1277 #endif /* CONFIG_NO_HZ_COMMON */
1278 
1279 /*
1280  * Called from irq_enter to notify about the possible interruption of idle()
1281  */
1282 void tick_irq_enter(void)
1283 {
1284 	tick_check_oneshot_broadcast_this_cpu();
1285 	tick_nohz_irq_enter();
1286 }
1287 
1288 /*
1289  * High resolution timer specific code
1290  */
1291 #ifdef CONFIG_HIGH_RES_TIMERS
1292 /*
1293  * We rearm the timer until we get disabled by the idle code.
1294  * Called with interrupts disabled.
1295  */
1296 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1297 {
1298 	struct tick_sched *ts =
1299 		container_of(timer, struct tick_sched, sched_timer);
1300 	struct pt_regs *regs = get_irq_regs();
1301 	ktime_t now = ktime_get();
1302 
1303 	tick_sched_do_timer(ts, now);
1304 
1305 	/*
1306 	 * Do not call, when we are not in irq context and have
1307 	 * no valid regs pointer
1308 	 */
1309 	if (regs)
1310 		tick_sched_handle(ts, regs);
1311 	else
1312 		ts->next_tick = 0;
1313 
1314 	/* No need to reprogram if we are in idle or full dynticks mode */
1315 	if (unlikely(ts->tick_stopped))
1316 		return HRTIMER_NORESTART;
1317 
1318 	hrtimer_forward(timer, now, tick_period);
1319 
1320 	return HRTIMER_RESTART;
1321 }
1322 
1323 static int sched_skew_tick;
1324 
1325 static int __init skew_tick(char *str)
1326 {
1327 	get_option(&str, &sched_skew_tick);
1328 
1329 	return 0;
1330 }
1331 early_param("skew_tick", skew_tick);
1332 
1333 /**
1334  * tick_setup_sched_timer - setup the tick emulation timer
1335  */
1336 void tick_setup_sched_timer(void)
1337 {
1338 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1339 	ktime_t now = ktime_get();
1340 
1341 	/*
1342 	 * Emulate tick processing via per-CPU hrtimers:
1343 	 */
1344 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1345 	ts->sched_timer.function = tick_sched_timer;
1346 
1347 	/* Get the next period (per-CPU) */
1348 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1349 
1350 	/* Offset the tick to avert jiffies_lock contention. */
1351 	if (sched_skew_tick) {
1352 		u64 offset = ktime_to_ns(tick_period) >> 1;
1353 		do_div(offset, num_possible_cpus());
1354 		offset *= smp_processor_id();
1355 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1356 	}
1357 
1358 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1359 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1360 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1361 }
1362 #endif /* HIGH_RES_TIMERS */
1363 
1364 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1365 void tick_cancel_sched_timer(int cpu)
1366 {
1367 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1368 
1369 # ifdef CONFIG_HIGH_RES_TIMERS
1370 	if (ts->sched_timer.base)
1371 		hrtimer_cancel(&ts->sched_timer);
1372 # endif
1373 
1374 	memset(ts, 0, sizeof(*ts));
1375 }
1376 #endif
1377 
1378 /**
1379  * Async notification about clocksource changes
1380  */
1381 void tick_clock_notify(void)
1382 {
1383 	int cpu;
1384 
1385 	for_each_possible_cpu(cpu)
1386 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1387 }
1388 
1389 /*
1390  * Async notification about clock event changes
1391  */
1392 void tick_oneshot_notify(void)
1393 {
1394 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1395 
1396 	set_bit(0, &ts->check_clocks);
1397 }
1398 
1399 /**
1400  * Check, if a change happened, which makes oneshot possible.
1401  *
1402  * Called cyclic from the hrtimer softirq (driven by the timer
1403  * softirq) allow_nohz signals, that we can switch into low-res nohz
1404  * mode, because high resolution timers are disabled (either compile
1405  * or runtime). Called with interrupts disabled.
1406  */
1407 int tick_check_oneshot_change(int allow_nohz)
1408 {
1409 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1410 
1411 	if (!test_and_clear_bit(0, &ts->check_clocks))
1412 		return 0;
1413 
1414 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1415 		return 0;
1416 
1417 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1418 		return 0;
1419 
1420 	if (!allow_nohz)
1421 		return 1;
1422 
1423 	tick_nohz_switch_to_nohz();
1424 	return 0;
1425 }
1426